A LOCAL-GLOBAL PRINCIPLE FOR SUMS OF TWO SQUARES

NATALIE LEONARD

Abstract. This paper will explore a simple consequence of the Hasse-Minkowski local-global principle for \(p \)-adics, namely, the sums of two squares theorem. First, I will introduce and define the \(p \)-adic numbers and elementary operations on the \(p \)-adic numbers. Then, I will discuss and prove the sums of two squares theorem on the integers. Finally, I will extend this theorem to the \(p \)-adic integers.

Contents

1. Introduction to the \(p \)-adics 1
2. Euler’s sums of two squares theorem for integers 5
3. Euler’s sums of two squares theorem for \(p \)-adics 8
Acknowledgments 11
References 11

1. INTRODUCTION TO THE \(p \)-ADICS

Definition 1.1. We write \(x \equiv_n y \) if \(n \) divides \(x - y \) or equivalently \(x - y = nk \) for some \(k \in \mathbb{Z} \). In this case, we also write \(x - y \equiv 0 \) (mod \(n \)).

Remark 1.2. \(x \equiv_n y \) is an equivalence relation on \(\mathbb{Z} \). Note: the equivalence classes form a ring which we denote \(\mathbb{Z}/n \). Additionally, we denote the field \(\mathbb{Z}/p \) as \(\mathbb{F}_p \), where \(p \) is a prime.

Theorem 1.3. (Fermat’s Little Theorem) For all primes \(p \) and integers \(a \), either \(a \equiv 0 \) (mod \(p \)) or \(a^{p-1} \equiv 1 \) (mod \(p \)).

Proof. We will prove this theorem through induction on \(a \), noting that all negative integers will follow once the statement is shown for positive integers. For the base case, if \(a = 1 \) then \(1^{p-1} \equiv 1 \) (mod \(p \)), as required. Now, suppose that \(a^p \equiv a \) (mod \(p \)) holds for all \(1 \leq a \leq k \). Consider \(a = k + 1 \). We take the binomial expansion to see \((k + 1)^p \equiv k^p + \binom{p}{1} k^{p-1} + \ldots + \binom{p}{p-1} k + 1 \) (mod \(p \)). As the coefficients of each term barring the first and last will contain a factor of \(p \), they will therefore disappear when taken mod \(p \). Therefore: \((k + 1)^p = k^p + 1 \) (mod \(p \)). So, by the inductive hypothesis \((k + 1)^p = k + 1 \) (mod \(p \)), which implies \((k + 1)^{p-1} \equiv 1 \) (mod \(p \)) and we are done. \(\square \)

Theorem 1.4. (Wilson’s Theorem) A number \(n \) is prime if and only if

\[
(n - 1)! \equiv -1 \pmod{n}
\]
Proof. Consider the polynomial $P(x) = x^{p-1} - 1$ for $x \in \mathbb{F}_p$. By Fermat’s Little Theorem, for all $x \not\equiv 0 \pmod{p}$, x is a root to $P(x)$. And as \mathbb{F}_p has only $p - 1$ elements, then:

$$P(x) = x^{p-1} - 1 = \prod_{k=1}^{p-1} (x - k)$$

Now, for all primes, $(-1)^{p-1} \equiv 1 \pmod{p}$, so equivalently:

$$x^{p-1} - 1 = \prod_{k=1}^{p-1} (-k - x)$$

Let $x = 0$ to reach the desired conclusion, that $-1 \equiv (p - 1)! \pmod{p}$. □

We now move on to constructing the p-adic numbers.

Definition 1.5. Fix a prime $p \in \mathbb{Z}$. Define $v_p : \mathbb{Z}\{0\} \rightarrow \mathbb{Z}$, the p-adic valuation as follows: take some $n \in \mathbb{Z}$. Then $v_p(n)$ satisfies:

$$n = p^{v_p(n)} n' \text{ where } p \nmid n'$$

We set $v_p(0) = \infty$. In \mathbb{Q}, given some $x = \frac{a}{b}$ where $a, b \in \mathbb{Z}$, then:

$$v_p(x) = v_p(a) + v_p(b)$$

Lemma 1.6. For all $x, y \in \mathbb{Q}$:

1. $v_p(xy) = v_p(x) + v_p(y)$
2. $v_p(x + y) \geq \min\{v_p(x), v_p(y)\}$

Proof. Let $x = p^ax'$ where $a = v_p(x)$ and $y = p^by'$ where $b = v_p(y)$. Then $x \cdot y = p^a x' \cdot p^b y'$ which implies $x \cdot y = p^{a+b} x'y'$. As $p \nmid x'$ and $p \nmid y'$, $p \nmid x'y'$ so $v_p(xy) = a + b = v_p(x) + v_p(y)$, as required.

