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Abstract

Characteristic classes associate vector bundles over topological spaces to
elements of their cohomology groups. Although their utility is not imme-
diately apparent, they can concisely encode critical information, especially
in the case where our topological spaces are manifolds. In this paper we
first seek to give a survey of characteristic classes of unoriented real vector
bundles with mod 2 coefficients for cohomology. Then without covering
the details we look at the cases of complex and oriented vector bundles,
and use our knowledge to tackle the problem of computing cobordism
rings.
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1 Introduction

In this paper we seek to produce a thorough survey of characteristic classes
and to explore their relation to cobordism. Section 2 of the paper presents
the main definitions and introduces the universal bundle of the Grassmanian.
The discussion of principal bundles is somewhat disjoint from the project of the
paper, but it tries to give some motivation for the universal bundle and for the
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relationship vector bundles have to matrix groups. Section 2 largely draws from
[5]. In Section 3 we strive to supplement section 2 with a few basic examples
and lemmas in order to make vector bundles more familiar to the reader.

In sections 4 and 5 we explore Stiefel-Whitney classes. Throughout section 4
we use the cohomology of the Grassmanian to show that Stiefel-Whitney classes
generate all characteristic classes of real vector bundles with mod 2 coefficients.
Computing the cohomology of the Grassmanian is one of the major projects
of this paper, and it draws largely from techniques in [1]. In section 5 we use
Stiefel-Whitney numbers to relate characteristic classes to cobordism. In section
6 we go on to prove the Thom Isomorphism with mod 2 coefficients, hoping to
provide the reader with ample motivation concerning Thom classes and their
utility.

Up until the end of section 6 we try to include as many details as possible
and for this reason we restrict ourselves to the cases of real vector bundles and
mod 2 coefficients. In section 7 we hope to extend the results we have found so
far in an intuitive way to the complex and oriented cases. Finally in section 8 we
tackle the problem of cobordism, proving the crucial theorem that cobordism
rings can be computed as homotopy groups of Thom spaces of universal bundles.

Throughout this paper we primarily follow [1] and [2], and most proofs are
borrowed from them in some capacity. However we always try to flesh out
the details that are central to our project and give less importance to those
which are tangential to it. Furthermore for the core theorems such as the
Thom Isomorphism and the Thom-Pontrjagin construction we attempt to make
a balance between providing the most canonical proofs and those that provide
the reader with the best intuition.

2 Principal Bundles and Classifying Spaces

Definition 2.1. A fiber bundle is an ordered tuple (E, B, F) of topological
spaces along with a surjective continuous map p : E → B such that:

(i) For all b ∈ B, p−1(b) is homeomorphic to F
(ii) Every b ∈ B has an open neighborhood U such that there exists a

homeomorphism Φ : U × F → p−1(U) satifying (p ◦ Φ)(u, x) = u.

The map Φ is called a trivialization. Furthermore any map s : B → E such that
p ◦ s is the identity is called a section. We will often abuse notation by referring
to vector bundles by their projection map. We will study in more detail two
types of fiber bundles with added structure.

Definition 2.2. A vector bundle is a fiber bundle where F has a finite-dimensional
vector space structure and Φ is a linear isomorphism on each fiber. Specifically
a real vector bundle is one where F is a vector space over R and a complex
vector bundle is one where F is a vector space over C. The dimension of a
vector bundle is the dimension of F as a vector space.

Definition 2.3. A principal bundle is a fiber bundle where F is homeomorphic
to a topological group G. Furthermore E has a right G-action which preserves
fibers. Note that this means that B can be identified with the orbit space E/G.
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Given two fiber bundles p : E → B and p′ : E′ → B′ a bundle map is an
ordered pair (f, g) that makes the following diagram commute:

E E′

B B′

f

p p′

g

A bundle map over B is one where B′ = B and g is the identity. In the case
of principal bundles we further require f to be G-equivariant. Additionally in
the case of vector bundles we require that both vector bundles have the same
dimension and that f is linear on fibers. If f is also a homeomorphism then
we call (f, g) an isomorphism. In the case of vector bundles we further require
that f is an isomorphism on each fiber. We leave it to the reader to prove the
small lemma that every bundle map of G-principal bundles is an isomorphism.
This allows us to define the set E(B) of isomorphism classes of vector bundles
over B. Specifically we define En(B) to be the set of isomorphism classes of
n-dimensional real vector bundles over B and EG(B) to be the set of isomor-
phism classes of principal G-bundles over B.

Given a fiber bundle ξ : E → B and a continuous map f : A→ B we define
f∗ξ to be the pullback of the maps ξ and f . Concretely this is the set of all
ordered pairs (a, e) ∈ A × E such that f(a) = ξ(e). This allows E(−) to be a
contravariant functor from the category of topological spaces to the category of
sets. In particular E(−) sends each topological space to the set of isomorphism
classes of fiber bundles over it, and sends morphisms between topological spaces
to pullbacks of bundles. We note without proof that if f is homotopic to g
then f∗ξ will be isomorphic to g∗ξ so that E(−) factors through the category of
homotopy classes of spaces.

In this paper we will primarily be studying vector bundles. However the
next theorem explains the utility of principal bundles for our purposes:

Theorem 2.4. There exists a bijection between the set En(B) and the set
EGLnR(B) of GLnR-principal bundles over B.

Proof. First we define a map ψ : En(B)→ EGLnR(B). Given some vector bundle
ξ : E → B we let ψ(ξ) be the principal bundle over B where the fiber of b is
defined to be the set of n-frames of ξ−1(b). An n-frame is an n-tuple of linearly
independant vectors. This is a GLnR-principal bundle because ordered sets of
n linearly independant vectors in Rn are in correspondance with nonsingular
matrices. Now we define a map τ : EGLnR(B) → En(B). Given a GLnR-
principlal bundle η : D → B we define τ(ν) to be D × Rn with the equivalence
relation that (dg, x) ∼ (d, gx) for all g ∈ GLnR. Thus the base space is the
orbit space D/GLnR and each fiber is Rn. Note that D/GLnR is canonically
isomorphic to B. Now we need to make sure τ and ψ and inverses. If we
start with a vector bundle ξ then (τ ◦ ψ)(ξ) is ψ(ξ) × Rn/ ∼. But there is an
isomorphism e : ψ(ξ)×Rn/ ∼→ E defined by mapping ({v1, ..., vn}, (x1, ..., xn))
to x1v1 + ... + xnvn. Since v1, ..., vn are linearly independant this must be an
isomorphism. Thus τ ◦ ψ is the identity.

