MOTIVATING SMOOTH MANIFOLDS

MIRA WATTAL

ABSTRACT. In this paper, we build an intuitive and rigorous understanding of
shapes that look “locally” like Euclidean space, with a little help from mul-
tivariable calculus. After introducing the necessary definitions and theorems,
we will use our newfound understanding to show an interesting result about

n-spheres.
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FiGURE 1. Examples of Smooth Manifolds

1. INTRODUCTION

As humans, we inhabit a world consisting of incredibly complex geometries. Ev-
eryday objects often have insightful structures and properties. Take, for example,
donuts and basketballs. Though both of these objects are curved, donuts have holes
while basketballs do not. But what does it mean for an object to be “curved” or to
have “holes”? As mathematicians, we want to make our visual descriptions precise.
To do this, we need to define a coordinate system.

Coordinate systems uniquely determine the positions of points in a geometric
space using coordinates. In our study, coordinates encode location in Euclidean
space. Thus, we can describe familiar shapes, like donuts and basketballs, locally
as coordinates in R™ with one caveat. Our shapes must look locally like Euclidean
space. Donuts and basketballs satisfy this condition. Every point has an open
neighborhood that can be deformed (or flattened, in this case) to look like the
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plane.

Shapes that are locally Euclidean are called smooth manifolds. In fact, we
think of coordinate systems as coordinate maps between open subsets of smooth
manifolds and open subsets of R™. The “smooth” condition of smooth manifolds
implies that our coordinate maps are smooth.

Definition 1.1. Let U C R™ and V C R™ be open sets. Then, amap f: U — V
is called smooth if it has continuous partial derivatives of all orders.

Formally, a coordinate map is an n-tuple of smooth functions (z1, ..., x,), which
assigns points on a manifold coordinates in R™. But each x; should be more than
smooth. It should also preserve the intrinsic structure of the original space, other-
wise our coordinate system is useless! In differential topology, we call a structure
preserving map a diffeomorphism.

Definition 1.2. A diffeomorphism is a bijection, f : U — V, such that f
and f~! are smooth. U and V are “diffeomorphic” if they can be related by a
diffeomorphism.

At last, we have all the tools that we need to define a smooth manifold.

Definition 1.3. Let X be a topological space. Then, X is an n-dimensional
smooth manifold if it is Hausdorff! and it has a countable cover of open subsets,
U, C X, corresponding to smooth maps, 1,. These maps carry U, homeomorphi-
cally onto an open subset of R” and “agree” on the overlaps. More precisely, if Uy
and Us; overlap, then the transition map:

Yooy (Ur [\ U2) = a(Ur [ | Ua)

is a diffeomorphism. Each 2-tuple, {U,, %4}, is a coordinate chart, where U, is a
coordinate patch paired with a coordinate map, v,. The collection of coordinate
charts is called an atlas.

FIGURE 2. Charts “Agreeing” on the Overlaps (adapted from [4])

Hausdorff-ness allows us to separate points from open sets. We can use this property in the
next section when we apply calculus to smooth manifolds.
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Remark 1.4. We will refer to ¢, : U, — R™ as a coordinate system on U,, and
Y71 R™ = U,, a parametrization of U,.

Using atlases, we can describe smooth manifolds as patches of Euclidean space.
Often times, more than one patch is necessary?. Remember that smooth manifolds
satisfy a weaker condition of being “locally Euclidean”. In particular, neither bas-
ketballs nor donuts can be described by any one coordinate chart because they are
topologically distinct from the plane.

Consider the circle, another compact, smooth manifold. At the very least, we
need two coordinate patches, or local parameterizations, to “see” the circle as R.
Define the first parametrization as:

¢ :R— St
6 € (0,27) — (cosb,sin )
And define the second parametrization, ¢-, similarly, except restrict 6 to (—m, ).

These patches cover S! and their corresponding mappings are homeomorphisms,
which agree on the overlaps.

R o o
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FIGURE 3. Coordinate Patches for S!

Because coordinate patches are neighborhoods in Euclidean space, we can use
calculus to study the properties of smooth manifolds in greater depth.

