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Abstract. In this paper, we examine group actions. Groups, the simplest

objects in Algebra, are sets with a single operation. We will begin by defining

them more carefully and exploring some key definitions related to groups. We
will then define group actions and several important concepts that relate to

them. The remainder of the paper explores two important types of action and

uses them to explore the structure of finite groups. The first is the coset. In
examining cosets, we will prove Lagrange’s Theorem, a major result in Finite

Group Theory. The second type of action which we will examine is conjugation.

Using our knowledge of conjugation, we will prove Sylow’s Thoerems - a set of
statements which provide knowledge of the internal structure of a finite group.
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1. A Little Bit About Groups

Before we discuss group actions, we will need to know something about groups.
In this section, we explore basic concepts in group theory that will be of use to
us later. Our survey will not be exhaustive, and interested readers are invited to
peruse [1], [2], or [3] for more results.

Definition 1.1. A group is an ordered pair (G, ·), where G is a set and · is a
binary operation (often referred to as multiplication) such that:

(i) For all a, b, c ∈ G, (a · (b · c) = (a · b) · c)
(ii) There exists 1 ∈ G such that for all g ∈ G, 1 · g = g
(iii) For each g ∈ G, there exists g−1 ∈ G such that g · g−1 = g−1 · g = 1

Examples 1.2. (R,+), (C,+), (Q,+) are all groups.

Other interesting examples of groups occur in geometry. An example is D3, the
dihedral group on three elements (the vertices of the triangle), which contains all
of the symmetries of an equilateral triangle. Another is the points on a circle with
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the operation of rotation, which is easy to draw and which obviously satisfies the
above axioms. We also have a natural notion of the size of a group.

Definition 1.3. Let (G, ·) be a group. The order of G, denoted |G|, is the number
of elements in the set G.

Remark 1.4. When there is no risk of confusion regarding the operation with which
G is a group, I will often refer to G as the group.

Note that our operation need not be commutative. For instance, many sets
of matrices form groups with respect to matrix multiplication, which is generally
noncommutative. This leads to our next definition.

Definition 1.5. A group (G, ·) is Abelian if · is commutative.

Examples 1.6. The groups listed in Example 1.2 are all Abelian.

Looking at the examples listed, the reader might notice something; Q ⊂ R ⊂ C
and all of these sets are groups with respect to addition. This notion is encapsulated
in the following defintion.

Definition 1.7. A subgroup H 6 G is a set H ⊆ G that is a group under the
same operation under which G is a group.

We will prove several results in this paper that help us determine subgroups of a
group. The following is the first of these results, though it only works of one knows
that a group contains certain subgroups. Other results will not need us to have this
knowledge.

Proposition 1.8. If {Hi} are subgroups of G, then their intersection is a subgroup
of G.

Proof. The identity is obviously in the intersection of Hi. Since associativity and
inverses hold by hypothesis for elements in any Hi, they hold for elements in the
intersection. �

Proposition 1.9 enables us to make the following definiton:

Definition 1.9. Let A be a subset of a group G and let Hi be subgroups of G such
that A ⊆ Hi. 〈A〉 = ∩iHi is called the subgroup of G generated by A.

An important special case follows:

Definition 1.10. A group generated by a single element, call it x, is called a cyclic
group and is denoted 〈x〉.

For the intuition behing the term cylcic, one need only look at the rotations of
a circle. Cyclic groups allow us to assign an order to an element of a group if the
element generates a cyclic group. The order is simply the order of the cyclic group
the element generates.

We have now examined groups. It is natural to next ask what maps are of
interest. The answer is the maps that preserve group structure.

Definition 1.11. Let G and H be groups. A map ϕ : G→ H is a homomorphism
if, given g1, g2 ∈ G, ϕ(g1g2) = ϕ(g1)ϕ(g2).

Remark 1.12. : There are really two operations in the above definition. The first
is the binary operation in G and the second is the one in H.
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There are some special homomorphisims to which we will refer by name.

Definitions 1.13. : A homomorphism that is injective is a monomorphism. A
homomorphism that is surjective is an epimorphism. A homomorphism that is
bijective is an isomorphism.