To show that ψ ◦ τ is the identity recall that every bundle map of principal
bundles is an isomorphism. Now take a principal GLnR-bundle η : D → B and
note that (ψ ◦ τ)(η) is the set of n-frames of the vector bundle D × Rn/ ∼.
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Thus there is a canonical bundle map D → D×Rn/ ∼ which sends d to the set
{(d, e1), ..., (d, en)}.

We note that the bijection from Theorem 2.4 is actually a natural isomorphism
of functors, but we will leave the added details to the reader.

Clearly given a fiber bundle ξ : E → B and a space A we can define a
map φξ : [A,B] → E(A) given by φξ(f) = f∗ξ. If we let ξ be a principal G-
bundle and φξ : [A,B] → EG(A) is a bijection for all spaces A then we call B
a classifying space for G and E its universal bundle. A classifying space for a
toplogical group G is usually denoted BG. The next theorem, which we shall
not prove, gives us a way of finding universal bundles.

Theorem 2.5. If E is weakly contractible then E is a universal bundle. For E
to be weakly contractible we require that all its homotopy groups are trivial.

We define VnRn+k to be the set of all n-frames in Rn+k and we let it inherit the
subspace toplogy from Rn(n+k). Now if we identify all the n-frames that span
the same subspace of Rn+k we get the Grassmanian GnRn+k, which we endow
with the quotient topology. Note that GnRn+k is VnRn+k/GLnR where GLnR
acts by permuting the n-frames of each n-dimensional subspace. Thus the map
p : VnRn+k → GnRn+k defines a principal GLnR-bundle. Similarly if we take
the set V On Rn+k consisting only of orthonormal n-frames then p : V On Rn+k →
GnRn+k defines a principal O(n)-bundle. By taking the direct limit as k →∞
we get the principal GLnR-bundle p : VnR∞ → GnR∞ and the O(n)-bundle
p : V On R∞ → GnR∞. Following the work of [5] we want to show these are
universal bundles.

Theorem 2.6. VnR∞ and V On R∞ are weakly contractible.

Proof. We note first that by using Gramm-Schmitt orthogonalization we can
deformation retract VnR∞ to V On R∞ so we only need to prove the theorem for
the latter. Furthermore since V On R∞ is a direct limit of V On Rk+n we can reduce
our problem to showing that πiV

O
n Rn+k is trivial for i < k. To do this we define

a fibration p : V On Rn+k → Sn+k−1 by mapping (v1, ..., vn) to v1. Each fiber of p
consists of the subspace generated by v2, ..., vn in the orthogonal complement of
v1. Thus the fibers are all V On−1Rn+k−1, so the long exact sequence associated
to this fibration is

πi+1(Sn+k−1)→ πi(V
O
n−1Rn+k−1)→ πi(V

O
n Rn+k)→ πi(S

n+k−1)→ πi−1(V On−1Rn+k−1)
.
We know that for all i < k, πiV

O
1 R1+k = πiS

k = 0. Now we use induction
noting that if πiV

O
n−1Rn+k−1 = 0 and πiS

n+k−1 = 0 then πiV
O
n Rn+k must be

trivial as well.

This tells us that up to homotopy BGLnR ∼= BO(n) ∼= GnR∞. Using Theorem
2.4 we see that GnR∞ is also a classfying space for Rn-bundles. Looking at the
the construction of the bijection in Theorem 2.4 and filling in some details we
see that in the univeral Rn-bundle the fiber of each n-plane X ∈ GnR∞ must
be X itself. The total space of this vector bundle will be denoted γn. We can
define GnC∞ and its universal bundle γnC in the same way as in the real case. It
turns out that up to homotopy BU(n) ∼= GnC∞ and that this bundle classifies
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complex n-dimensional vector bundles. These results are summarized in the
following result:

Corollary 2.7. Given a space A, every n-dimensional real vector bundle over
A is of the form f∗γn for some map f : A → BO(n). Similarly every n-
dimensional complex vector bundle over A is of the form f∗γnC for some map
f : A→ BU(n). In both cases f is unique up to homotopy.

There exist proofs that γn is the universal bundle without recourse to principal
bundles, for example in [1]. However this paper’s approach explains the notation
BO(n) and BU(n). Furthermore it should be noted that in categorical language
this corollary says that the functors En(B) and EC

n(B) are represented by BO(n)
and BU(n) respectively.

3 Examples of Vector Bundles

In this section we define and discuss a few important vector bundles.

Example 3.1. If B is a space then B × Rn is always a vector bundle. This is
called the trivial bundle and it will be denoted εn or simply ε.

Example 3.2. The canonical line bundle is a vector bundle over projective space
Pn where the fiber of each x ∈ Pn is the line in Rn+1 represented by x. Note
that this is another way of defining G1Rn+1. It will usually be denoted γ1n.

Definition 3.3. Given a space B and two vector bundles ξ : E → B and
ν : E′ → B over B we can define a new vector bundle ξ × ν over B × B by
letting the fiber of each (b, b′) ∈ B × B be ξ−1(b) × ν−1(b′). If we take the
pullback over the diagonal map d : B → B × B then we get a new bundle
d∗(ξ × ν) := ξ ⊕ ν. This is called the Whitney Sum of ξ and ν.

Example 3.4. We will assume the reader is familiar with manifolds. Given a
smooth manifold M we can define the tangent bundle τM over M by letting
the fiber of each point x ∈M be the tangent space TxM . Similarly, given some
embedding of M into Rn, we can define the normal bundle νM by letting the
fiber of every x ∈M be the space of all vectors orthogonal to the tangent space.