2. CALCULUS ON MANIFOLDS

Recall that derivatives are the closest linear approximations in Euclidean space.
If ¢ : R® — R™ is a smooth map, then the directional derivative is defined by
taking the limit:

This limit describes the behavior of x € R™ along v € R™ with the vector
dip,(v) € R™. With z fixed, we define the derivative, di,, to be the linear map,
which assigns to each v € R its directional derivative. We call the Jacobian of ¢
at x the matrix representation of di, with respect to the standard bases.

2We think of R™ as a vacuous example.
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As linear mappings, derivatives have nice properties. Consider the Chain Rule.

Suppose ¢ o) : R® — R™ is a composition of smooth maps, where 1) : R® — RF
and ¢ : RF — R™. We can draw this as the diagram:

Rk

N

poih

Taking derivatives, the above becomes a commutative triangle of derivative maps:

¢
/W\

So, the Chain Rule asserts that the derivative of composition is the composition of
the derivatives. That is, d(¢ o) = d¢ o dip.

To coarsely summarize, we can use the derivative to assign to a point a collec-
tion of vectors, which describe its behavior in some open neighborhood of Euclidean
space. Not surprisingly, the image of a derivative mapping is a vector subspace,
which we will call a tangent space.

Tangent spaces are useful. They allow us to “flatly” approximate how an object
changes in the neighborhood of one of its points. But we should note that we
define tangent spaces by taking derivatives in Euclidean space. To generalize our
definition for smooth manifolds, we exploit local parametrizations.

Definition 2.1. Let X be an n-dimensional smooth manifold. Then, the tangent
space at a point « in X, T,(X), is the image of di,., where ¢,, : R™ — U is a local
parametrization of X about x.

Rﬂ
jﬁ; 00

¥ X

FIGURE 4. Tangent “Plane”
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Intuitively, we attach to x a “plane”® consisting of tangent vectors, di),(v).
Just like our ordinary multivariable functions, di, (v) describes how = changes along
v. In particular,

Proposition 2.2. T, (X) is n-dimensional.

Proof. Because v, is a local parametrization, v, is a diffeomorphism on some open
neighborhood U of z. Then, 1! exists and is smooth. According to the Chain
Rule:

dipy o dipy, = d(v; " o 4,) = d(id) = id

So, dip, is an isomorphism because it has an inverse, di; 1. As such, di, is surjec-
tive, implying that dim(T, (X)) = n.
O

Thus far, our definitions rely on our choice of parametrization, ¥,. But does
this “choice” uniquely determine how T, (X) behaves?

Proposition 2.3. Tangent spaces are independent of the choice of parametrization.

Proof. Let ¢, : R™ — V be another local parametrization for X about z. If we
restrict the domains of ¢, and v, so that U = V, ¢ 1 o, : R* — R™ is a
diffeomorphism. From the Chain Rule, we have that:

(s 0§50 y) = ddy o (doy " o dipy) = diy

Clearly, Im(di,) C Im(d¢,). To show inclusion from the other direction, simply
switch ¢, and 1, in the preceding arguments. Thus, Im(dy,) = Im(d¢,), which
is equivalent to stating that the tangent space at x is independent of ¢, or .

O

As expected, the choice of parametrization does not matter. If we shrink do-
mains appropriately and our parametrizations are “good” (that is, ¢, and ¢, are
diffeomorphisms), then di, and d¢, are isomorphic. Their tangent spaces should
be indistinguishable.

With local parametrizations, defining differentiability between manifolds and Eu-
clidean space is easy. How do we define differentiability between manifolds? First,
remember that derivatives assign points on smooth manifolds tangent spaces. For
maps between smooth manifolds, derivatives are maps between tangent spaces.

