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Abstract. We will explore classification theory concerning the structure theorem for finitely
generated modules over a principal ideal domain and its consequences such as the Fundamental

Theorem for Finitely Generated Abelian Groups and the Jordan Canonical Form for Matrices. We
will explore the invariant factor form of the structure theorem for finitely generated modules over

a principal ideal domain and relate it to the elementary divisor form of the structure theorem. We

will also investigate the properties of principal ideal domains and unique factorization domains.
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1. Introduction

In this paper, we are interested in classifying finitely generated modules over a principal ideal
domain and two of its special cases, specifically the fundamental theorem of finitely generated
abelian groups and the Jordan canonical form theorem. We will use the fact that principal ideal
domains are unique factorization domains to derive the elementary divisor form of the structure
theorem and the Jordan canonical form theorem in sections 4 and 5 respectively. We will be able
to find all of the abelian groups of some order n.

2. Principal Ideal Domains

We will first investigate the properties of principal ideal domains and unique factorization do-
mains.

Definition 2.1. A principal ideal domain (PID) is an integral domain in which every ideal is
principal. An ideal is principal if the ideal can be generated by a single element.

We assume that given an integral domain R in the rest of the section.

Examples 2.2. : All ideals of Z are principal. Principal ideal domains include any field k and the
polynomial ring k[x].
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Proposition 2.3. Let R be a PID. Then, every nonempty set of ideals of R has a maximal element.

Proof. Let S be the set of all proper ideals of R. It follows that S is non-empty and it is partially
ordered by inclusion. Let I1 ⊆ I2 ⊆ ... be an arbitrary increasing chain of ideals in S. Let I=

⋃
n In.

Since the chain of In’s are nonempty, it follows that I is nonempty. I is an ideal. Since R is a PID,
I = (a). We find that a ∈ I =

⋃
n In so a ∈ In for some n. We get In = In+1 = .... Each chain of

ideals has an upper bound. By Zorn’s lemma, the nonempty set of I ′ns of R has a maximal element,
the maximal ideal containing I. �

Definition 2.4. Let r be a nonzero element of R that is not a unit. The element r is called
irreducible in R, if whenever r = ab with a, b ∈ R, at least one of a or b must be a unit in R.
Otherwise, r is reducible.

Definition 2.5. A nonzero element p ∈ R is called prime if the ideal (p) generated by p is a prime
ideal.

We can relate the property of a prime element of a principal ideal domain with an irreducible
element in a principal ideal domain through the following proposition.

Proposition 2.6. In a Principal Ideal Domain, a nonzero element is prime if and only if it is
irreducible.

To prove Proposition 2.6, we will first prove the following lemma.

Lemma 2.7. In an integral domain, a prime element is always irreducible.

Proof of Lemma 2.7. If p is a prime element, then (p) is a prime ideal. Let (p) be some arbitrary
nonzero ideal such that p = ab where a, b ∈ R. Clearly, ab = p ∈ (p). By the definition of a prime
ideal, it follows that either p divides a or p divides b.

Without loss of generality, suppose a ∈ (p). Then, a = pm where m ∈ R. We see that
a = pm = abm so bm = 1. It follows that b is a unit. Therefore, we have shown that in a integral
domain a prime element is always irreducible. �

Proof of Proposition 2.6. Since a principal ideal domain is an integral domain, we can claim that
any nonzero prime element in a principal ideal domain is irreducible from lemma 2.7.

Let B be some arbitrary ideal that contains (p). By assumption, B = (b) is a principal ideal.
Since B contains p, p ∈ (b). We can write p = br where r ∈ R. Suppose that p is irreducible.
Then, either b or r must be a unit. This means that we will get (b) = (p) or (b) = (1). (p) must be
maximal. Since all maximal ideals in a principal ideal domain are prime ideals, it follows that (p)
must be a prime ideal. �

Definition 2.8. Two elements a and b differing by a unit are said to be associates in R (i.e.
a = ub).

Definition 2.9. A unique factorization domain (UFD) is an integral domain R in which every
nonzero element r ∈ R that is not a unit has the following two properties:

(1) r can be written as a finite product of irreducibles pi of R (not necessarily distinct):
r = p1p2...pn and

(2) this decomposition is unique up to associates: if r = r1r2...rm is another factorization of
r into irreducibles, then m = n and there is some renumbering of the factors so that pi is
associate to ri for i = 1, 2, ..., n.
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Proposition 2.10. Every Principal Ideal Domain is a Unique Factorization Domain.

Proof of Proposition 2.10. First we show that the decomposition exists. Let R be a arbitrary
principal ideal domain. Suppose

∑
is the set of all elements in R that do not admit a finite

decomposition into a finite product of irreducibles. If
∑

is empty, we are done (for the existence
part). If not, by Proposition 2.3, there is a maximal element x in

∑
(in the sense the ideal generated

by x is maximal among all the ideals generated by a single element in
∑

). By the assumption on∑
, x cannot be irreducible (otherwise it has a decomposition into a finite product of irreducibles,

namely x = x). So x is reducible and we may write x = yz with y, z both not units. So (x) $ (y)
and (x) $ (z). By maximality of x in

∑
, we have y 6∈

∑
and z 6∈

∑
. So y and z can be written

as finite products of irreducibles; as a result, x can be written as a finite product of irreducibles, a
contradiction. So