Lemma 3.5. If a vector bundle map over some base space B is an isomor-
phism on each fiber then it is a homeomorphism on the total spaces and thus an
isomorphism of vector bundles.

Theorem 3.6. An n-dimensional vector bundle is trivial if and only if it has n
sections which are linearly independant on each fiber.

Proof. If an n-bundle ξ over B has n linearly independant sections s1, ..., sn
then we create the bundle map f : B × Rn → ξ defined by f(b, (x1, ..., xn)) =
x1s1(b) + ...+ xnsn(b). Since {s1(b), ..., sn(b)} form a basis for the fiber of ξ at
b this is an isomorphism on each fiber. Conversely if ξ is the trivial bundle then
it is of the form B × Rn so we can let each si be the map b 7→ (b, ei) for all
b ∈ B.

Corollary 3.7. The canonical line bundle γ1n is non-trivial for all n ≥ 1.
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Proof. First we prove the statement for n = 1. Assume we have a section
s : P1 → γ11 . Then we can precompose this map with the projection π : S1 → P1

to get a map s ◦ π which sends each x ∈ S1 to a pair (x, v) for some v in
the line spanned by x. We can thus define a continuous map f : S1 → R
where f(x) is the unique real number such that (s ◦ π)(x) = (x, cx). Since
(s◦π)(x) = (s◦π)(−x), we have that f(x) = −f(−x). Thus by the intermediate
value theorem f must have a zero in the arc from x to −x. For n > 1 we note
that the restriction of γ1n to S1 is γ11 and thus must be non-trivial.

On the other hand the tangent bundle of S1 is trivial as we can obtain a continu-
ous non-zero section by taking unit tangent vectors with a consistent orientation.

4 Characteristic Classes

Characteristic classes are the central notion of this paper.

Definition 4.1. A characteristic class of degree q is a natural transformation
from the functor En(−) to the cohomology functor Hq(−;π) for some abelian
group π. Concretely this means that a characteristic class c assigns to every
vector bundle p : E → B an element c(p) ∈ Hq(B;π). Furthermore given a map
f : ξ → ν of vector bundles, c must satisfy f∗c(ν) = c(ξ).

From now until the end of section 6 we will assume that π = Z/2Z. We are now
going to define the Stiefel-Whitney classes axiomatically. Later we will show
how to construct these from the Steenrod squares, but the construction yields
less intuition towards their importance.

Definition 4.2. There exist characteristic classes ωi of degree i for all i ≥ 0
which are characterized by the following axioms.

(i) ω0(ξ) = 1 for any vector bundle ξ.
(ii) If ξ is an n-dimensional vector bundle then ωi(ξ) = 0 for i > n.

(iii) ωk(ξ ⊕ ν) =
∑k
i=0 ωi(ξ) ∪ ωk−i(ν).

(iv) For the canonical line bundle γ11 of P1, ω1(γ11) 6= 0.

The last axiom exists to force Stiefel-Whitney classes to be non-trivial. In
some texts naturality is also considered an axiom, but we treat it as part of
the definition of a characteristic class. We now compute the simplest Stiefel-
Whitney class.

Lemma 4.3. ωi(ε) = 0 for i ≥ 1.

Proof. Given ε = B×Rn we can define a bundle map (f, g) from ε to the trivial
bundle ε∗ over a point ∗. We let g(b) = ∗ for all b ∈ B and let f(x, v) = (∗, v).
This map is linear on each fiber and commutes with the projection maps, so it
is a bundle map. Furthermore we know that Hi(∗) = 0 and thus ωi(ε∗) = 0 for
i ≥ 1. Thus for i ≥ 1 we have ωi(ε) = g∗(ωi(ε∗)) = 0.

Lemma 4.4. ω1(γ1n) = x where x is the generator of H1(γ1n) and ωi(γ
1
n) = 0

for i > 1.
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Proof. The last statement follows directly from axiom (ii) since all canonical
line bundles are 1-dimensional. Furthermore since H1(P1) ∼= Z/2Z axiom (iv)
tells us that we must have ω1(γ11) = x. To complete the proof we note that the
inclusion i : ω1(γ11) → ω1(γ1n) is a bundle map. Thus i∗(ω1(γ1n)) = ω1(γ11) = x.
So indeed ω1(γ1n) 6= 0 and thus ω1(γ1n) is the generator of H1(Pn) ∼= Z/2Z.

Now we define the total Stiefel-Whitney class ω(ξ) ∈ H∗(B) of a vector bundle
ξ : E → B to be the sum ω0(ξ) + ω1(ξ) + ω2(ξ) + .... We note that because of
axiom (ii) this is always a finite sum. We also see that because of axiom (iii)
we obtain the concise equation ω(ξ ⊕ ζ) = ω(ξ) ∪ ω(ζ). This means that given
ω(ξ ⊕ ζ) and ω(ξ) we could find ω(ζ) by looking for inverses in the cohomology
ring. The following theorem provides one case where this strategy is particularly
useful.

Theorem 4.5 (Whitney Duality Formula). Given a smooth manifold M the
total Stiefel-Whitney classes of the normal and tangent bundles are inverses, so
ω(τM ) ∪ ω(νM ) = 1.

Our next task is to compute the cohomology of BO(n), and we do so largely by
following the work in [1]. First we want to describe the cell structure of GnRk.
Let S ∈ GnRk and look at the sequence of numbers:

0 = dim(S ∩ R0) ≤ dim(S ∩ R1) ≤ ... dim(S ∩ Rk−1) ≤ dim(S ∩ Rk) = n.

Clearly two consective numbers must either be the same or differ by one. Let
σ = (σ1, ..., σn) be an n-tuple such that 1 ≤ σ1 < σ2 < ...σn−1 < σn ≤ k. We
can define eσ to be the subset of GnRk containing all n-planes such that

dim(S ∩ Rσi−1) = i− 1 and dim(S ∩ Rσi) = i.