Let f : X — Y be a map, where X and Y are n-dimensional and m-dimensional
manifolds, respectively. Also, suppose that ¢, : R™ — U is a parametrization of X
about x and ¢, : R™ — V is a parametrization of Y about y. After shrinking U so
that f(U) C V, we define the derivative of f by first drawing the square:

SA tangent “plane” only makes sense in R3. More generally, we can think of these spaces as
tangent “bundles”.
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R* —2 R™

W e

N

Note that g, ¢, and 1 are maps between Euclidean spaces. Thus, their deriva-
tives are defined as usual, and by taking derivatives of the preceding diagram, we
obtain:

R™ dg s R™

dwocl J/d(,by

T,(U) % T,(V)

Because the derivative of f is an isomorphism, there is only one map that makes
this diagram commute. Naturally, it is the one that is independent of the choice
of parametrization and satisfies the Chain Rule! With these conditions, the only
acceptable definition? for df is the composition:

d(¢y0goiyt) =dpy,odgody;”

Now that we have defined differentiability between manifolds, we should consider
when f is smooth. Our definition suggests that f is smooth only when g is smooth
(that is, ¢, " o f 0 ¢, is smooth).

With these generalized notions of a derivative, we can make a powerful assertion,
namely, the Inverse Function Theorem.

Theorem 2.4. Let f : X — Y be a smooth map between manifolds of the same
dimension. If the derivative of f at a point x € X is an isomorphism, then f
maps an open neighborhood of x diffeomorphically onto an open meighborhood of

flz)=y.

From linear algebra, we know that a linear map is an isomorphism if any matrix
representation is non-singular. With the Inverse Function Theorem, we can use
this result to determine if an open neighborhood U of X is diffeomorphic to an
open neighborhood V of Y. We just need to find a map between both neighbor-
hoods (that is, a local parametrization or a coordinate system), whose Jacobian
determinant everywhere in U is non-zero.

3. STEREOGRAPHIC PROJECTION

Some of the simpler examples of smooth manifolds are spheres. We hinted at
this idea in the introduction when we constructed an atlas for S*. To show that 52
is a smooth manifold is not particularly difficult either. An interesting question to

40ne should verify that our definition is indeed independent of the choice of parametrization
and satisfies the Chain Rule.
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ask is: how can we show, more generally, that S™ is a smooth manifold?

We will show that this is the case in the “usual” way, by constructing a collection
of coordinate charts. Like our method for S, we will create two.

Suppose that S™ lives® in R"*! and define the first coordinate chart as {Uy, 1, }.
U, is an open set in R™ that covers the entire sphere except the north pole, N.
maps each point p € Uy to the unique point @ on the z,,1 = 0 plane such that
NQ contains p.

Without loss of generality, we will illustrate this process for S? living in R?:

FIGURE 5. Stereographic Projection in R? (adapted from [5])

Let p = (u1,...,un+1) and @ = (uf,...,u,,0). Using a method of similar
triangles, we find:

5What I really mean is “embedded”. As it turns out, all n-spheres can be smoothly embedded
in R, You will see a proof of this in the next section.
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Nat,s

X KaL,u)|

FIGURE 6. Method of Similar Triangles

Thus, 11 is the coordinate transformation:

1

m(”l, e 7un)

(ul,...,unﬂ) —

Define the second coordinate chart {Us, 1o} similarly, except Us is an open set
in R™ that covers the entire sphere except the south pole. From the lower hemi-
sphere, our projection point will be the south pole, S. As before, for each point
a € Uy, )o(a) is the unique point B on the ,, 11 = 0 plane such that SB contains a.

Let a = (v1,...,0p41) and B = (v{,...,v,,0). Because we project from the

rn?

south pole, v,,41 switches signs. Consequently, we define 15 as:

1

(U1, U
1+Un+1(1 )

(Ul,...,vn+1)

By construction, ¢; and s are homeomorphisms. We will check that g o ¢ !
is a diffeomorphism by computing the Jacobian. To determine )] 1 we write NQ
parametrically as N + ¢(Q — N). Since N contains p, we have:

(U1, tung1) = (0,0,1) + t(uy, ..., ul,,—1)

Because p lies on the unit sphere, ||p|]] = 1. We solve for ¢ by equating the norm
squared of the RHS to 1:

(tuh) + -4 (tul) 2+ (1—t)2 =1
P+ du? 1) =2t
2
t=—"—+
L+ Q]
2u) 2 IQI* —1
= oo Un = 5, Unyl = 5
1+ Q] L+ el +1
So, 1/)1_1 is defined as:

Uy
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2u} 20y Q-1
Syeens -
L+ Q] L+]QI7 leQlI"+1

Note that ||Q|| = || B||. Composing ¢, and 17! yields W = (v},...,v,). This

relationship helps us determine the matrix of partial derivatives, which has entries:

)

(U ) = (

lQI>-2u? . _ .