∑
must be empty and thus every x ∈ R can be decomposed into a finite product

of irreducibles.
Then, we show that the decomposition is unique up to associates in R by induction on m prime

ideals. If r = p where p is a prime ideal, then it follows that another decomposition of r will be the
same since there is only one factorization of r. Assume, by way of the inductive hypothesis, that
uniqueness holds for m prime factors. Suppose r1...rmrm+1 = r = u1p1...pn. By the definition of a
prime ideal, rm+1 must divide one of the p′is on the right hand side so rm+1 = u1pi. After cancelling
the term rm+1 on the left hand side, it follows from our inductive hypothesis that decomposition is
unique up to associates for m prime ideals. Hence, induction holds. �

We will now turn our attention toward the Chinese Remainder Theorem for Modules. This
theorem will help us derive one form of the Structure Theorem for Finitely Generated Modules over
a Principal Ideal Domain.

3. Chinese Remainder Theorem for Modules

As the name suggests, the Chinese remainder theorem is about remainders or residue classes. In
number theory, the Chinese remainder theorem helps us find numbers that have the same remainder
modulo p1 and p2 where p1 and p2 are relatively prime. Instead of remainders, we focus on residue
classes or equivalence classes when describing the Chinese Remainder Theorem for Modules.

Assume that all rings in the rest of this paper have an identity element.

Definition 3.1. Let R be a ring. A left R-module over R is a set M together with

(1) a binary operation + on M under which M is an abelian group
(2) an R-action on M (this is a map R×M →M) denoted by rm which satisfies the following:

(a) (r+s)m=rm + sm, for all r, s ∈ R, m ∈M ,
(b) (rs)m=r(sm), for all r, s ∈ R,m ∈M ,
(c) r(m+n)=rm + rn, for all r, s ∈ R,m ∈M , and
(d) 1m=m, for all m ∈M .

Definition 3.2. Let M be an R-module. A R-submodule of M is a subgroup N of M that is
closed under the action of the ring elements.

Examples 3.3. (1) Abelian groups, which are the same thing as a Z-module
(2) The field R is a R-module, Q-module, and Z-module.
(3) The free module of rank n over R as discussed in Example 4.2.

Definition 3.4. Let M and N be R-modules.

(1) A map ϕ : M → N is an R-module homomorphism if the following statements hold:
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(a) ϕ(x+ y) = ϕ(x) + ϕ(y), for all x, y ∈M , and
(b) ϕ(rx) = r(ϕ(x)), for all r ∈ R, x ∈M .

(2) An R-module homomorphism is an isomorphism if ϕ is injective and surjective. If ϕ :
M → N is an R-module isomorphism, then the R-modules M and N are isomorphic and
M ∼= N .

(3) Let ϕ : M → N be a R-module homomorphism. Define kernel of ϕ as the elements of M
that map to 0. It can also be denoted as kerϕ = {m ∈M |ϕ(m) = 0}. The elements n ∈ N
such that ϕ(m) = n where m ∈M is the image of ϕ.

Note that given any submodule N of M , we can form a natural projection ϕ : M →M/N , which
is a R-module homomorphism with kernel N . See Dummit [3] on pages 348-349 for a statement of
this fact (Proposition 3) and a proof.

Note that the isomorphism theorems for groups also hold for modules. The first isomorphism
theorem for modules is obtained from the first isomorphism theorem for abelian groups and by
observing that the action of R behaves as we expect.

Theorem 3.5 (The First Isomorphism Theorem for Modules). Let M and N be R-modules and
let ϕ : M → N be an R-module homomorphism. Then, kerϕ is a submodule of M and M/ kerϕ ∼=
ϕ(M).

Not only can we generalize the first isomorphism theorem of groups to modules, but we can also
generalize the idea of generators of a group to generators of a module.

Definition 3.6. Let M be an R-module.

(1) Suppose A ⊂ M . Let RA = {
∑n
i=1 riai|ri ∈ R, ai ∈ A where 1 ≤ i ≤ n}. If A is a finite

set such that A = {a1, ..., an}, then RA can be written as Ra1 + Ra2 + ... + Ran. RA is
the submodule of M that is generated by A. If there is a submodule N such that N = RA,
then A is the set of generators of the submodule N .

(2) A submodule N of M is finitely generated if there exists a finite subset A ⊂ M such
that N = RA.

We are ready to prove the following the statement, which will help us prove the Chinese remainder
theorem for modules.

Proposition 3.7. For any ideal I of R, let IM = {
∑
finite

aimi|ai ∈ I,mi ∈M} be the collection of

all finite sums of elements of the form am where a ∈ I and m ∈M . (Note that IM is a submodule
of M). Let A1, A2, ...., Ak be any ideals in the ring R. Then, the map

M →M/A1M × ......×M/AkM

defined by m 7→ (m+A1M, .....,m+AkM)

is an R-module homomorphism with kernel A1M ∩A2M ∩ .... ∩AkM .

Proof. Let ϕ : M →M/A1M × ......×M/AkM be a map defined by m 7→ m+A1M, .....,m+AkM .
We can rewrite this as ϕ(m) = [m] where [m] ∈M/AiM .

We will show that this is a R-module homomorphism.