The most important of the above to recognize is isomorphism. If two groups have
an isomorphism between them, they are, as far as algebraists care, the same. They
do not need to have the same elements; algebraists seldom care about the elements
of groups. Rather, the groups have the same structure - namely binary operations
that satisfy the axioms in Definition 1.1. Two groups with an isomorphism between
them are said to be isomorphic.

2. Actions

In this section, we introduce actions. Intuitively, an action is simply the way a
group acts on a set (often the group itself) in a way with some intersting properties.
In what follows, we clarify the prior remark and introduce related definitions that
will allow us to utilize actions in future proofs.

Definition 2.1. Let G be a group and S be a set. An action of G on S is a map
$ : G× S → S (often written gs for some s ∈ S) such that

(i) For all g1, g2 ∈ G and for all s ∈ S, g1(g2s) = (g1g2)s
(ii) For all s ∈ S, 1s = s

Definition 2.2. Let G be a group and S a set. The kernal of an action $ of G
on S is:

ker($) = {g ∈ G : ∀s ∈ S, gs = s}

Definition 2.3. An action $ such that ker(ϕ) = {1} is called faithful.

There are some important notions that accompany actions that will be of use to
us later.

Definition 2.4. If G is a group acting on S and s ∈ S, the stabilizer of s in G is:

StabG(s) = {g ∈ G : gs = s}

Proposition 2.5. StabG(s) 6 G.

Proof. By definition, if g ∈ StabG(s), then g ∈ G. We need only show that StabG(s)
is closed under multiplication and taking inverses. For g, h ∈ StabG(s), (hg)s =
h(gs) = hs = s and g−1s = g−1(gs) = (g−1g)s = 1s = s. �

Definition 2.6. If G is a group acting on S, the orbit of s ∈ S under G is:

OrbG(s) = {gs : g ∈ G}

In words, Orbits are the points in S to which s is mapped by a group action.
Orbits are important for many proofs that follow because they partition S into
equivalence classes, as we show now.

Proposition 2.7. The relation y ∼ x if and only if y ∈ OrbG(x) is an equivalence
relation.
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Proof. We must check that the relation is reflexive, symmetric and transitive.
• Taking 1 ∈ G, we see that x = 1x ∈ OrbG(x). Thus, x ∼ x and the relation is

reflexive.
• To establish our relation is symmetric, let y ∈ OrbG(x). We need to show that

x ∈ OrbG(y). Since y ∈ OrbG(x), there exists h ∈ G such that y = hx. Since
elements of groups have inverses, there exists h−1 ∈ G such that h−1y = h−1hx =
1x = x. Thus, x ∈ OrbG(y).
• Let y ∈ OrbG(x) and z ∈ OrbG(y). To show that our relation is transitive,

we must show that z ∈ OrbG(x). Since y ∈ OrbG(x), there exists h ∈ G such
that y = hx. Since z ∈ OrbG(y), there exists h′ ∈ G such that z = h′y. But,
since y = hx, z = h′y = h′hx. Thus, since groups are closed under multiplication,
h′h ∈ G and z ∈ OrbG(x) as needed. �

The fact that actions partition sets into orbits will be the crux of many future
proofs, as we will see when we use two types of actions, left multiplication and
conjugation, to investigate the structure of groups.

3. Cosets and Lagrange’s Theorem

We begin by examining another example of an action - left multiplcation. This
will lend us to the concept of cosets and to Lagrange’s theorem, an important result
in finite group theory.

Proposition 3.1. Let G be a group. Left multiplication - defined by ga for g, a ∈ G
- is an action.

Proof. We already have our map. Associativity and multiplication by 1 follow from
the definition of a group. �

Definition 3.2. Let H 6 G and a, b ∈ G. a is congruent to b mod H if
b−1a ∈ H. If this is so, we write a ≡ b mod H

Since left multiplication is an action, the orbits of any element of H by a fixed
element of G form equivalence classes. We can partition G into these equivalence
classes.