[avg} lers "7 J
7 lig =

CIR J

We will show that this matrix is non-singular. Write:

HQH2—42U'12 —2’/14%
e+ e+
o' )
det([ 2], ) = det(| D
I —2upuy Q1P —2up?
el el
QP —2u? -+ —2ufju,
= ||Q||4n det( : : )
2
—2upuy e QI — 2w
2w o 2ulul]
1 ) 1 1%n
deet(HQH I — : D
2unuy e 2u? |

1 2
= g, det([|Q[]" - I — (+))
7
lQI™
The eigenvalues of (%) are precisely 0 with a multiplicity of (n — 1) and 2[|Q||?
with a multiplicity of 1. Therefore, the characteristic polynomial of (x) evaluated

at | Q|| or equivalently, dct([g—ﬁ]i,j), is:
J

1
2 2\n— 2 2
LAQID) = dlelIMH™ IRl = 21elIF) = ——
QI
As desired, the determinant is non-zero everywhere. However, it appears to blow
up at ||@Q] = 0, that is, the north pole. This is no cause for alarm; recall that

the poles are not included in intersection of U; and Us! By the inverse function
theorem, 15 0 1)1 s a diffeomorphism.

We call this process stereographic projection. Stereographic projection mim-
ics shining a flashlight from the poles of an n-sphere and creating coordinate covers
via light projections onto some plane. As the flashlight’s beam approaches the
projection point, the end of the beam approaches infinity. By construction, our
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coordinate covers cannot include their projection points because stereographic pro-
jection sends them to infinity.

4. THE REGULAR VALUE THEOREM

Constructing n-spheres from coordinate patches is geometrically intuitive, but
computationally hairy. Fortunately, a simple, but highly non-trivial result exists
to show that S™ is a smooth manifold. Before we can explain this finding, we will
need to expend some elbow grease.

We begin by rolling up our sleeves and defining a slew of terms.

Let f : X — Y be a smooth map between open neighborhoods of an m-
dimensional smooth manifold, X, and an n-dimensional smooth manifold, Y.

Definition 4.1. If m < n and at some point € X, df is injective, then f is called
an immersion at z.

The canonical immersion is the standard inclusion map of R into R™. Note
that every immersion between smooth manifolds is locally canonical, up to a dif-
feomorphism.

We call X an immersed sub-manifold of Y, if f is an immersion for all z € X.
And if f is injective, then X is an embedded sub-manifold of Y. We can equiv-
alently state that f is a smooth embedding of X in Y. With this, we make a
remarkable, but slightly unrelated claim for the scope of this paper. In fact, all
smooth manifolds can be smoothly embedded in a subset of some big, ambient Eu-
clidean space, RY. This follows from Whitney’s Embedding Theorem, which proves
that an n-dimensional, smooth manifold can be embedded in R?".

To build our intuition for immersions and embeddings, we should consider their
differences. For one, embeddings are injective. Because of this added structure,
the image of an embedding cannot have self-intersections, whereas the image of an
immersion can. Below are some examples:

FIGURE 7. Embedded Circle (left) and Immersed Circle (right)

Now, suppose that m > n.

Definition 4.2. If df is surjective at some point x € X, then f is called a sub-
mersion at z.
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The canonical submersion is the standard projection map of R™ onto R™.
As with immersions, every submersion between smooth manifolds is also locally
canonical (up to a diffeomorphism, of course).

A point ¢ € Y is called a regular value of f, if f is a submersion at every point
in f~(q). Otherwise, ¢ is called a critical value. By the theorems of Brown and
Sard, the regular values are dense in a smooth function, f. Roughly, this means
that almost all of the points in Y are regular.

We finally have the necessary machinery to introduce the Regular Value Theorem.