(1) Let x, x′ ∈ M . We know ϕ(x+ x′) = [x+ x′]=[x] + [x′] by the definition of a equivalence
class. It follows that ϕ(x+ x′) = ϕ(x) + ϕ(x′).
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(2) Let r ∈ R and x ∈ M . Then, ϕ(rm)=[rx]=r[x]. Since r[x] = rϕ(x), it follows that
ϕ(rx) = rϕ(x).

Since (1) and (2) hold, it follows that ϕ is an R-module homomorphism. Next, we show that ϕ
is a map with kernel A1M ∩A2M ∩ ... ∩AkM .

Since A1M ∩ A2M ∩ ... ∩ AkM represents the smallest submodule generated by the ideals
A1, A2, ..., Ak, it follows that if we choose some arbitrary element i ∈ A1M ∩ A2M ∩ ... ∩ AkM
we get ϕ(i) = [0]. Hence, A1M ∩A2M ∩ ...∩AkM ⊆ kerϕ. Let x be an arbitrary element of kerϕ.
Then, ϕ(x) = [0]. This means that each of the residues in the direct product must equal 0. That
is, ϕ(x) must be contained in A1M , A2M , ..., AkM . Therefore, x ∈ A1M ∩ A2M ∩ ... ∩ AkM .
kerϕ ⊆ A1M ∩A2M ∩ ... ∩AkM . It follows that kernel of ϕ is A1M ∩A2M ∩ ... ∩AkM . �

Definition 3.8. The ideals A1, ..., Aj are pairwise comaximal if Ai +Aj = R for all i 6= j.

Now, we are ready to state and prove the Chinese Remainder Theorem for Modules.

Proposition 3.9. Assume further that the ideals A1, ...., Ak are pairwise comaximal. Then,

M/(A1....Ak)M ∼= M/A1M × .....×M/AkM.

Proof. We will prove this by induction on k by showing that ϕ in the previous problem is surjective
and A1M ∩A2M ∩ ...∩AkM = (A1....Ak)M . We know from proposition 3.7 that ϕ is a R-module
homomorphism with kernel

A1M ∩A2M ∩ ... ∩AkM.

We start with our base case, k = 2. We will use the fact that the ideals are pairwise comaximal.
Let A and B be two arbitrary pairwise comaximal ideals. Then, there must exist some elements

x ∈ A and y ∈ B such that x+ y = 1.

It follows that x ≡ 1 mod B and y ≡ 1 mod A.
Choose some arbitrary element (m1 mod AM,m2 mod BM) ∈ M/AM ×M/BM . We want to

show that ϕ is surjective for n = 2 by showing that m2x+m1y maps to (m1 mod AM,m2 mod BM).

ϕ(m2x+m1y) = ϕ(m2x) + ϕ(m1y)

since ϕ is a well defined R-module homomorphism. We get ϕ(m2x) +ϕ(m1y) = m2ϕ(x) +m1ϕ(y).
Then, m2ϕ(x) +m1ϕ(y) = m2(0, 1) +m1(1, 0). By the definition of ϕ and multiplication, we get

(0,m2 mod BM) + (m1 mod AM, 0)

= (m1 mod AM,m2 mod BM)

, which is exactly what we wanted. Hence, ϕ is surjective.
Since (AB)M ⊆ AM and (AB)M ⊆ BM , ABM ⊆ AM ∩BM . Let m ∈ AM ∩BM . Then,

m = am1 = bm2

where a ∈ A, b ∈ B and m1,m2 ∈M . Then, m = 1 ·m = (x+ y) ·m
= xm+ ym = xbm2 + yam1 ∈ ABM.

So ABM = AM ∩BM . By Theorem 3.5, it follows that M/(AB)M ∼= M/AM ×M/BM . We use
induction and the case of the product of two ideals. We will let A = A1 and B = A2 × ...×Ak.

Inductive Step Assume that for all i ∈ {2, ...., k}, there exists elements xi ∈ A1 and yi ∈ Ai
such that xi + yi = 1 = (x2 + y2) . . . (xk + yk). Due to addition of residue classes, we know that
xi + yi ≡ yi mod A1. This means that (x2 + y2)...(xk + yk) ∈ A1 + (A2...Ak). Using this fact and
Theorem 3.5, it follows that M/(A1....Ak)M ∼= M/A1M × .....×M/AkM by induction.
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�

This basic understanding of quotient modules, module theory, and the Chinese Remainder The-
orem will help us understand and prove the main result of the paper, the Structure Theorem for
Finitely Generated Modules over a Principal Ideal Domain.

4. Finitely generated modules over a principal ideal domain

Definition 4.1. An R-module F is free on a subset A of F if for all x ∈ F which are nonzero,
there exists unique r1, ...., rn ∈ R, which are all nonzero, and there exists unique a1, a2, ...., an ∈ A
such that x = r1a1 + .....+ rnan holds for n ∈ Z+. A forms a basis or a set of generators in F .
|A| is the rank of F .

Example 4.2. Suppose we have a ring R. Let n be a natural number. An example of a free module
is Rn, which has a rank n over R.

Definition 4.3. Let N be some submodule of M . The annihilator of N in R is set

{r ∈ R|rn = 0 for all n ∈ N}.

In particular, the annihilator of N is a two-sided ideal in R.

Definition 4.4. An element m of an R-module is called a torsion element if rm = 0 for some
nonzero r ∈ R. The set of torsion elements is given by

Tor(M) = {m ∈M |rm = 0 for some nonzero r ∈ R}.