Theorem 4.6. The sets eσ for every possible σ provide a cell structure for
GnRk, where each eσ has dimension

∑n
i=1(σi − i).

Proof. For a proof refer to [1].

Corollary 4.7. The number of r-cells in GnRk is the number of partitions of
r into at most n non-negative integers which are not greater than k − n. Thus
the number of r-cells in BO(n) is the number of ways to split r into at most n
non-negative integers.

Proof. Every r-cell of GnRk is uniquely defined by an n-tuple (σ1, ..., σn) where∑n
i=1(σi − i) and each σi − i is between zero and k − n.

This construction allows us to prove the following critical theorem:

Theorem 4.8. The cohomology ring of BO(n) is freely generated by the Stiefel-
Whitney classes of γn so that as an algebra

H∗(BO(n)) ∼= Z/2Z[ω1(γn), ..., ωn(γn)].
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Proof. Let C∗(BO(n)) be the cellular cochain complex associated with the
above CW-structure ofBO(n). Then we know that dim(Hr(BO(n))) ≤ dim(Cr(BO(n)))
which by Theorem 4.7 is the number of partitions of n into at most r non-
negative integers.

Now note that the degree r part of the algebra Z/2Z[ω1(γn), ..., ωn(γn)]
has a basis consisting of terms of the form ω1(γn)r1ω2(γn)r2 ...ωn(γn)rn , where∑n
i=1 iri = r. We can put these monomials in bijection with partitions of r into

at most n integers by sending each monomial to the following partition:

(r1 + ....+ rn) + (r2 + ....+ rn) + ...+ rn =
∑n
i=1 iri = r.

Thus if we prove that the algebra Z/2Z[ω1(γn), ..., ωn(γn)] is contained in
H∗(BO(n)) they would have to be equal.

Since we know each Stiefel-Whitney class is in H∗(BO(n)) we just need
to show that they do not have any polynomial relations. Assume for sake of
contradiction that they do. Given any other bundle ξ, we know by Corollary
2.7 that there is a bundle map (f, g) : ξ → γn and thus that g∗(ωi(γ

n)) = ωi(ξ).
Thus if there is a polynomial relation between ω1(γn), ..., ωn(γn), there must
also be one between ω1(ξ), ..., ωn(ξ).

Now we let the base space of ξ be BO(1)n and we let ξ be (γ1)n. If
we define πi to be the projection of BO(1)n onto its ith factor then ξ is
π∗1(γ1) ⊕ π∗2(γ1) ⊕ ... ⊕ π∗n(γ1). By Kunneth’s Formula we know that as an
algebra H∗(BO(1)n) has n generators all of dimension 1. Furthermore recall
that ω(γ1) = 1 + x. Thus since each πi pulls x back to a different degree 1
generator of H∗(BO(1)n), we have

ω(ξ) = ω(π∗1(γ1))ω(π∗2(γ1))...ω(π∗n(γ1)) = (1 + x1)(1 + x2)...(1 + xn)

Thus each ωi(ξ) is the ith elementary symmetric polynomial in n variables.
These are known to have no polynomial relations so we are done.

Before putting this statement to use we must recall a key fact from category
theory.

Theorem 4.9 (Yoneda’s Lemma). Let F and G be two contravariant functors
from a category C to the category of sets. Then if F is represented by A with a
natural transformation Φ : Hom(−, A)→ F , there is a bijection

Ψ: Nat(F,G)
∼−→ G(A)

where Nat(F,G) is the set of natural transformations from F to G. Furthermore
Ψ is defined by f 7→ f(Φ(IdA)).

Corollary 4.10. There is a bijection Θ between the set of characteristic classes
of n-dimensional real vector bundles and H∗(BO(n)). This bijection is defined
by c 7→ c(γn).

Proof. Corollary 2.7 tells us that BO(n) represents the functor En(−) and char-
acteristic classes are defined as natural tranformations from En(−) to H∗(−).
Thus Yoneda’s Lemma tells us that Θ exists. Furthermore the correspondance
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in Corollary 2.7 carries the map IdBO(n) to Id∗BO(n)(γ
n) = γn so Θ is defined

by c 7→ c(γn) for all characteristic classes c.

Now since Theorem 4.8 tells us the structure of the cohomology ringH∗(BO(n)),
we can compute the set of characteristic classes of real n-dimensional vector
bundles.

Corollary 4.11. Every characteristic class of real n-dimension vector bundles
is a linear combination of characteristic classes of the form ωi11 ω

i2
2 ...ω

in
n for some

non-negative integers i1, ..., in.

5 Stiefel-Whitney Numbers

Definition 5.1. Given a cohomology class a ∈ Hn(X) and a homology class
b ∈ Hn(X) we define the Kronecker index 〈a, b〉 to be the evaluation of b at a.
We leave it to the reader to prove this is well defined.

Lemma 5.2. Given a map f : X → Y we have 〈f∗a, b〉 = 〈a, f∗b〉.

Recall that every n-manifold M is Z/2Z-orientable and thus has a fundamental
class µM . Furthermore if µ is the fundamental class of the pair (M,∂M) then
∂µ = µ∂M .

Definition 5.3. Let M be a smooth n-dimensional manifold. Given an n-tuple
r = (r1, ..., rn) such that r1 + 2r2 + ...+ nrn = n we define the Stiefel-Whitney
number ωr[M ] ∈ Z/2Z to be

ωr[M ] := 〈ωr11 (τM )ωr22 (τM )...ωrnn (τM ), µM 〉.

Note that in light of Corollary 4.11 the Stiefel-Whitney numbers of a manifold
M fully determine every number of the form 〈c(τM ), µM 〉 for some characteristic
class c. Now we are ready to state the main theorem of this section. Our proof
largely emulates the proof in [2].

Theorem 5.4. If N is a compact (n+1)-manifold and M = ∂N is a smooth
n-manifold then all the Stiefel-Whitney numbers of M are zero.