Definition 3.3. The equivalence classes mentioned above are called left cosets
of H containing a, where a is the fixed element of G called a representative of the
coset. We write them aH The collection of all cosets of H in G is denoted G/H.

The following provides a way to determine when two cosets are equal.

Proposition 3.4. Let G be a group and let H 6 G. For all a, b ∈ G, aH = bH if
and only if b−1a ∈ N in particular, if and only if a and b are representatives of the
same coset.

Proof. Since cosets partition G, G is the union of products of the form gH. We
need to show that distinct left cosets do not intersect. Suppose that aH ∩ bH 6= ∅.
Let c ∈ aH ∩ bH. For some h, h′ ∈ H, c = ah = bh′ so a = ch−1 = bh′h−1 = bh′′

where h′′ ∈ H. Now any am ∈ aH (m ∈ H) is of the form am = bh′′m ∈ bH,
showing that aH ⊆ bH. The same argument reversing the roles of a and b yields
aH ⊇ bH, so aH = bH. Since H is closed under products, this is equivalent to
saying a and b represent the same coset. �
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Definition 3.5. The cardinality of G/H is called the index of H in G and is
written [G : H].

Theorem 3.6. Lagrange’s Theorem Let G be a finite group and let H 6 G.
Then |G| = |H|[G : H].

Proof. The map h 7→ ah is obviously a bijection. Thus, |H| = |aH|. Hence, since
the cosets are equivelence classes, G is partitioned into [G : H] of them, each with
|H| elements. �

In short, Lagrange’s theorem says that the order of a subgroup of G divides
the order of G. It gives a natural way of calculating the size of a group given a
coset collection and vice versa. We will use it extensively in future proofs. Here’s
a snapshot of what it is capable of.

Proposition 3.7. Let G be a finite group acting on a set S and let s ∈ S. Then
|G| = |StabG(s)|]OrbG(s).

Proof. Since StabG(s) 6 G, we may find its cosets. They are given (fixing h ∈ G)
by h(gs) = hs i.e the orbits of S. Using Lagrange’s Theorem, the result follows. �

By a simple application of Lagrange’s Theorem we have a way of determining
group size based on actions. Is there more we can learn about group structure using
actions? Absolutely. In the next section, we will see how we can obtain detailed
information about the internal structure of a finite group using group actions.

4. Conjugation and Sylow’s Theorems

In this section, we introduce another important action - conjugation. We show
several important application of conjugation and use conjugation and its applica-
tions to prove Sylow’s Theorems, which are a sort of partial converse to Lagrange’s
theorem. Whereas Lagranges Theorem gives an equation for the order of a group
in terms of a subgroup and cosets with it, Sylow’s Theorems provide detailed in-
formation about certain special subgroups of a group. These subgroups are called
p-Sylow subgroups and are a sort of maximal prime subgroup. We then move to
some applications of Sylow’s Theorems and will even get to glance at one of the
crowned jewels of twentieth century mathematics. We begin with some definitions.

Definitions 4.1. Let p ∈ Z be prime and k ∈ N. A group L such that |L| = pk is
called a p-group. A subgroup H 6 G is a p-subgroup if |H| = pk.

Definition 4.2. Let H 6 G be a p-subgroup of order pk, with k ∈ N. If k is the
largest integer for which pk divides |G|, H is a p-Sylow subgroup.

To prove Sylow’s Theorems, we will need a type of action called a conjugation,
which takes an element of a group to its conjugate.

Definition 4.3. Let G be a group and consider a, b ∈ G. The conjugate of a by
b is ab = b−1ab.

Definition 4.4. Let G be a group and a, b ∈ G The conjugation of a by b is a map
$ : G×G→ G such that $(a, b) = b−1ab.

Proposition 4.5. Conjugation as defined above is an action of G on itself.
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Proof. That we have a map from G × G to G is evident from the definition of
conjugation. We need to show that the map obeys the axioms of definition 2.1.
• Let a, b, c ∈ G. a(b

c) = c−1b−1abc = c−1(b−1ab)c = (ab)c so the map is
associative.
• Let a, 1 ∈ G. By the definition of identities in groups, 1a = a. �

Proposition 4.6. The conjugation of G by an element of G is an isomorphism.