It is easy to see that Tor(M) is a R-submodule of M . If we let R be an integral domain, then it
follows that r ∈ R has no zero divisors. Suppose we let x, y ∈ Tor(M). Then, Tor(M) is nonempty
since 0 ∈ Tor(M). Let r, s ∈ R be nonzero such that rx = 0 and sy = 0. Therefore, it follows that
rs(x+ y) = 0. Since R is an integral domain, rs 6= 0 so x+ y ∈ Tor(M). If t ∈ R is arbitrary, then
r(tx) = t(rx) = 0 so tx ∈ Tor(M). It follows that Tor(M) is a submodule of M .

Definition 4.5. A submodule N of M is called a torsion submodule if N ⊂ Tor(M).

Theorem 4.6. Let R be a Principal Ideal Domain, let M be a free R-module of finite rank n and
let N be a submodule of M . Then, N is a free module of rank at most n.

Proof. Let’s use induction on the rank n of M . Suppose that n = 1. Then, M ∼= R. Since
N is a submodule of M , N must be a principal ideal, say (α). If α = 0, then it follows that
N = 0 and N must have a free rank of 0. Suppose that α 6= 0. Then, we can construct an
R-module homomorphism r 7→ rα, which is an R-module isomorphism R ∼= N . Showing that the
homomorphism is surjective and injective follows immediately. N is free on one generator (α).
Hence, N is free of rank 1 so the base case holds.

Assume, by way of induction, that the theorem holds for all modules whose free rank is at most
n− 1. Let x1, x2, ..., xn be any basis of a free R-module M . Define a surjective natural projection
homomorphism πn : Rn → R with operations (x1, ...., xn) 7→ xn. The kernel of the homomorphism
is a submodule that consists of all n-tuples (x1, ..., xn−1, 0). It is a free submodule with n− 1 free
generators. Suppose we restrict the domain of πn to N ,i.e., π̄n�N : N → R′ where R′ ⊆ R. Clearly,
ker π̄n is a submodule of the kerπi. Since R′ ⊂ R is free, we can say that N ∼= ker π̄n ⊕ R′. Since
the restriction map can have at most n-1 free generators in the kernel and 1 free generator in the
image of π̄n, it follows that N can have a free rank of at most n.

�
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Theorem 4.7. Let R be a Principal Ideal Domain, let M be a free R-module of finite rank n and let
N be a submodule of M . Then, there exists a basis y1, y2, y3, ...., yn of M such that a1y1, ...., amym
is a basis of N where a1, ...., an are elements of R with the divisibility relation a1|a2|....|an

Proof. We will follow the proof of Theorem 4.7 in a similar manner as in Dummit [3] on pages
460-462. Assume N 6= 0. Suppose we have an R-module homomorphism that maps our module
M to R. We know from definition that the image ϕ(N) of the submodule N is a R-submodule
of ϕ(M) and is an ideal. Since every ideal in ϕ(N) is principal, it follows that ϕ(N)=(aϕ) where
aϕ ∈ R. We can take the set

∑
= {(aϕ)where ϕ ∈ HomR(M,R)}, which gives us the set of

all principal ideals of all R-module homomorphisms from M to R. This set is nonempty since
0 ∈ {(aϕ)where ϕ ∈ HomR(M,R)}. Using proposition 2.3, let u be an R-module homomorphism
such that au is maximal. Let au = a1 be this maximal element. Let w be a generator of N that
maps to a generator au = a1 under the homomorphism u: u(w) = a1.

We want to show that a1 is nonzero. Let x1, ..., xn be any basis of the free R-module M . Let πi
be an arbitrary R-module natural projection homomorphism defined by πi(x1, ...., xi, ..., xm) = xi.
Since N 6= 0, there must exist an i such that πi(N) 6= 0. Since a1 is maximal and

∑
contains more

than the trivial ideal, a1 is nonzero.
Next, we will show that a1 generates ϕ(w) for all R-modules φ that map from M to R. Let d

be a generator of the principal ideal generated by ϕ(w) and a1. Then, d = r1a1 + r2ϕ(w) where
r1, r2 ∈ R. If we let φ = r1a1 + r2ϕ be an R-module homomorphism, we get φ(w) = d so d ∈ φ(w).
It follows that (d) ⊆ φ(N). Since (a1) ⊆ (d) ⊆ φ(N) and a1 is maximal, d=a1. Therefore, a1
generates φ(w).

Since a1 divides any R-module homomorphism that maps from M to R, a1 divides any natural
projection R-module homomorphism πi(x) where 1 ≤ i ≤ n. Let πi(w) = a1bi where bi ∈ R with
1 ≤ i ≤ n. Define w1 =

∑n
i=1 bixi. From our natural projection, we realize that w = a1w1. Since

a1 = u(w) = u(a1w1) = a1u(w1), we get u(w1) = 1.
To show that u1 is a basis vector of M and a1u1 is a basis vector for N , we will prove the

following claims:

(1) M = Rw1 ⊕ keru
(2) N = Ra1w1 ⊕N ∩ keru

We will first show M = Rw1 ⊕ keru. Let x ∈M such that x = u(x)w1 + (x− w1u(x)). We get
x− w1u(x) = x− u(x)w1. x− w1u(x) ∈ keru because

u(x− w1u(x)) = u(x)− u(w1)u(x) = u(x)− u(x) = 0.