Proof. Let µN be the fundamental class of the pair (N,M) so that we have
∂µN = µM . The restriction of the tangent bundle of N to M is spanned by the
tangent bundle of M and by a unit inward normal vector. It is a small lemma
that if a bundle is the cartesian product of two other bundles in each fiber then
it is their Whitney sum. Furthermore the unit inward normal vector spans the
trivial bundle and thus we have

τN |M ∼= τM ⊕ ε.

If we let i be the inclusion map M ↪−→ N then it follows that i∗ is the restriction
of H∗(N) to H∗(M) and thus that we have

i∗(ωk(τN )) = ωk(τN |M ) = ωk(τM ⊕ ε) = ωk(τM ).

Now if we let ωr be the charactertsic class ωr11 ω
r2
2 ...ω

rn
n then we have
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ωr[M ] = 〈ωr(τM ), µM 〉 = 〈i∗(ωr(τN )), ∂µN 〉 = 〈ωr(τN ), i∗(∂µN )〉.

Finally we look at the long exact sequence of the pair (N,M) to see that
i∗(∂µN ) = 0 and we have that ωr[M ] = 0.

Although it is beyond the scope of this paper, the converse of Theorem 5.4 is also
true, and was first proved by Thom in [8]. This idea will be further generalized
later with the concept of cobordism.

Theorem 5.5 (Thom). If M is a smooth n-manifold then M is the boundary
of some compact (n + 1)-manifold if and only if all its Stiefel-Whitney numbers
are zero.

6 Thom Isomorphism

Definition 6.1. Given any n-dimensional vector bundle ξ : E → B we can
define a new fiber bundle Sph(ξ) : Sph(E) → B by taking the one-point com-
pactification of each fiber so that each fiber looks like Sn. Then we can define
a section s : B → Sph(E) which sends each b ∈ B to the point at infinity in
its fiber. By taking the quotient space Sph(E)/s(B) we associate all the points
at infinity to get the Thom space of the the vector bundle ξ. We shall denote
the Thom space as Tξ. Additionally given a fiber F let F0 be F − {0} and let
E0 be the fiber bundle over B where each fiber F is replaced with F0. We can
think of E0 as E with the zero section removed.

Lemma 6.2. H∗(Tξ,∞) ∼= H∗(E,E0).

Proof. Let Tξ0 be Tξ with the zero section removed. Every fiber of Tξ0 looks
like Rn and thus we can deformation retract Tξ0 to ∞. Thus we have that
H∗(Tξ,∞) ∼= H∗(Tξ, Tξ0). Now looking at the excisive triad (Tξ, Tξ0,∞) we
get that H∗(Tξ, Tξ0) ∼= H∗(Tξ −∞, T ξ0 −∞) ∼= H∗(E,E0).

The notion of Thom spaces is very important for the computation of the cobor-
dism ring which will be defined later. The above lemma relates Thom spaces to
more traditional notions of orientation.

Definition 6.3. Given a vector bundle ξ : E → B, a Thom class of ξ is some
element z ∈ Hn(E,E0) such that the restriction of z to (F, F0) for any fiber F
generates Hn(F, F0) ∼= Hn(R,R− 0) ∼= Z/2Z.

A Thom class is sometimes instead called an orientation. Note that in light
of Lemma 6.2 we also could have defined a Thom class to be some element
z ∈ Hn(Tξ,∞) such that the restriction of z to any fiber F ∪ ∞ generates
Hn(F ∪∞) ∼= Hn(Sn) ∼= Z/2Z. Now we are ready to prove the Thom Isomor-
phism, a statement with vast applications in algebraic topology.

Theorem 6.4 (Thom Isomorphism). Given an n-dimensional vector bundle
ξ : E → B there is a unique Thom class z ∈ Hn(E,E0). Furthermore the map
Φ : H∗(E)→ H∗+n(E,E0) defined by Φ(x) = x ∪ z is an isomorphism.
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We are going to need to recall the relative version of Kunneth’s Theorem for
cohomology with field coefficients.

Theorem 6.5 (Kunneth’s Theorem). Given pairs (X,A) and (Y,B) with H∗(Y,B)
finitely generated, we have an isomorphism

Ψ : H∗(X,A)⊗H∗(Y,B)→ H∗(X × Y,X ×B ∪A× Y )

where Ψ(s⊗ t) = p∗1(s)∪ p∗2(t) and the pi are projections from X × Y to X and
to Y respectively.

Proof of 6.4. We begin with the trivial case of E = B × Rn. Taking the pairs
(B, ∅) and (Rn,Rn − {0}) and applying Theorem 6.5 we get an isomorphism

H∗(B)⊗H∗(Rn,Rn − {0})→ H∗(B × Rn, B × Rn{0}) = H∗(E,E0)

defined by b ⊗ x 7→ p∗1(b) ∪ p∗2(x). Now note that by uniformly contracting the
fibers of a vector bundle ξ : E → B we can deformation retract E to its zero
section, which is identical to B. This tells us that the projection p1 : E → B is
in fact a homotopy equivalence, so that p∗1 is an isomorphism. Combining this
with the above isomorphism we get a new isomorphism

Γ : H∗(E)⊗H∗(Rn,Rn − {0})→ H∗(E,E0)

defined by e ⊗ x 7→ e ∪ p∗2(x). If we want to find a Thom class z ∈ Hn(E,E0)
then we must must find some a ∈ H∗(E) ⊗ Hn−∗(Rn,Rn − {0}) such that
Γ(a) = z. However H∗(Rn,Rn − {0}) is trivial except in the nth degree so
we must have a ∈ H0(E) ⊗ Hn(Rn,Rn − {0}). In order for the restriction
of a to any fiber F to generate Hn(F, F0) we need the first component of a
to be the identity element and the second component to be the unique non-
trivial element s of Hn(Rn,Rn − {0}). So indeed we have a unique Thom class
z = Γ(1⊗ s) = 1 ∪ p∗2(s) = p∗2(s).