Proof. Recall that an isomorphism is a homomorphism that is both injective and
surjective. Let a, b, g ∈ G. Denote the map that conjugates an element in G by g
by ϕg.
• ϕg(ab) = g−1abg = g−1a(gg−1)bg = ϕg(a)ϕg(b) so ϕg is a homomorphism.
• Let ϕg(a) = ϕg(a′). By definition of conjugation, g−1ag = g−1bg. Left multi-

plying both sides by g and right multiplying both sides by g−1 yields a = b so ϕg

is injective.
• Consider h ∈ G. For ϕg to be surjective, there must be h′ ∈ G such that

h′ = ghg−1, causing ϕg(h′) = h. Since G is closed under multiplication, there is
such an element, so ϕ is surjective. �

Definition 4.7. Since conjugations are an action, the orbits of elements G under
conjugation partition a group into equivalence classes. These equivalence classes
are called conjugacy classes.

As with cosets, we have a natural notion of a representative of a conjugacy class.
This time, the representative is an element of the group that is being conjugated.

We can extend the definiton of Conjugation to any subset of G. All of the above
propositions hold and the proofs are identical. We now give some important results
obtained using cojugations.

As a first application of conjugation, we will now establish a remarkable theorem
due to Cauchy that guarantees the existence of a type of subgroup of G under certain
circumstances.

Theorem 4.8. Cauchy’s Theorem Let G be a finite group and let p ∈ Z be a
prime number such that p divides |G|. G has an element, call it x, of order p.

Proof. Consider elements (x1, ..., xp) ∈ G× ...×G (the p-fold Cartesian product of
G) such that x1x2...xp = 1. Define C to be the set of all above Cartesian products
except for (1, ..., 1). Note that xp = (x1...xp−1)−1, so by the fundamental counting
principle, the cardinality of C is |G|p−1−1 and is not divisible by p. Define Z = 〈z〉
(with no necessary relationship to G) to be a cyclic group of order p. Specifying
z(x1, x2, ..., xp) = (x2, ..., xp, x1) amounts to conjugating x1...xp by x1 and therefore
defines an action. Since |Z| = p, by Proposition 3.7, every orbit of Z in C has either
1 or p elements. If all of the orbits had p elements, p would divide C, so one orbit
must have one element. Because of the way we defined our action on C, this element
must of the form (x, ..., x) for some x ∈ G. Thus, xp = 1 and x is of order p. �

Remark 4.9. It follows from applying Lagrange’s Theorem to a group of prime order
that any subgroup H 6 G of prime order must be generated by a single element.

Definition 4.10. The center of G, written Z(G), is the kernal of the conjugation
action.

Definition 4.11. The centralizer of b in G, written CG(b) is the stablilzer of the
conjugation action on b.
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Definitions 4.12. Let G be a group, a ∈ G and H ∈ G. The normalizer of H in
G is:

NG(H) = {g ∈ G : a−1Ha = H}
Let N 6 G. N is called a normal subgroup of G if NG(N) = G and we say
N EG if N is a normal subgroup of G.

The next proposition gives an important application of normal subgroups.

Proposition 4.13. Let G and N be groups such that N 6 G. Multiplication of
left cosets, defined by:

(aN)(bN) = (ab)N

is well defined if and only if N EG.

Proof. Suppose abN = a′b′N . We need to show that N is normal in G i.e. g−1Ng =
N . Let g ∈ G and n ∈ N . Setting 1 = a, n = a′ and b = b′ = g, we find that
1gN = ngN so gN = ngN . Since a ∈ N , ng1 ∈ gnN hence, there exists n′ ∈ N
such that g−1Ng = n′ ∈ N as needed.

Conversely, suppose g−1Ng = N . Let a, a′ ∈ aN and b, b′ ∈ bN . For some
n, n′ ∈ N , we know a′ = an and b′ = bn′. We need to show a′b′ ∈ abN .

a′b′ = (an)(bn′) = a(bb−1)(nbn′) = (ab)(b−1nb)n′

. By assumption, b−1nb ∈ N and, since N is closed under products, the entire
product is in N . Thus, abN = a′b′N as needed. �

Corollary 4.14. Let N E G and g, 1 ∈ G. G/N is a group with the identity 1N
and the inverse (gN)−1 = g−1N .