Any element in our module M can be written as a sum of elements in Rw1 and keru. We need
to verify uniqueness. That is, we will show that the only element that lies in the intersection of
Rw1 and keru is 0. Suppose that rw1 (an element of Rw1) is also an element of keru. Since
0 = u(rw1) = ru(w1) = r, 0 is the only element that belongs to the intersection of Rw1 and keru.
We have proven that M = Rw1 ⊕ keru.

Next, we will verify (2) using a similar procedure as in (1). Since a1 generates u(x′) for any
x′ ∈ N , we can write u(x′) as a multiple of a1. Let u(x′) = ca1 where c ∈ R. Using a similar
decomposition as in (1), we get x′ = u(x′)w1 + x′ − u(x′)w1 = ca1w1 + (x′ − ca1w1). We get
x′ − ca1w1 ∈ N ∩ keru because

u(x′ − ca1w1) = u(x′)− ca1u(w1) = ca1 − ca1(1) = 0.
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We will finally show uniqueness using a similar procedure as the first claim. Suppose that ra1w1

(an arbitrary element of Ra1w1) is an element of the N ∩ keru. Then, we find that

0 = u(ra1w1)

= ra1u(w1)

= ra1.

Since a1 is a nonzero maximal ideal, it follows that r=0. Hence, we have shown that N = Ra1w1⊕
(N ∩ keru).

Let’s use induction on n, i.e. the rank of M . Since keru has rank less than n, it follows that keru
is a free module. Since M = Rw1 ⊕ keru, it follows that the free rank of keru is n− 1. Assume by
way of induction that keru is a module that has a submodule N ∩ keru. Then, there exists a basis
w2, w3, ...., wn ∈ keru such that a2w2, ...., anwn is a basis of N ∩ keru where a2, ..., am ∈ R under
the assumption that a2|a3|...|an. It follows from dimension counting of the direct sums in (1) and
(2) that w1, w2, ..., wn is a basis for M and a1w1, ...., anwn is a basis of N .

We will be done if we show that a1|a2. Suppose ϕ is a homomorphism from M to R such that
ϕ(y1) = ϕ(y2) = 1 and ϕ(yi) = 0 for any yi with i greater than 2 on a basis of M . We find that
ϕ(a1y1) = a1ϕ(y1) = a1(1) = a1 so a1 ∈ ϕ(N). By the definition of a generator, it follows that
(a1) ⊆ ϕ(N).

We obtain the result ϕ(a2y2) = a2ϕ(y2)=a2 ·1=a2 so a2 ∈ ϕ(N). By the definition of a generator,
it follows that (a2) ⊆ ϕ(N).

Since (a1) is maximal (not a2), it follows that (a2) ⊆ (a1). It follows immediately by definition
that a1|a2. �

Proposition 4.8. Let R be any ring, let A1, A2, ..., Am be R-modules. In addition, suppose that
Bi is a submodule of Ai, 1 ≤ i ≤ m. Then

(A1 ⊕A2 ⊕ ...⊕Am)/(B1 ⊕B2 ⊕ ....⊕Bm) ∼= (A1/B1)⊕ (A2/B2)⊕ ...⊕ (Am/Bm).

Note that finite direct sums are the same as finite direct products.

Proof. Construct a map φ : (A1 ⊕ A2 ⊕ ... ⊕ Am)/(B1 ⊕ B2 ⊕ .... ⊕ Bm) → (A1/B1) ⊕ (A2/B2) ⊕
...⊕ (Am/Bm) whose operations are defined to be φ([a1 + a2 + ....+ an]) = [a1]⊕ [a2]⊕ ....⊕ [an]
where [ai] ∈ Ai/Bi. We will first prove that this mapping is a well-defined homomorphism.

Suppose we have a1 + a2 + ....+ an − an+1 + ....+ a2n = b1 + b2 + ...+ bn
By uniqueness of the direct sum, ai − an+i = bi. It follows that this map is well defined.
Next, we show that φ is a homomorphism.

(1) Let x, y ∈ ⊕n
i=1Ai

⊕n
i=1Bi

such that x = [⊕ni=1a1] and y = [⊕ni=1a
′
1] where [⊕ni=1ai] ∈

⊕n
i=1Ai

⊕n
i=1Bi

and [⊕ni=1a
′
i] ∈

⊕n
i=1Ai

⊕n
i=1Bi

. It follows that φ(x + y) = φ([⊕ni=1(ai + a′i)]) = ⊕ni=1[ai + a′i]=

φ([⊕ni=1a
′
i]) + φ([⊕ni=1ai]) = φ(x) + φ(y) (by uniqueness of direct sum).

(2) Let r ∈ R and x ∈ ⊕
n
i=1Ai

⊕n
i=1Bi

such that x = [⊕ni=1a1]. If x = [⊕ni=1ai] ∈
⊕n

i=1Ai

⊕n
i=1Bi

, then φ(rx) =

φ([⊕ni=1rai]) = ⊕ni=1[rai] = r ⊕ni=1 [ai] by the multiplicative property of an equivalence
class. We know that r ⊕ni=1 [ai] = rφ([⊕ni=1ai]) = rφ(x).