Finally since H∗(Rn,Rn−{0}) = 〈s〉 ∼= Z/2Z we have the canonical isomor-
phism Θ : H∗(E) → H∗(E) ⊗ H∗(Rn,Rn − {0}) defined by e 7→ e ⊗ s. Thus
we get an isomorphism Γ ◦ Θ : H∗(E) → H∗+n(E,E0) defined by Γ(Θ(e)) =
Γ(e⊗ s) = e ∪ p∗2(s) = e ∪ z.

Next we use the Mayer-Vietoris sequence. Assume we have a vector bundle
ξ : E → B such that B = C ∪ D, ξ−1(C) = U , ξ−1(D) = V , and the Thom
isomorphism applies to the restrictions of ξ to U , V , and W := U ∩ V . Thus
by definition there are unique Thom classes u and v corresponding to U and V .
Now we can look at the following relative Mayer-Vietoris sequence:

→ Hn−1(W,W0)
i−→ Hn(E,E0)

j−→ Hn(U,U0)⊕Hn(V, V0)
∂−→ Hn(W,W0)→.

By definition u and v must restrict to the same thing in W and thus (u, v) ∈
ker(∂). Thus by the exactness of the sequence there is some z such that j(z) =
(u, v). Furthermore by the Thom isomorphism applied to W we know that
Hn−1(W,W0) = 0 so j must be injective. Thus there is a unique z such that
j(z) = (u, v). This is a Thom class for ξ.

Now to prove the Thom isomorphism for E we look at the following dia-
gram, where the rows are each formed via the Mayer-Vietoris sequence and the
downward maps are all cupping with the Thom classes.
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Hm−1(U)⊕Hm−1(U) Hm−1(W ) Hm(E) Hm(U)⊕Hm(V ) Hm(W )

Hm+n−1(U,U0)⊕Hm+n−1(V, V0) Hm+n−1(W,W0) Hm+n(E,E0) Hm+n(U,U0)⊕Hm+n(V, V0) Hm+n(W,W0)

All of the downward maps except for the middle one are isomorphisms since we
can apply the Thom isomorphism to U , V , and W . Thus by the five lemma
the middle map is an isomorphism as well, and we have proven the Thom
isomorphism for E. Since vector bundles are locally trivial we can clearly use
this argument inductively to show that the theorem holds for all compact sets.

Leaving most of details to the reader, we can complete the proof by taking
inverse limits. Specifically we note that if we let Bα, α ∈ I be all the compact
subsets of B and Eα = ξ−1(Bα) then Hi(E) ∼= lim←−H

i(Eα) and Hi(E,E0) ∼=
lim←−H

i(Eα, Eα0 ). There is only one z ∈ Hn(E,E0) which retricts to the unique
Thom class zα of each Hn(Eα, Eα0 ) so z is the unique Thom class. Furthermore
in the following commutative diagram we know all the maps except the top one
must be isomorphisms, so the top map must be the Thom isomorphism for E.

Hm(E) Hm+n(E,E0)

lim←−H
i(Eα) lim←−H

i(Eα, Eα0 )

∪z

∪zα

Combining this with other results from this section we have the following se-
quence of isomorphisms:

H∗(B) ∼= H∗(E) ∼= H∗+n(E,E0) ∼= H∗+n(Tξ,∞)

One application of the Thom isomorphism is that it allows us to construct the
Stiefel-Whitney classes. If we let Sqi be the Steenrod squares then we have

ωi(ξ) = Φ−1SqiΦ(1) = Φ−1Sqi(z)

7 Generalizations and Orientation

So far we have purposefully dealt with the easiest cases, looking at real unori-
ented vector bundles and allowing cohomology to have coefficients in Z/2Z. In
this section we provide a survey of the analogous results for more complicated
cases. Nothing major will be proved in this section, but we hope that the re-
sults of the previous sections will provide ample intuition for these new cases.
Although the results of this section are at times messier to prove, they are just
as important, and many are necessary to study cobordism.

Definition 7.1. Given a ring R, an R-orientation of an n-dimensional vector
bundle ξ : E → B is a choice of a generator ab ∈ Hn(ξ−1(b), ξ−1(b)0;R) for each
b ∈ B. Furthermore we require that these orientations are locally compatible,
so that given any b′ ∈ B, there exists an open neighborhood U of b′ and an
element u ∈ Hn(ξ−1(U), ξ−1(U)0;R) which restricts to ab for every b ∈ U .
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Definition 7.2. Given a vector bundle ξ : E → B with an R-orientation, an
R-Thom class is an element z ∈ Hn(E,E0;R) which restricts to ab on each
fiber.

Note that this definition is consistent with the definition from the previous
section, since Z/2Z has a unique generator. With these extra details we can
now extend the Thom Isomorphism to cohomology with any coefficients.

Theorem 7.3 (Thom Isomorphism). Given a vector bundle ξ : E → B with
an R-orientation, it has a unique R-Thom class z. Furthermore the map Φ :
H∗(E;R)→ H∗+n(E,E0) defined by x 7→ x ∪ z is an isomorphism.

Note that in our proof of the Thom Isomorphism from last section we im-
plicitly proved that every vector bundle has both a Z/2Z-orientation and a
Z/2Z-Thom class. Further note that Thom classes and orientations turn out
to be equivalent concepts. We could define them to be equivalent but we made
the distinction to emphasize the point that Thom classes take a local notion
of orientation and make it global. For the rest of the section when we refer to
orientability it will be with coefficients in Z.

Now we look to complex vector bundles and oriented real vector bundles.
We let the functors Ẽn(−) and EC

n(−) be the analogues of En(−) in the oriented
and complex cases. These functors turn out the be represnted by Gn(C∞) and

G̃n(R∞), the complex and oriented Grassmanians. Specifically Gn(C∞) is the

set of n-planes in C∞, constructed just as in the real case, while G̃n(R∞) is
the set of n-planes in R∞ with a chosen orientation. Thus in the construction
of G̃n(R∞) two bases of the same n-plane are identitified only if they have the
same orientation. We will refer to these Grassmanians as BU(n) and BSO(n)
as they are the classifying spaces for the groups U(n) and SO(n). The universal
bundles of these Grassmanians are the obvious ones, which we can denote by
γnC and γ̃n.