For the second part, let $x = p^ax'$ and $y = p^by'$ with a and b defined as before. Suppose, without loss of generality, that $a < b$. Then $x + y = p^a x' + p^b y'$ and we can factor out p^a from both terms so, $x + y = p^a(x' + p^{b-a} y')$. Now, $x' + p^{b-a} y'$ cannot contain a factor of p or $v_p(x) \neq a$. Therefore, $v_p(x + y) \geq a = v_p(x) = \min\{v_p(x), v_p(y)\}$, as required. □

Definition 1.7. For any $x \in \mathbb{Q}$, $x \neq 0$, define the p-adic absolute value as follows:

$$|x|_p = p^{-v_p(x)}$$

We set $|0|_p = 0$. Additionally, we let $| - |_\infty$ be the usual absolute value.

Theorem 1.8. (Ostrowski) For all $x \in \mathbb{Q}^\times$:

$$\prod_{p \leq \infty} |x|_p = 1$$
Proof. Let x be some positive integer with a unique prime factorization $x = p_1^{a_1}p_2^{a_2}...p_n^{a_n}$. We break the above product into cases:

1. Take $q \neq p_i$ for all $1 \leq i \leq n$ such that $q \neq \infty$. Then x will not have a factor of q so $v_q(x) = 0$ and $|x|_q = 1$.
2. Take $q = p_i$ for some i. Then $v_q(x) = v_{p_i}(x) = a_i$ and $|x|_q = p_i^{-a_i}$.
3. Now consider $|x|_{\infty}$. This will simply be the “normal” absolute value so $|x|_{\infty} = p_1^{a_1}p_2^{a_2}...p_n^{a_n}$ as x is positive.

Taking all three cases, $\prod_{p \leq \infty} |x|_p = p_1^{-a_1}p_2^{-a_2}...p_n^{-a_n} \cdot (p_1^{a_1}p_2^{a_2}...p_n^{a_n}) = 1$. A similar argument can be made for negative non-integral x.

We now turn to defining \mathbb{Q}_p and \mathbb{Z}_p. \mathbb{Q}_p is created through “completions” via Cauchy sequences. First, we define Cauchy sequences in the usual sense:

Definition 1.9. A sequence (x_n) is Cauchy if for every $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n, m > N$ we have:

$$|x_n - x_m| < \epsilon$$

Definition 1.10. Let $\mathcal{C} = \mathcal{C}_p(\mathbb{Q}) := \{(x_n) : (x_n) \text{ is Cauchy}\}$.

Definition 1.11. Let $\mathcal{N} := \{(x_n) : \lim_{n \to \infty} |x_n|_p = 0\} = \{(x_n) : x_n \to 0\}$.

Proposition 1.12. \mathcal{N} is a maximal ideal of \mathcal{C}.

Proof. First, \mathcal{N} is an ideal: for an arbitrary Cauchy sequence (x_n), we can find an upper bound, and, given a sequence (y_n) that tends to zero, then (x_ny_n) tends to zero, so $(x_ny_n) \in \mathcal{N}$. To show that \mathcal{N} is maximal, the goal is to show that the unit element (i.e. (1)) is contained in any ideal I generated by some sequence $(x_n) \notin \mathcal{C}$ where $(x_n) \in \mathcal{N}$. This works: if (1) is contained in I, then I must be the entire ring. Our strategy is to take (x_n) and define a sequence (y_n) such that $(x_ny_n) \in \mathcal{N}$. Now, as (x_n) does not tend to 0, there exists some $N \in \mathbb{N}$ and some $c > 0$ such that for all $n \geq N$, $|x_n| \geq c$. Define (y_n) by letting $y_i = 0$ for all $i < N$ and $y_i = \frac{1}{x_i}$ for all $i \geq N$. It is immediate that (y_n) is Cauchy and therefore contained in \mathcal{C}. And, for all $n \geq N$, $x_ny_n = 1$. So, $1-x_ny_n$ tends to 0 as n tends to infinity, and therefore $(x_ny_n) \in \mathcal{N}$. As (1) can be generated by (x_n) and \mathcal{N}, \mathcal{N} is a maximal ideal.

What does this mean? A maximal ideal is maximal if there are no other ideals “in between.” In this case, this means that there are no ideals of \mathcal{C} larger than \mathcal{N} that are not all of \mathcal{C}.

Definition 1.13. Define the field of p-adic numbers \mathbb{Q}_p to be $\mathbb{Q}_p := \mathcal{C}/\mathcal{N}$.