After having shown that φ is a R-module homomorphism, we check that φ is an R-module isomor-
phism. The obvious surjection ⊕ni=1Ai 7→ ⊕ni=1Ai/Bi has kernel ⊕ni=1Bi by easy check. Then, we
show that φ is injective. Suppose that φ(a) = φ([⊕ni=1ai])=[0]. We know that [⊕ni=1ai] ∈ kerφ.
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By the definition of an equivalence class, it follows that ⊕ni=1ai ∈ ⊕ni=1Bi. Then, [⊕ni=1ai] = [0].
Hence, φ is injective.

Therefore, we obtain the isomorphism (A1 ⊕A2 ⊕ ...⊕Am)/(B1 ⊕B2 ⊕ ....⊕Bm) ∼= (A1/B1)⊕
(A2/B2)⊕ ...⊕ (Am/Bm). �

Definition 4.9. A left R module is a cyclic submodule C if there exists an x ∈ C such that
C = Rx.

We have the R-module homomorphism φ : R 7→ C where φ(r) = rx. The map φ is surjective by
easy check.

It follows that R/ kerφ ∼= C from Theorem 3.5. When R is a PID, kerφ = (c) is a principal
ideal and C ∼= R/(c). In particular, (c) is the annihilator of C (which can be verified easily from
Definition 4.3).

These facts and definitions allow us to state the structure theorem for finitely generated modules
over a principal ideal domain.

Theorem 4.10. (Structure Theorem, Existence: Invariant Factor Form) Let R be a principal ideal
domain and let M be a finitely generated R-module.

(1) M ∼= Rr ⊕ (R/a1) ⊕ (R/a2) ⊕ .... ⊕ (R/am) for some integer r ≥ 0 and nonzero elements
a1, a2, ..., am of R which are not units in R satisfy the divisibility relations a1|a2|....|am.

(2) M is torsion free if and only if M is free.
(3) In the decomposition in (1), Tor(M) ∼= R/(a1)⊕R/(a2)⊕ ...⊕R/(am).

Proof. We will first prove part 1. Let x1, ..., xn be our set of generators of M of minimal cardinality
(since by assumption M is a finitely generated R-module) and Rn has a free R-module of rank n
such that its basis vectors are r1, ...., rn.

Construct a homomorphism, say ϕ, that maps Rn to M , where ϕ(ri) = xi for 1 ≤ i ≤ n.
Essentially, we are mapping a set of generators of Rn to a set of generators in M . This map is
well-defined.

In order to use Theorem 3.5, we need to show that ϕ is surjective. Since any element of M can
be written as a linear combination of its generators, it follows that ϕ is surjective.

Using the First Isomorphism Theorem of modules, we find that Rn/ kerϕ ∼= M . It follows from
Theorem 4.7 that there exists a basis u1, ...., un for Rn such that we can form a basis for the kerϕ
consisting of a1u1, a2u2, ..., amum where a1, ...., an ∈ R such that a1|a2|a3|...|am.

Since Rn = ⊕ni=1Rui and kerϕ = ⊕ni=1Raiui, we obtain the isomorphism M ∼= Rn/ kerϕ ∼=
⊕n

i=1Rui

⊕m
i=1Raiui

.

It follows that we will have a free module in the direct sum. We realize that

M ∼=
m⊕
i=1

Rui
Raiui

⊕Rn−m.

It follows that Rui

Raiui

∼= R/(ai) since the ui generate Rn. We get

M ∼= ⊕mi=1R/(ai)⊕Rn−m.
If any of the ai’s are arbitrary units, it follows that R/(ai) = 0 since ai generates R. We can remove
all of the terms where the a′is are units in the direct sum since each of the modules mod ai equals
0.

It follows immediately that R/(a) is a torsion R-module provided any nonzero a ∈ R. M is free
when M ∼= Rr. M is torsion-free since there are zero torsion R-modules. When M is torsion-free,
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Tor(M)=0. M must be isomorphic to a free module Rr so M must be a free module. Part 2 of
Theorem 4.10 holds.

Part 3 of Theorem 4.10 follows immediately from the definition of Tor(M). �

For further purposes such as constructing consequences of the invariant factor form of the struc-
ture theorem, we should define an important concept.

Definition 4.11. The integer r in Theorem 4.10 is the free rank of M. The elements a1, a2, ..., am ∈
R (defined up to multiplication by units in R) are the invariant factors of M .

We can use the Chinese Remainder Theorem for Modules to derive another form of the existence
part of the fundamental theorem. By decomposing the annihilator a into powers of prime ideals,
we can simplify the isomorphism. This simplification is especially useful due to the fact that some
of the annihilators can also be zero.

Theorem 4.12. Let R be a PID and let M be a finitely generated R-module. We get the following
isomorphism:
M ∼= Rr ⊕R/(pα1

1 )⊕R/(pα2
2 )⊕ ....⊕R/(pαn

n ).
In the above isomorphism, r ≥ 0 is an integer and pα1

1 , ...pαn
n are positive powers of primes in R.

Note that some of these primes can be repeated.