Clearly the logic of Corollary 4.10 applies to cohomology with coefficients in
any ring. The reason why Z/2Z coefficients were useful was because we knew
the structure of H∗(BO(n)). In the case of BU(n) and BSO(n) it is useful to
use integral coefficients.

Corollary 7.4. There is a bijection Θ between the set of characteristic classes of
n-dimensional complex vector bundles and H∗(BU(n);Z). This bijection is de-

fined by c 7→ c(γnC). Additionally there is a bijection Θ̃ between the set of charac-
teristic classes of n-dimensional oriented real vector bundles and H∗(BSO(n);Z)
defined by c 7→ c(γ̃n).

When looking at complex characteristic classes with coefficients in Z there exist
analogues of Stiefel-Whitney classes called Chern classes. Once again we will
skip the construction, but they can be defined axiomatically as follows.

Definition 7.5. There exist characteristic classes ci of degree 2i for all i ≥ 0
which are characterized by the following axioms.

(i) c0(ξ) = 1 for any vector bundle ξ.
(ii) If ξ is an n-dimensional vector bundle then ci(ξ) = 0 for i > n.

(iii) ck(ξ ⊕ ν) =
∑k
i=0 ci(ξ) ∪ ck−i(ν).
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(iv) For the canonical line bundle γ1C over BU(1), c1(γ1C) is a fixed generator
of H2(BU(1)). We could also require that c1(γ1C) be the Euler class of the
underlying 2-dimensional real vector bundle. We will define the Euler class
later in this section.

This definition is very similar to the axiomatic definition of Stiefel-Whitney
classes, but one notable distinction is that ci has degree 2i. The analogues of
Theorem 4.8 and Corollary 4.11 also apply to Chern classes.

Theorem 7.6. The cohomology ring of BU(n) is freely generated by the Chern
classes of γnC so that as an algebra

H∗(BU(n)) ∼= Z[c1(γnC), ..., cn(γnC)].

Corollary 7.7. Every characteristic class of complex n-dimension vector bun-
dles is a linear combination of characteristic classes of the form ci11 c

i2
2 ...c

in
n for

some non-negative integers i1, ..., in.

The cohomology ring of BSO(n) is unfortunately not as nice, but it shall be
essential for our study of cobordism.

Definition 7.8. Let p : E → B be an oriented real vector bundle with Thom
class z and let i be the inclusion of pairs (E, ∅) → (E,E0). Then let the Euler
class e be a characteristic class of degree n defined by e(p) = (p∗ ◦ i∗)(z).

Definition 7.9. Let ξ : E → B be an oriented real vector bundle. We de-
fine the Pontrjagin classes to be characteristic classes of degree 4i defined by
pi(ξ) = (−1)ic2i(ξ ⊗ C).

The free part of H∗(BSO(n);Z) can be computed in terms of these classes, and
this fact is what will be useful for the next section. Furthermore H∗(BSO(n);Z)
consists only of a free part and 2-torsion. To remedy this issue we let our
coefficients have 2 as a unit, providing the following theorem.

Theorem 7.10. Let R be a ring which contains Z and has 2 as a unit. Then the
cohomology ring H∗(BSO(n)) is the algebra R[p1(γ̃n), ..., p(n−1)/2(γ̃n)] when n
is odd and R[p1(γ̃n), ..., p(n−2)/2(γ̃n), e(γ̃n)] when n is even.

8 Cobordism

Cobordism provides a way of classifying manifolds that is weaker than home-
omorphism and diffeomorphism. However it has been proven that it is not
possible to classify all manifolds by diffeomorphism or homeomorphism. The
problem of cobordism on the other hand has been solved for decades, dating
back to the work of Thom. We will study two types of cobordism in this section:
oriented and unoriented.

Definition 8.1. First we define unoriented cobordism. In this case we say
two manifolds M and N are cobordant if there exists a manifold W whose
boundary is the disjoint union M t N . The nth unoriented cobordism group
Ωn is the abelian group of cobordism classes of n-dimensional manifolds where
[M ] + [N ] = [M t N ]. Furthermore the unoriented cobordism ring Ω∗ is the
graded ring

⊕∞
n=0 Ωn with multiplication defined by [M ][N ] = [M × N ]. We

leave it to the reader to prove this product is well defined.
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The proof that cobordism is an equivalence relation will be left to the reader as
well. We shall state two results about unoriented cobordism.

Lemma 8.2. Two manifolds are cobordant if and only if they have all the same
Stiefel-Whitney numbers.

Proof. For any n-tuple r = (r1, ..., rn) we have ωr[M t N ] = ωr[M ] + ωr[N ].
Thus this statement is equivalent to Theorem 5.5.

Lemma 8.3. Ω∗ has characateristic 2 and is thus an algebra over Z/2Z.

Proof. The cobordism class [M ] + [M ] = [M tM ] is clearly the boundary of
the manifold [0, 1]×M . Thus indeed for any cobordism class [M ], 2[M ] = 0.

Definition 8.4. To define the oriented cobordism ring we take as our underlying
set oriented manifolds. Then we define M and N to be cobordant if there exists
an oriented manifold W whose boundary is M t −N . From there we proceed
as in the unoriented case to get the oriented cobordism ring Ω̃∗.

Note that in the oriented cobordism ring elements do not necessarily have finite
order. The following theorem is at the heart of cobordism theory. By apply-
ing concepts from differential topology it translates the problem of computing
cobordism rings into a problem of algebraic topology. The following proof will be
in broad strokes, leaving out many of the details related to differential topology.
The main goal is for the reader to understand the mappings and the interplay
between differential topology and algebraic topology.

Theorem 8.5 (Thom-Pontrjagin). For m > n + 1 we have πm+n(Tγm,∞) ∼=
Ωn. Furthermore in the oriented case we have πm+n(T γ̃m,∞) ∼= Ω̃n.

Before continuing we will have to disucss the notion of transversality.