Definition 1.14. Denote \mathbb{Z}_p as follows:

$$\mathbb{Z}_p := \{x \in \mathbb{Q}_p : |x|_p \leq 1\}$$

Note: while this definition works on a technical level, it doesn’t provide much insight into what p-adic integers actually look like. So, more functionally, a p-adic integer is a series of the form:
\[a_1 p + a_2 p^2 + a_3 p^3 + \ldots \]

where \(p \) is a prime and each \(a_i \) is an integer (usually between 1 and \(p - 1 \)). This second definition is analogous to the first, as the \(p \)-adic absolute value tells us whether a \(p \)-adic number has factors of \(p \) in the numerator or denominator. The closed unit ball, described in Definition 1.14, simply denotes all \(p \)-adic numbers with a non-negative number of factors of \(p \).

We now introduce Hensel’s Lemma, a powerful tool for solving equations in \(\mathbb{Q}_p \).

Theorem 1.15. (Hensel’s Lemma) Take some prime \(p \geq 3 \). Let \(F(X) = a_0 + a_1 X + \ldots + a_n X^n \) be a polynomial where each \(a_i \in \mathbb{Z}_p \), such that \(F(\alpha_1) \equiv 0 \pmod{p} \) and \(F'(\alpha_1) \not\equiv 0 \pmod{p} \) for some \(\alpha_1 \in \mathbb{Z}_p \). Then there exists a unique \(p \)-adic integer, \(\alpha \in \mathbb{Z}_p \) such that \(\alpha \equiv \alpha_1 \pmod{p} \) and \(F(\alpha) = 0 \).

Proof. Our aim in proving this important theorem is to construct a Cauchy sequence that converges to an \(\alpha \) that satisfies the above statement. So, we will find a sequence of integers \(\alpha_1, \ldots, \alpha_n \) such that for all \(n \geq 1 \) we have \(F(\alpha_n) \equiv 0 \pmod{p^n} \) and \(\alpha_n \equiv \alpha_{n+1} \pmod{p^n} \).

Now, \(\alpha_1 \) exists from the givens. We proceed with induction. Assume that \(\alpha_n \) exists such that \(F(\alpha_n) \equiv 0 \pmod{p^n} \) and \(\alpha_n \equiv \alpha_{n+1} \pmod{p^n} \) and moreover that \(F'(\alpha_n) \not\equiv 0 \pmod{p^n} \). Let \(\alpha_{n+1} = \alpha_n + b_n p^n \) for some \(b_n \in \mathbb{Z}_p \).

Therefore:

\[
F(\alpha_{n+1}) = F(\alpha_n + b_n p^n) \\
\equiv F(\alpha_n) + F'(\alpha_n) b_n p^n \pmod{p^{n+1}}
\]

The above holds if and only if there exists \(b_n \) such that \(F(\alpha_{n+1}) \equiv 0 \pmod{p^{n+1}} \) is satisfied. So, it is necessary and sufficient to show:

\[
F(\alpha_n) + F'(\alpha_n) b_n p^n \equiv 0 \pmod{p^{n+1}}
\]

Now, \(F(\alpha_n) \equiv 0 \pmod{p^n} \), so for some \(x \), \(F(\alpha_1) = p^n x \).

\[
p^n x + F'(\alpha_n) b_n p^n \equiv 0 \pmod{p^{n+1}}
\]

Divide through by \(p^n \) to find:

\[
x + F'(\alpha_n) b_n \equiv 0 \pmod{p}
\]

As \(F'(\alpha_n) \not\equiv 0 \pmod{p^n} \), \(F'(\alpha_n) \not\equiv 0 \pmod{p} \) which implies that \(F'(\alpha_n) \) is invertible:

\[
\implies b_n \equiv -x(F'(\alpha_n))^{-1} \pmod{p}
\]

As we have found \(b_n \) satisfying the requirement that \(\alpha_2 = \alpha_1 + b_n p \), we can conclude that the sequence exists, that it converges to \(\alpha \) and that \(F(\alpha) = 0 \), as required. \(\square \)
Remark 1.16. The above version of Hensel’s Lemma notably excludes the $p = 2$ case. This is because often polynomials will fail to satisfy the second criteria: a non-zero derivative at the root. Consider the following example:

Example 1.17. Let $f(x) = x^2 - \alpha$ for any $\alpha \in \mathbb{Z}$. We want to find whether α is a square in \mathbb{Z}_p for $p = 2$. We would like to use Hensel’s Lemma to approach this problem; however, even though 1 or 2 will be a solution in \mathbb{Z}_2 (depending on the evenness or oddness of α), $f'(1) \equiv 2(1) \equiv 0 \pmod{2}$ and $f'(2) \equiv 2(2) \equiv 0 \pmod{2}$. So, we are unable to determine whether α is a root, because the derivative is always 0.

Because of this problem we introduce a weaker version of Hensel’s Lemma that works for the $p = 2$ case.