Definition 4.15. The group constructed in Corollary 4.11 is called the quotient
group of G by N .

Definition 4.16. A group G is simple if its only normal subgroups are G and
{1}.

Proposition 4.17. The Class Equation Let G be a finite group and let bi be
representatives of conjugacy classes of G not contained in Z(G).

|G| = |Z(G)|+
∑
i

[G : CG(bi)]

Proof. The conjugacy classes form the equivalence classes that partition G. Either
they land in the center of G or they do not. Thus, the proposition will be correct
if the conjugacy classes are the cosets of the centralizer of the bi in G. We need
to show this is so. In the course of proving the Proposition 3.7, we found that the
orbit of the stabilizer of the action is the orbit of the element in the group. The
result follows. �

We are now ready to proceed to Sylow’s Theorems.

Theorem 4.18. Sylow’s First Theorem Let G be a finite group and let p ∈ Z
be a prime such that p divides |G|. Then G has a p-Sylow subgroup.

Proof. Induct on |G|. For |G| = 1, the theorem is vacuously true. Suppose that
|G| = N and if |G| < N , G has a p-Sylow subgroup. We can divide the remainder
of the proof into two complementary cases.
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• For the first case, assume G has a proper subgroup H < G such that p does not
divide [G : H]. By the inductive hypothesis, H has a p-Sylow subgroup P1 6 H.
By Lagrange’s theorem since p does not divide the index of G with H but divides
|H|, P1 is p-Sylow in G.
• For the second case, assume p divides [G : H] for all H < G. Note that since

CG(H) is the stabilizer of an action, CG(H) < G. Therefore, p divides CG(H). By
the class equation, |G| = |Z(G)| + [G : CG(H)], so p divides Z(G). Since it does,
Cauchy’s theorem guarentees an x ∈ Z(G) of order p. Since the cyclic subgroup
generated by x is in the normalizer of G, 〈x〉/G. Using the above result, G/〈x〉 is of
order pk−1m < pkm = N , where k ∈ N is the largest power of p that divides |G|, so

G/〈x〉 has a p-Sylow subgroup K. Since 〈x〉 is normal, K =
K1

〈x〉
for some K1 6 G.

By Lagrange’s theorem, |K1| = |K||〈x〉| = pk, so K1 is a p-Sylow subgroup of
G. �

In proving Sylow’s second theorem, we will need the following lemma:

Lemma 4.19. Let G be a finite group. Let p ∈ Z be prime and let H 6 G be a
p-subgroup. Let P be a p-Sylow subgroup of G. H ∩NG(P ) = H ∩ P .

Proof. Let K = H ∩ NG(P ). By the Isomorphism Theorem (see the appendix),
KP/P ∼= K/(K ∩ P ). Thus, [KP : P ] = [K : (K ∩ P )] = pk (k ∈ N), where
pk 6 |H|, with the last equality following from the fact that K 6 H is a p group.
By the preceding set of equalities and Lagrange’s Theorem, KP is a p group.
Look at KP . Taking 1 ∈ K, we see that P 6 KP . However, since P is p-Sylow
in G, |P | > |KP |, so P = KP . Since this is so, K = K ∩ P . Further, since
K = H ∩NG(P ), the prior equality implies H ∩NG(P ) = H ∩NG(P )∩P = H ∩P ,
with the last equality following from the fact that NG(P ) ∩ P = P . �

We now proceed to Sylow’s next theorem.

Theorem 4.20. Sylow’s Second Theorem Let G be a finite group, p ∈ Z be
prime and P 6 G be a p-Sylow subgroup of G. Suppose H is a p group. Then there
exists x ∈ G such that H 6 P x. In particular, all p-Sylow subgoups are conjugates
of one another.