Definition 8.6. Let X and Y be manifolds and let f : X → Y be a smooth
map. Given a submanifold A of Y we say that f is transverse to A if for every
a ∈ A and x ∈ f−1(a), we have that TaA⊕ f∗(TxX) = TaY .

The notion of transversality is important primarily because we can use the
implicit function theorem to show that if f is transverse to A then f−1(A)
is a manifold. Furthermore the orientations of the normal bundle of A and
the manifold X canonically induce an orientation on f−1(A). Transversality
turns out to be a rather generic property, so given a map f : X → Y , we can
always find a homotopic map g which is transverse to a desired submanifold
A ⊂ Y . Throughout the proof we shall be content with just picking maps to
be transverse when it is necessary, but a reader who is interested in the details
should explore the transversality theorem, and look to an introductory text in
differential topology such as [7]. Note that the proof of 8.5 is identical in the
oriented and unoriented cases, so we shall only carry it out in the oriented case.

Proof of 8.5. We define a map ζ : πm+n(T γ̃ms ) → Ω̃n for m > n + 1 and
s > m + n + 1. Let [f ] be a homotopy class in πm+n(T γ̃ms ) and pick f such

that f : Sm+n → T γ̃ms is transverse to G̃m(Rs) ⊂ T γ̃ms . Then we can let
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ζ(f) be the manifold f−1(G̃m(Rs)). We still have to prove this is well defined.
Let g be a map which is homotopic to f . Then there exists a homotopy h :
I × Sm+n → T γ̃ms . Picking h so that it is also transverse to G̃m(Rs), we get

that h−1(G̃m(Rs)) = f−1(G̃m(Rs))t−g−1(G̃m(Rs)), so that f−1(G̃m(Rs)) and

g−1(G̃m(Rs)) are cobordant. Thus ζ is well-defined.
Next we show surjectivity. Let Mfdn denote the set of all n-dimensional

manifolds. We are going to define a map φ : Mfdn → πm+n(T γ̃ms ) such that
ζ ◦ φ sends each manifold to its cobordism class, making the following diagram
commute.

Mfdn

Ω̃n πm+n(T γ̃ms )

φ
π

ζ

Since π is clearly surjective, if π = ζ ◦ φ then we will be done with surjectivity.
Given an n-manifold M , we can embed it in Rs by the Whitney embedding
theorem. Furthermore by the tubular neighborhood theorem, we can embed its
normal bundle νM as a open neighborhood U of M in Rs. We know there is a
canonical bundle map from νM to γ̃ms , which induces a map f : U → γ̃ms . We
take one point compactifications of both Rs and γ̃ms and extend f so that it
maps all of Ss−U to ∞. Thus we get an element [f ] ∈ πm+n(T γ̃ms ). Note that

by definition we have that f−1(G̃m(Rs)) = M . Thus if we pick some g ∈ [f ]

which is transverse to G̃m(Rs) then g−1(G̃m(Rs)) must be cobordant to M . So
indeed we have that π = ζ ◦ φ, completing the proof of surjectivity.

Now we prove injectivity. Pick [f ] ∈ πm+n(T γ̃ms ) so that ζ(f) = [M ] where
M is the boundary of some manifold W . Once again leaving out the bulk of the
differential topology details we claim that there is a diffeomorphism g : νM →
f−1(T γ̃ms −∞) which sends the zero section of νM to M . We can further let f
be such that f ◦ g : νM → γ̃ms is a bundle map. By the Whitney Embedding
theorem we can embed W into Ds so that it extends the embedding of M into
Ss. We can further embed the normal bundle νW as an open neighborhood V
of Ds which extends the embedding of νM into Ss. Thus we have a bundle
map F : V → γ̃ms which must extend f . Sending Ds − V to ∞ we get a map
F : Ds → T γ̃ms which extends f . Since Ds is contractible this means that F
and therefore f are null-homotopic.

Note that since ζ is an isomorphism φ must descend to a well-defined map on
cobordism classes φ̄ : Ωn → πm+n(T γ̃ms ) such that φ̄ is the inverse of ζ.

The unoriented cobordism has been computed and turns out to be freely
generated over Z/2Z with one generator of degree i for every i such that i + 1
is not a power of 2. This derivation is beyond the scope of this paper, but it
can be found in [2]. On the other hand we will partially compute the oriented
cobordism ring with the help of the following theorem based on the work of
Serre.

Theorem 8.7. If X is a finite CW-complex which is n-connected for some n ≥ 1
then for all i < 2n+ 1, the kernel and cokernel of the Hurewicz homomorphism
πi(X)→ Hi(X;Z) are finite abelian groups.
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Definition 8.8. We say a homomorphism f : G → H of finitely generated
abelian groups is a C-isomorphism if its kernel and cokernel are both finite.
Thus it is a C-isomorphism if and only if it preserves the rank of the free part
of the groups.

Theorem 8.9. The free part of Ω̃n is trivial if n is not divisible by 4, and
otherwise it is equal to the number of partitions of n/4.

Proof. By the Thom isomorphism we know thatHn(T γ̃m) = 0 for 1 ≤ n ≤ m−1
so by the Hurewicz Theorem T γ̃m is (m - 1)-connected. Thus by Theorem 8.7
we have that the Hurewicz homomorphism πn+m(T γ̃m) → Hn+m(T γ̃m;Z) is
a C-isomorphism for n < m − 1. The integral Uniform Coefficient Theorem
tells us that integral homology and cohomology have the same free part for all
n < m− 1, so the free parts of πn+m(T γ̃m) and Hn+m(T γ̃m;Z) have the same
rank. We know there is a Thom isomorphism Φ : Hn(BSO(m))→ Hn+m(T γ̃m)
so πn+m(T γ̃m) has the same free part as Hn(BSO(m)). Since n < m − 1,
Theorem 7.10 tells us that indeed Hn(BSO(m)) is generated by Pontrjagin
classes. Thus the dimension of its free part is zero if n is not divisible by 4, and
otherwise it is the number of partitions of n/4.
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