Theorem 1.18. Take some prime p. Let $F(X) = a_0 + a_1X + ... + a_nX^n$ be a polynomial with each $a_i \in \mathbb{Z}_p$ where for some $\alpha \in \mathbb{Z}_p$, $|f(\alpha_1)| < |f'(\alpha_1)|^2$. Then there is a unique $\alpha \in \mathbb{Z}_p$ such that $F(\alpha) = 0$ and $|\alpha - \alpha_1| < |f'(\alpha_1)|$.

2. Euler’s sums of two squares theorem for integers

With the tools from the previous section, this paper will prove a specific case of the Hasse-Minkowski Local Global Principle. The Hasse-Minkowski Theorem is an application of the Local-Global Principle, stated below, to quadratic forms.

(The Local Global Principle) A theorem holds over \mathbb{Q} if and only if it holds over \mathbb{R} and over \mathbb{Q}_p for all primes p.

Notice that the above statement is not a theorem but a principle: it outlines a strategy for approaching challenging problems in \mathbb{Q}, by instead evaluating solutions in \mathbb{Q}_p for all p. This paper will deal with the sums of two squares theorem: namely, that an integer can be written as a sum of two squares in \mathbb{Z} if and only if it can be written as a sum of two squares locally at every prime p and in \mathbb{R}. To start, we introduce and prove the two-square theorem for the integers.

Theorem 2.1. (Euler) A positive integer m can be written as the sum of two squares if and only if for each prime $p | m$ with $p \equiv 3 \pmod{4}$, p has even multiplicity as a factor of m.

This proof will build upon a few lemmas presented below:

Lemma 2.2. (Thue’s Lemma) Let p be prime. For all a such that $p \nmid a$ there exist $x, y \in \{1, 2, ..., \lfloor \sqrt{p} \rfloor \}$ such that $ax \equiv y \pmod{p}$ or $ax \equiv -y \pmod{p}$.

Proof. Consider the set of coordinate points in $\{1, 2, ..., \lfloor \sqrt{p} \rfloor \} \times \{1, 2, ..., \lfloor \sqrt{p} \rfloor \}$. As this set clearly contains $(1 + \lfloor \sqrt{p} \rfloor)^2$ elements, it will have greater than p elements. By the pigeonhole principle, there are only $p - 1$ elements in \mathbb{F}_p^\times, there must be (x_1, y_1) and (x_2, y_2) that are distinct coordinate pairs such that $ax_1 - y_1 \equiv ax_2 - y_2 \pmod{p}$. This implies $a(x_1 - x_2) \equiv y_1 - y_2 \pmod{p}$. All that is left to show is that $x_1 - x_2, y_1 - y_2 \neq 0$.

If $x_1 = x_2$ then $0 \equiv y_1 - y_2 \pmod{p}$ and as $1 \leq y_1, y_2 < p$ then $y_1 = y_2$. However, this contradicts distinctness. We see a similar result taking $y_1 = y_2$. Therefore, set $x = |x_1 - x_2|$ and $y = |y_1 - y_2|$ and we are done. \[\square\]
Lemma 2.3. For all primes $p > 2$, $p \equiv 1 \pmod{4}$ if and only if there exists x such that $x^2 \equiv -1 \pmod{p}$.

Proof. We begin with the forward direction; assume that $p \equiv 1 \pmod{4}$. By Wilson’s Theorem:

$$(p-1)! \equiv 1 \cdot \ldots \cdot \left(\frac{p-1}{2}\right) \cdot \left(\frac{p+1}{2}\right) \cdot \ldots \cdot (p-1) \equiv -1 \pmod{p}$$

If we multiply the last $\frac{p-1}{2}$ factors by -1 then:

$$(-1)^{\frac{p+1}{2}} \equiv 1 \cdot \ldots \cdot \left(\frac{p-1}{2}\right) \cdot \left(\frac{p+1}{2}\right) \cdot \ldots \cdot 1$$

And, as $p \equiv 1 \pmod{4}$, $\frac{p+1}{2}$ is odd so:

$$-1 \equiv \left(\left(\frac{p-1}{2}\right)!\right)^2 \pmod{p}$$

Therefore, $-1 \in (\mathbb{F}_p^\times)^2$ as required.

Now, consider the reverse direction; assume that there exists x such that $x^2 \equiv -1 \pmod{4}$. By Fermat’s Little Theorem, $x^{p-1} \equiv 1 \pmod{4}$. This in turn means that:

$$(x^2)^{\frac{p-1}{2}} \equiv (-1)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$$

This can only occur when $\frac{p-1}{2}$ is even. So $\frac{p-1}{2} = 2k$ for some $k \in \mathbb{Z}$ or $p \equiv 1 \pmod{4}$ as required. \(\square\)

Lemma 2.4. If $a^2 \equiv -1 \pmod{p}$ has solutions for some a, then p can be represented as a sum of two squares.