Proof. Let S be the set of all G conjugates of P given by S = {P yi : yi ∈ G}.
Since P is p-Sylow and each pyi is the conjugate of P by y, each is isomorphic to
P and is therefore p-Sylow. We examine the action of H on S by conjugation. By
definition, the stabilizer of this action is NH(S) = ∪iNH(P yi). Using the above
lemma, NH(S) = ∪iNH(P yi) = ∪i(H ∩ NG(P yi)) = ∪iH ∩ P yi = H ∩ S. By
Proposition 3.7, |S| = [G : NG(P y)]. Since P 6 NG(P ) and P is p-Sylow, and
since p divides G and NG(P ), p does not divide |S|, as the factors of p cancel in
applying Lagrange’s Theorem. Let yi be the distinct elements of G. By the class
equation, we may also write |S| =

∑
i[H : H ∩ P yi ] since the orbits of S under

conjugation by partition S into conjugacy classes [H : H ∩ P yi ]. Since H is a p
group, [H : H ∩ P yi ] = pk for some k ∈ N. Note that p 6 NG(P ) and therefore
NG(P ) contains all of the powers of P in the order of G. Thus, by Lagrange’s
Theorem, p does not divide the order of the stabilizer. Hence, for some of these yi,
call them yj , [H : H ∩ P yj ] = 1, since p cannot divide the order of the stabilizer.
Therefore, we have j such that H ∩ P yj = H so H 6 P x as needed. �
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Theorem 4.21. Sylow’s Third Theorem If G is a finite group and p ∈ Z is
prime, the number of p-Sylow subgroups of G is congruent to 1 modulo p.

Proof. Let H = P . We need to find the size of
∑

j [P : P ∩ P yj ] (with the yj from

the previous proof). We know {P} is an orbit of P y under conjugation and is of
order 1. By Lagrange’s Theorem, p must divide the order of all other orbits. The
result follows. �

Now, we see the information Sylow’s theorems do indeed contain. They guar-
antee the existence of p-Sylow subgroups, tell us how to get from one p-Sylow
subgroup to another, and how many distinct p-Sylow subgroups there are. One of
the ways this is useful is in showing which groups are not simple. We explore this
now.

Proposition 4.22. Let G be a finite group and p ∈ Z be prime. Suppose P is the
unique p-Sylow subgroup of G. P EG.

Proof. If P is the unique p-Sylow subgroup in P , the conjugate of P by any of its
elements is in P by Sylow’s Second Theorem. Thus, P is normal. �

For an example of how this type of thinking progresses, consider a group of
order 56 = (23)(7). By Sylow’s first theorem, there are 2-Sylow subgroups and
7-sylow subgroups. The number of 7-Sylow subgroups is either 1 or 8. If there
is one, it is normal and our group is not simple. If there are 8 7-sylow sup-
groups, then there are 8 (56 − 8 · 6) elements in the group not included in those
8. These constitute a 2-Sylow subgroup which must be unique and therefore nor-
mal. Hence, a group of order 56 cannot be simple. It is interesting to ask which
groups are simple. That question was answered in the twentieth century by the
Classification Theorem of Finite Groups. The theorem states that all fi-
nite simple groups fall into just a few classes. There are cyclic groups of prime
order, alternating groups (even permutations) and simple finite Lie Groups that
act as matrices over finite fields. The most interesting, however, are the sporatic
groups, which don’t fit into any of the aforementioned classes. Remarkably, these
can get quite large. The largest of them, the Fischer-Greiss Group, is of order
808017424794512875886459904961710757005754368000000000. It is often (appro-
priately) referred to as the Monster.

5. Appendix: The Isomorphism Theorem and Notation

We state the Isomorphism Theorem here, which we used in proving Sylow’s
Second Theorem. We will not prove it here, but a proof can be found in [1] or [2].

Theorem 5.1. The Isomorphism Theorem Suppose H, K are subgroups of G
and that K is a subgroup of NG(H). Then, KH = HK 6 G, HEKH, K∩HEK,
and KH/H ∼= K/K ∩H.

Where a ∼= b means that a is isomorphic to b.
Since I use the notation KH (K and H groups) in proofs, I should note here

that it is simply the set of all products kh, where k ∈ K and h ∈ H.
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