Proof. Assume Theorem 4.10 is true. We can prove Theorem 4.12 by deriving it from the invariant
factor form. Since R is a principal ideal domain, it follows that R is a Unique Factorization
Domain. Assume the annihilator a is nonzero. We can write a = upα1

1 ...pαn
n where the pi’s are

distinct primes in R and u is a unit. We know from the uniqueness of the prime factorization in
a Unique Factorization Domain that the pα1

1 , ..., pαn
n must be uniquely defined. We want to show

that the ideals are pairwise comaximal. If i 6= j, (pαi
i ) + (p

αj

j ) = (1) since distinct primes are

coprime to one another. Therefore, we arrive at the result that (pαi
i ) + (p

αj

j ) = R. This means

that the ideals generated by powers of distinct primes are pairwise comaximal. (a) ∈ kerϕ as
defined in Theorem 4.10. We find that (a) must be the least common multiple of the distinct
powers of primes since the intersection of all these comaximal ideals is the smallest ideal containing
these powers of distinct primes. Using Proposition 3.9, we get R/(a) ∼= R/(u ∩ pα1

1 ∩ ... ∩ pαn
n ) ∼=

R/(upα1
1 × ... × pαn

n ) ∼= R/(u) ⊕ R/(pα1
1 ) ⊕ .... ⊕ R/(pαn

n ). Since R/(u) = 0 (since u generates R),
it follows that R/(a) ∼= R/(pα1

1 ) ⊕ ... ⊕ R/(pαn
n ). Substituting this isomorphism into the invariant

factor form, we get M ∼= Rr ⊕R/(pα1
1 )⊕R/(pα2

2 )⊕ ....⊕R/(pαn
n ). �

Definition 4.13. Let R be a Principal Ideal Domain and M be a finitely generated R-module as
in Theorem 4.12. The prime powers pα1

1 , ..., pαn
n (defined up to multiplication by units in R) are

the elementary divisors of M .

We now state the uniqueness part of the structure theorem for finitely generated modules over
a principal ideal domain for the invariant factor decomposition.

We first begin with a lemma.

Lemma 4.14. Let R be a PID and let m be a maximal ideal in R. Let F denote the field R/(m).
Assume that M is free of rank n. Then, M/mM ∼= F r.

Proof. Let M=Rr. Create a natural projection homomorphism ϕ : Rr → (R/(m))r. This is a well
defined map with operations ϕ(β1, ..., βn) = (β1mod m, ..., βnmod m). The projection is surjective
(We leave it to the reader to prove that). In addition, ϕ(x) = (0, ..., 0) whenever all of the βi’s
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are a multiple of m. This means that ϕ has kernel mRr, which is an r-tuple in which every
coordinate of Rr is a multiple of m. Using the First Isomorphism Theorem for Modules, we get
that Rr/mRr ∼= (R/(m))r ∼= F r. Substituting M for Rr, we get M/mM ∼= F r. �

Theorem 4.15. Let R be a PID. Two finitely generated R-modules M1 and M2 are isomorphic if
and only if they have the same free rank and the same list of invariant factors.

Proof. If two finitely generated R-modules M1 and M2 have the same free rank and the same list
of invariant factors, then it is clear that M1 and M2 are isomorphic.

Suppose that two finitely generated R-modules M1 and M2 are isomorphic. Since we can con-
struct an isomorphism from M1 to M2, then Tor(M1) ∼= Tor(M2). Let r1 be the free rank of M1

and r2 be the free rank of M2. The quotients of M1 and M2 by their torsion parts are free of ranks
r1 and r2, and they are isomorphic. So r1 = r2.

Showing that two finitely generated R-modules M1 and M2 that are isomorphic have the same
list of invariant factors uses similar logic. Since M1

∼= M2, Tor(M1) ∼= Tor(M2). Then, Tor(M1) ∼=
R/(a1) ⊕ ... ⊕ R/(am) ∼= R/(b1) ⊕ ... ⊕ R/(bn) ∼= Tor(M2). Since R is a UFD, it follows that the
decomposition of Tor(M1) into the direct sum of cyclic submodules is unique up to associates. As
a result, m = n and we can renumber the factors such that the pi’s are associate to the qi’s for
i = 1, ..., n. Hence, M1 and M2 have the same list of invariant factors. �

Unsurprisingly, there is a uniqueness part of the structure theorem for finitely generated modules
over a principal ideal domain for the elementary divisor form.

Theorem 4.16. Let R be a PID. Two finitely generated R-modules M1 and M2 are isomorphic if
and only if they have the same free rank and the same list of elementary divisors.

Proof. If two finitely generated R-modules M1 and M2 have the same free rank and the same list
of elementary divisors, then it is clear that M1 and M2 are isomorphic.

We already proved that two isomorphic finitely generated R-modules have the same free rank in
Theorem 4.15 (Note that a maximal ideal in a principal ideal domain is the same as a prime ideal).
See Dummit [3] on page 466 for the induction proof showing that two isomorphic finitely generated
R-modules have the same list of elementary divisors. �

The structure theorem of finitely generated modules has great implications especially regard-
ing the classification of abelian groups and representation theory. The idea of classifying similar
structures such as groups, rings, and fields represents one of the motifs of abstract algebra.

5. Consequences of the structure theorem for finitely generated modules over a
principal ideal domain

Taking R = Z, we first specialize to prove the fundamental theorem for finitely generated abelian
groups.