Proof. First, $p \nmid a$ as that would imply $a^2 \equiv 0 \pmod{p}$ which is a contradiction. Therefore, Thue’s Theorem states that there exists $x, y \in \{1, 2, \ldots, \lfloor \sqrt{p} \rfloor \}$ such that $ax \equiv \pm y \pmod{p}$. So:

$$a^2 \equiv -1 \pmod{p}$$

$$\implies a^2x^2 \equiv -x^2 \pmod{p}$$

As $ax \equiv \pm y \pmod{p}$ then $a^2x^2 \equiv y^2 \pmod{p}$ so:

$$y^2 + x^2 \equiv 0 \pmod{p}$$

So, for some x, y we have $x^2 + y^2 = kp$ for some $k \in \mathbb{Z}$. All that is left to show is that $k = 1$. Now, as $x, y \geq 1$, $k > 0$. And $x^2, y^2 \leq (\lfloor \sqrt{p} \rfloor)^2 < \sqrt{p}^2$ which implies $x^2 + y^2 < 2p$. Therefore, $k = 1$, and the proof is finished. \(\square\)
Lemma 2.5. The product of numbers that can be written as the sum of two squares, can be written as the sum of two squares.

Proof. This can be shown through the following algebraic manipulation: take \(x = a^2 + b^2 \) and \(y = c^2 + d^2 \). Then:

\[
x y = (a^2 + b^2)(c^2 + d^2)
\]
\[
= a^2c^2 + b^2c^2 + a^2d^2 + b^2d^2
\]
\[
= (a^2c^2 + 2abcd + b^2d^2) + (a^2d^2 - 2abcd + b^2c^2)
\]
\[
= (ac + bd)^2 + (ad - bc)^2
\]

\[\square\]

We can now prove the theorem:

Proof of Theorem 2.1. First, let \(m = s^2 n \), where \(n \) is square free. Our goal is to show that for \(m \) to be the sum of two squares, all odd prime factors of \(n \) are \(p \equiv 1 \pmod{4} \) or have even multiplicity. First, the forward direction: assume that an integer \(m \) can be written as the sum of two squares. Let \(m = x^2 + y^2 \). If \(n = 1 \) then the statement is trivially true as all prime factors of \(m \) will have even multiplicity and \(m = s^2 + 0^2 \) is a solution. So, take \(m > 1 \). Now, we can factor out from \(x \) and \(y \) their greatest common factor, call it \(d \), and say \(x = dx_1 \) and \(y = dy_1 \) where \((x_1, y_1) = 1 \). So, \(m = d^2(x_1^2 + y_1^2) \) which yields:

\[
\frac{s^2n}{d^2} = \frac{m}{d^2} = x_1^2 + y_1^2
\]

As \(n \) is taken to be square free, then \(d^2 \) divides \(s^2 \), so let \(s^2 = td^2 \) for some \(t \):

\[
tn = x_1^2 + y_1^2
\]

So, consider some odd prime \(p \) such that \(p \mid n \), and assume for contradiction that \(p \equiv 3 \pmod{4} \). As \(p \mid n \) we know \(p \mid x_1^2 + y_1^2 \) or,

\[
x_1^2 + y_1^2 \equiv 0 \pmod{p} \implies x_1^2 \equiv -y_1^2 \pmod{p}
\]

aS \(p = 4k + 3 \) for some \(k \in \mathbb{Z} \), \(p - 1 = 2(2k + 1) \).

\[
x_1^{2(2k+1)} \equiv (-1)^{2k+1}(y_1)^{2(2k+1)} \pmod{p}
\]
\[
\implies x_1^{p-1} \equiv -(y_1)^{p-1} \pmod{p}
\]

Consider two cases; first if \(p \mid x_1 \) then \(p \mid tn - x_1^2 \) which implies \(p \mid y_1^2 \). However, the greatest common divisor of \(x_1 \) and \(y_1 \) is 1, so we have reached a contradiction. Therefore, assume \(p \nmid x_1, y_1 \). By Fermat’s Little Theorem, then:

\[
1 \equiv -1 \pmod{p}
\]
which is clearly a contradiction. Therefore, if $p \mid n$ then $p \equiv 1 \pmod{4}$. So, all prime factors $p \equiv 3 \pmod{4}$ of m have even multiplicity, as they divide s^2, not n. This concludes the forward direction.

Now, we turn to the reverse direction. This direction is significantly easier; assume that for every prime factor $p \equiv 3 \pmod{4}$, that p has even multiplicity. As $m = s^2n$, if $p \equiv 3 \pmod{4}$, then $p \nmid n$. So, all prime factors of n are congruent to $1 \pmod{4}$. How does this help us? Let $n = p_1p_2...p_k$, the unique prime factorization of n. As for every i, $p_i \equiv 1 \pmod{4}$ we can apply Lemmas 2.4 and 2.3 to say that each p_i can be written as the sum of two squares. By Remark 2.5, m can be written as the sum of two squares, as required. ⊓⊔

3. Euler’s sums of two squares theorem for p-adics

We now turn to the p-adic equivalent of Euler’s two square theorem. We first introduce some more machinery.