Theorem 4.3. Let f : X — Y be a smooth map between manifolds, where dim
X =m and dim'Y = n. Suppose that m > n and q € Y is a regular value of f.
Then, f~1(q) is a smooth, embedded sub-manifold of X with dimension m — n.

Proof. Let {y1,...,yn} be a set of coordinate functions that carry an open neigh-
borhood of a point y in Y diffeomorphically onto an open neighborhood of R".
Without loss of generality, let each y;(¢) = 0. Fix an open neighborhood U about
q. By continuity, f~1(U) = U’ is also open. For points in U’, consider the n-tuple,
{gi =vyio f :i € [n]}. Our claim is that we can complete {g}° to an m-dimensional
coordinate system on U’. And with the right restriction, U’ () f~'(q)", only m —n
coordinate functions are non-trivial.

To start, suppose that {z1,...,2,,} is already a valid set of coordinates for U’.
Write the Jacobian of f with respect to this basis:
9gi

[ghgigmggm
J

Because ¢ is a regular value of f, for all points in its pre-image, the Jacobian has
rank n. For simplicity, suppose that the n x n non-singular sub-matrix is indexed
by the first n coordinates. Discard these and with the remaining m — n, complete
{g} to the set, {91, 9n;Tns1,--.,Tm}. Could this new set be the coordinate
system we were looking for? If this is the case, then {g,z} satisfies two conditions.

First, for each p € f~1(q), {g,#} must be a homeomorphism of U’ f~*(q)
onto its image in R™~". To show this, it is sufficient to prove that the coordinate
transformation, {x1,...,Zm} — {91, Gn, Tnt1,. -, Tm}, is a diffeomorphism.

Let 1 <i<n,n+1<k<m,and 1 < j < m. Denote the Jacobian of this
transformation as:

T
dgi Ox;
Oxy Oxy
The above is equivalent to block matrix:

6Reader Beware: I have symbolically rewritten many of these coordinate systems out of nota-
tional ease (or perhaps, laziness).

"You might wonder why we restrict our coordinate system to U’ () f~1(q), as opposed to
f~1(g). Careful. Remember that we defined coordinate systems on open sets, and the set,
F~1(q), is closed.
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% 2]

0o I,
By construction, [ggi] is non-singular, implying that the Jacobian is also non-
singular. According to the Inverse Function Theorem, this transformation is a
diffeomorphism. In fact, only m — n coordinates of {g,z} are needed to make up
a coordinate system on U’ () f~1(¢q)! Remember that each y;(q) is 0. This implies
that for all points p in f~1(g), we have the map:

p=1{91(0),- -, 9n(P); Tnt1(p), - -, Tm(p)}
={0,...,0,2p11(p), .-, xzm(p)}

Finally, transition maps of this form must also be diffeomorphisms.

Let {h1,...,hn,2nt1,...2m} be another valid coordinate system on an open
neighborhood V' containing f~!(q), constructed as above. From the first condition,
the coordinate transformation, {g,z} — {h,y} is a diffeomorphism, and therefore,
the Jacobian determinant is non-zero. Represent this determinant as:

Oh  Oh

’ dg ox ‘
9z 0z
dg ox

We want to show that [%] is non-singular (that is, the transition map, {0,z} —
{0,y}, is a diffeomorphism). To do this, note that everywhere in f~1(q), h;(0,x)
equals 0, implying that |%| also equals 0. But if the Jacobian is non-singular, then

\%\ is necessarily non-zero! So, the second condition is proved.
As we had hoped, {g,x} is precisely the coordinate system on U’ () f~!(q) that
describes an embedded, (m — n)-dimensional, smooth sub-manifold of X.
|
Using this theorem, we can succinctly show that S™ is an embedded, n-dimensional,

smooth sub-manifold of R™*!. Define the smooth map, f : R**! — R, so that for
each x € R™:

2
f@)=lz|" =ai+-- +al,
The Jacobian of this transformation is:
21’1 e 2(En+1

This matrix has maximal rank when f(z) is non-zero. So, the regular values of
[ are every point in R/{0}. Consider the entire set, f~1(1), which describes a
coordinate system on S™. Apply the Regular Value Theorem, and we are done.
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