Suppose we let n ∈ Z and a ∈ G be an arbitrary element of some abelian group.

na =

 a+ a+ ....+ a (n times) n > 0
0 n = 0
−(a+ a+ ...+ a) (n times) n < 0

There is an action of Z on G. As a result, na is a Z-module. It can be verified easily that abelian
groups are the same as Z-modules.
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Theorem 5.1. (The Fundamental Theorem of Finitely Generated Abelian Groups) Let G be a
finitely generated abelian group. Then the following hold:

(1) G ∼= Zr ⊕ Z/n1Z⊕ Z/n2Z⊕ ...⊕ Z/nsZ for some integers r, n1, n2, ....., ns that satisfy the
following: (a) r ≥ 0 and nj ≥ 2 for all j, and (b) ni+1|ni for 1 ≤ i ≤ s− 1

(2) The expression obtained in (1) is unique: If G ∼= Zt ⊕ Z/m1Z ⊕ Z/m2Z ⊕ .... ⊕ Z/muZ,
where t and m1,m2, ...,mu satisfy (a) and (b) (ie, t ≥ 0,mj ≥ 2 for all j and mi+1|mi for
1 ≤ i ≤ u− 1), then it follows that t = r, u = s, and mi = ni for all i.

Proof. Since G is a finitely generated abelian group, it follows that G is a finitely generated Z-
module. We know that the ring of integers Z is a principal ideal domain. When we substitute Z for
R in part 1 of Theorem 4.10, we realize immediately that part (1) of The Fundamental Theorem of
Finitely Generated Abelian Groups holds. Note that the division of the invariant factors is reversed
from Theorem 4.10 for purposes of finding two isomorphic abelian groups of a given order quickly
and efficiently. Part(2) holds as a consequence of Theorem 4.15. �

It is important to note that Zr is a free abelian group of rank r. In addition, we call the integers
n1, n2, ..., ns the invariant factors of G.

Suppose we want to find all abelian groups of order 4. There are two abelian groups of order 4:
Z/4Z and Z/2Z⊕ Z/2Z. The list of all the abelian groups of order 4 and their invariant factors is
in Table 1.

Invariant Factors Abelian Groups

2, 2 Z/2Z⊕ Z/2Z
4 Z/4Z

Table 1

The point of the decompositions M ∼= Z/n1Z ⊕ Z/n2Z ⊕ ... ⊕ Z/nsZ is that the n1, ..., ns are
unique. For example, Z/4Z is not isomorphic to Z/2Z ⊕ Z/2Z since the former has an invariant
factor of 4 while the latter has invariant factor 2,2.

Now we apply the structure theorem to the polynomial ring F [x] over a field F to get some
application in linear algebra. Let F [x] be a polynomial ring over a field F , V be a finite dimensional
vector space over a field F , T be a linear transformation from V to V , and x be a variable.

Since F [x] is a polynomial ring over a field F , F [x] must be a principal ideal domain. Clearly,
V has free rank 0 as an F [x]-module. Since V has finite dimension over F , it must be finitely
generated as a F -module. As a result, V is finitely generated as a F [x]-module.

In addition, it is easy to show that the F [x]-submodules of V are T − invariant subspaces of
V (since V is sent to itself through the ring action of x and F [x]-submodules are subspaces of V ).
We will specialize to F = C. We are assuming that F is algebraically closed so that the only prime
ideals of F [x] are of the form x−λ. Letting R = F [x] in Theorem 4.12 (3), we can write the vector
space V as a direct sum of finitely many cyclic F [x] modules of the form F [x]/(x−λ)p where λ ∈ F .

Multiplication by x defines a linear transformation from F [x]/(x−λ)p to itself. We view a basis
of F [x]/(x− λ)p as an F vector space. Let {1, x̄− λ, ..., (x̄− λ)p−1} be a basis of F [x]/(x− λ)p.

We will use the fact that x= (x − λ) + λ and (x − λ)p = 0 in the following calculations.
Multiplication by x defines a linear operator on F [x]/(x−λ)p which transforms the basis as follows:

1 7→ 1 · x̄ = (x̄− λ) + λ
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x̄− λ 7→ x̄(x̄− λ) = ((x̄− λ) + λ)(x̄− λ) = (x̄− λ)2 + λ(x̄− λ)
...

(x̄− λ)n−2 7→ x̄(x̄− λ)n−2 = ((x̄− λ) + λ)(x̄− λ)n−2 = (x̄− λ)n−1 + λ(x̄− λ)n−2

(x̄−λ)n−1 7→ x̄(x̄−λ)n−1 = ((x̄−λ)+λ)(x̄−λ)n−1 = (x̄−λ)(x̄−λ)n−1)+λ(x̄−λ)n−1 = λ(x̄−λ)n−1

The linear transformation is represented by a square matrix, which is a n × n Jordan block
with eigenvalue λ, of the form

Aλ =


λ
1 λ

1 λ
. . .

. . .

1 λ

 .

Suppose the elementary divisors are (x−λ1)p1 , ..., (x−λm)pm . Since we are taking a direct sum
of submodules that are T -invariant subspaces of V , we can take the union of the bases of each of
the Jordan blocks to get a basis of V allowing us to obtain a square matrix:

B =


Aλ1

Aλ2

. . .

Aλm

 .

This gives us a special case of the Jordan canonical form theorem.

Theorem 5.2. Let F be an algebraically closed field and B be a square matrix with entries in F .
Then, B is similar over F to a direct sum of elementary Jordan matrices, one for each elementary
divisor of B. Each elementary divisor of B is a power (x − λ)e of some monic linear polynomial
x − λ; the corresponding matrix summand is the e × e elementary Jordan matrix with diagonal
entries all equal to the scalar λ.
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