Theorem 3.1. (Euler’s criterion) A number a is called a quadratic residue \pmod{p} if a is coprime to p and $a = x^2 \pmod{p}$ for some integer x. Given any a:

$$a^{p-1} = \begin{cases} 1 \pmod{p} & \text{if } a \text{ is a quadratic residue} \\ -1 \pmod{p} & \text{otherwise} \end{cases}$$

Proof. As a and p are relatively prime Fermat’s Little Theorem states that $a^{p-1} \equiv 1 \pmod{p}$, or $a^{p-1} - 1 \equiv 0 \pmod{p}$. As $p - 1$ is even, equivalently $(a^{\frac{p-1}{2}} - 1)(a^{\frac{p-1}{2}} + 1) \equiv 0 \pmod{p}$.

As \mathbb{F}_p is a field, one factor must be 0 for the statement to hold. Now, suppose that a is a quadratic residue; for some x, $a \equiv x^2 \pmod{p}$. Then:

$$a^{\frac{p-1}{2}} \equiv (x^2)^{\frac{p-1}{2}} \equiv x^{p-1} \equiv 1 \pmod{p}$$

So, if a is a quadratic residue then $a^{\frac{p-1}{2}} - 1 \equiv 0 \pmod{p}$. By Lagrange’s Theorem, an application of the polynomial division theorem and properties of \mathbb{F}_p, $a^{\frac{p-1}{2}} - 1$ has at most $\frac{p-1}{2}$ solutions; all other elements of \mathbb{F}_p must be solutions to $a^{\frac{p-1}{2}} + 1 \equiv 0 \pmod{p}$. ⊓⊔

Corollary 3.2. For all primes p, $\frac{p+1}{2}$ integers in \mathbb{F}_p, including 0, are quadratic residues \pmod{p}.

Lemma 3.3. Let p be a prime such that $p \equiv 1 \pmod{4}$. Then every p-adic integer is a sum of two squares of p-adic integers.

Proof. First, if $p \equiv 1 \pmod{4}$ then -1 is a quadratic residue. So, for some k_0, $k_0^2 + 1 \equiv 0 \pmod{p}$. Now, we can apply Hensel’s Lemma to $f(x) = x^2 + 1$ as $f(k_0) \equiv 0 \pmod{p}$ and $f'(k_0) \equiv 2k_0 \neq 0 \pmod{p}$. Therefore, there exists a p-adic integer $k \in \mathbb{Z}_p$ such that $k \equiv k_0 \pmod{p}$ and $f(k) = 0$.

Now, for an arbitrary $t \in \mathbb{Z}_p$:

$$(1 + t)^2 + (k(t - 1))^2 = 1 + 2t + t^2 + k^2(t^2 - 2t + 1)$$

$$= 1 + 2t + t^2 - t^2 + 2t - 1$$

$$= 4t$$
Solving for t shows that $t = \left(\frac{1 + t}{2}\right)^2 + \left(\frac{k(t-1)}{2}\right)^2$. Therefore, t can be expressed as the sum of two squares, and we are done.

Note: As we have excluded 2-adic integers, $\frac{1+t}{2}$ and $\frac{k(t-1)}{2}$ are in \mathbb{Z}_p.

Lemma 3.4. For prime $p \equiv 3 \pmod{4}$, a nonzero integer u is a sum of two squares in \mathbb{Z}_p if and only if its p-adic valuation, $v_p(u)$, is even.

Proof. Let $u = p^nu'$ such that $p \nmid u'$. First, we will show that u' can be written as the sum of two squares, and then consider the cases when a is even and when a is odd.

Let $A = \{y^2 \pmod{p} | 0 \leq y \leq p-1\}$ and let $B = \{u' - x^2 \pmod{p} | 0 \leq x \leq p-1\}$. By Euler’s criterion, the number of squares for $p \geq 2$ in \mathbb{F}_p is $\frac{p+1}{2}$ so $|A| = \frac{p+1}{2}$ and $|B| = \frac{p+1}{2}$. Then by the pigeonhole theorem, there must be some element in both A and B, as $|A| + |B| = p + 1 > |\mathbb{F}_p|$. Suppose $k \in A$ and $k \in B$ with $0 \leq k \leq p - 1$. Then for some $y_0 \in A$ and $x_0 \in B$:

$$k \equiv y_0^2 \pmod{p} \text{ and } k \equiv u' - x_0^2 \pmod{p}$$

Thence:

$$u' - x_0^2 \equiv y_0^2 \pmod{p} \implies u' \equiv x_0^2 + y_0^2 \pmod{p}$$

Now, all we must show is that Hensel’s Lemma applies and we can lift to find solutions in \mathbb{Z}_p. As u does not have a factor of p, x_0^2 or $y_0^2 \not\equiv 0 \pmod{p}$. Suppose that $x_0 \not\equiv 0 \pmod{p}$. Then let $f(x) = x^2 + (y_0^2 - u')$. First, $f(x_0) \equiv 0 \pmod{p}$. Second, $f'(x_0) = 2x_0 \not\equiv 0 \pmod{p}$. Therefore, we can find a solution in \mathbb{Z}_p as required.

Next, consider two cases: either $v_p(u)$ is even, or it is not.

Case 1: If a is even then $a = 2k$ for some $k \in \mathbb{Z}$. Then:

$$u = p^nu'$$

$$= p^{2k}(x_0^2 + y_0^2)$$

$$= (p^kx_0)^2 + (p^ky_0)^2$$

So, in the case when $v_p(u)$ is even, u can be written as a sum of two squares.

Case 2: Take a to be odd, and suppose $u = x^2 + y^2$ for some $x, y \in \mathbb{Z}_p$. Trivially, x and y are nonzero so consider the following two cases:

a) Suppose that $v_p(x) \neq v_p(y)$. Then $v_p(u) = \max\{v_p(x^2), v_p(y^2)\} = \max\{2v_p(x), 2v_p(y)\}$. Then $v_p(u)$ is even which, again, contradicts our assumption.

b) Suppose that $x = p^n v$ and $y = p^n w$ with $v, w \in \mathbb{Z}_p^\times$, such that x and y have equal valuations. Then:

$$u = x^2 + y^2 = p^{2n}(v^2 + w^2)$$

As $v_p(u)$ is odd and $2n$ is even:

$$v^2 + w^2 \equiv 0 \pmod{p}$$
Lemma 1.6. The squares of the above units are $1, u_1 (\text{mod } 8)$, as required. Now, for the reverse direction, suppose that an element u is equivalent to $1 (\text{mod } 8)$. Consider the function $f(u) = 2u + 1$. As 2 is a sum of two squares, by Lemma 2.5, $2u$ is a product of sums of two squares, and therefore a sum of two squares, as required.

Proof. Let $v, y \in \mathbb{Z}_2$ such that $t = 2^nu$ in \mathbb{Q}_2 such that t is a sum of two squares. Then $u = \frac{t}{2}$ is a sum of two squares, by Lemma 3.5 and as $\frac{1}{2} = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2$.

Let $u = x^2 + y^2$ for some $x, y \in \mathbb{Z}_2$. Then $u \equiv x^2 + y^2 (\text{mod } 4)$, but the only squares mod 4, however, are 0 and 1 so $u \equiv 0, 1 (\text{mod } 4)$, which is a contradiction.

Therefore, x or $y \notin \mathbb{Z}_2$. Suppose, without loss of generality that $x \notin \mathbb{Z}_2$. Now, $y^2 = u - x^2$. As $u \in \mathbb{Z}_2^\times$, $v_2(u) = 0$ which means $|u|_2 = 1$. However, as $x \notin \mathbb{Z}_2^\times$, $|x|_2 > 1$ so $|x|_2 > 1$. By Lemma 1.6, $|y|_2 = |u - x^2|_2 = |x^2|_2 > 1$.

Let $|x|_2 = |y|_2 = 2^n$ for some $n \geq 1$. Then we can say $x = \frac{v}{2^n}$ and $y = \frac{w}{2^n}$ for some $v, w \in \mathbb{Z}_2$. Now, $v^2 + w^2 = 4^n(x^2 + y^2) = 4^n \equiv 0 (\text{mod } 4)$. At the same time, as $v, w \in \mathbb{Z}_2^\times$, $v^2, w^2 \equiv 1 (\text{mod } 4)$, which means $v^2 + w^2 \equiv 2 (\text{mod } 4)$, which is a contradiction.

Therefore, we may conclude that 2^nu is a sum of two squares in \mathbb{Z}_2 if and only if $u \equiv 1 (\text{mod } 4)$. □

Lemma 3.5. An element $u \in \mathbb{Z}_2$ is a square in \mathbb{Q}_2 if and only if $u \equiv 1 (\text{mod } 8)$.

Proof. First, for the forward direction, if $u \in \mathbb{Z}_2$ is a square then in \mathbb{Z}_8, $u \equiv 1, 3, 5, 7 (\text{mod } 8)$. The squares of the above units are $1, 9, 25, 49$ respectively, all of which are equivalent to $1 (\text{mod } 8)$, as required. Now, for the reverse direction, suppose that an element $u \in \mathbb{Z}_2$ is equivalent to $1 (\text{mod } 8)$. Consider the function $f(X) = X^2 - u$ and let $a = 1$. First, $|f(1)|_2 = |1 - u|_2$ and as $1 - u \equiv 0 (\text{mod } 8)$, we have $|1 - u|_2 \leq \frac{1}{8}$ and $|f'(1)|_2 = |2|_2 = \frac{1}{2}$ so, we can apply Theorem 1.18, to conclude that there exists a unique solution to $X^2 - u = 0$ in \mathbb{Z}_2 and u is therefore a square.

Lemma 3.6. A nonzero 2-adic integer 2^nu with $u \in \mathbb{Z}_2$ is a sum of two squares in \mathbb{Z}_2 if and only if $u \equiv 1 (\text{mod } 4)$.

Proof. We will break the above statement into two cases: either $u \equiv 1 (\text{mod } 4)$ or $u \equiv 3 (\text{mod } 4)$. These are the only cases to consider as $2 \nmid u$.

First, Case 1: if $u \equiv 1 (\text{mod } 4)$ then lifting to mod 8, $u \equiv 1 (\text{mod } 8)$ or $u \equiv 5 (\text{mod } 8)$. By Lemma 3.5, if $u \equiv 1 (\text{mod } 8)$ then $u = s^2 + 0^2$ for some $s \in \mathbb{Z}_2$. If $u \equiv 5 (\text{mod } 8)$ then $\frac{u}{5} \equiv 1 (\text{mod } 8)$ and we can again apply Lemma 3.5 to say that $\frac{u}{5} = s^2$ or some $s \in \mathbb{Z}_2$ so $u = 5s^2 = s^2 + (2s)^2$. As $2 = 1 + 1$, 2 is a sum of two squares, so by Lemma 2.5, 2^nu is a product of sums of two squares, and therefore a sum of two squares, as required.

Now, Case 2: suppose for the sake of contradiction that $u \equiv 3 (\text{mod } 4)$. Let $t = 2^nu$ in \mathbb{Q}_2 such that t is a sum of two squares. Then $u = \frac{t}{2}$ is a sum of two squares, by Lemma 3.5 and as $\frac{1}{2} = \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2$.

Let $u = x^2 + y^2$ for some $x, y \in \mathbb{Z}_2$. Then $u \equiv x^2 + y^2 (\text{mod } 4)$, which is a contradiction.

Therefore, x or $y \notin \mathbb{Z}_2$. Suppose, without loss of generality that $x \notin \mathbb{Z}_2$. Now, $y^2 = u - x^2$. As $u \in \mathbb{Z}_2^\times$, $v_2(u) = 0$ which means $|u|_2 = 1$. However, as $x \notin \mathbb{Z}_2^\times$, $|x|_2 > 1$ so $|x|_2 > 1$. By Lemma 1.6, $|y|_2 = |u - x^2|_2 = |x^2|_2 > 1$.

Let $|x|_2 = |y|_2 = 2^n$ for some $n \geq 1$. Then we can say $x = \frac{v}{2^n}$ and $y = \frac{w}{2^n}$ for some $v, w \in \mathbb{Z}_2$. Now, $v^2 + w^2 = 4^n(x^2 + y^2) = 4^n \equiv 0 (\text{mod } 4)$. At the same time, as $v, w \in \mathbb{Z}_2^\times$, $v^2, w^2 \equiv 1 (\text{mod } 4)$, which means $v^2 + w^2 \equiv 2 (\text{mod } 4)$, which is a contradiction.

Therefore, we may conclude that 2^nu is a sum of two squares in \mathbb{Z}_2 if and only if $u \equiv 1 (\text{mod } 4)$. □
Theorem 3.7. A nonzero integer is a sum of two squares in \(\mathbb{Z} \) if and only if it is a sum of two squares in \(\mathbb{R} \) and in \(\mathbb{Z}_p \) for every \(p \).

Proof. The forward direction is trivially true. For the reverse direction, assume that a nonzero integer \(m \) is a sum of two squares in \(\mathbb{R} \) and in every \(\mathbb{Z}_p \). Then if \(p \equiv 3 \pmod{4} \) by Lemma 3.4, \(v_p(m) \) is even. Therefore, \(m \) has even multiplicity by all prime factors \(p \equiv 3 \pmod{4} \) so Theorem 2.1 states that \(m \) is a sum of two squares in \(\mathbb{Z} \). \(\Box \)

Acknowledgments. It is a pleasure to thank my mentors, Peter Xu and Yun Cheng, for their instrumental encouragement, wisdom, and mathematical knowledge. I would also like to thank Peter May for his critical and helpful comments, and for his assistance in refining the language and formatting of this paper.

REFERENCES