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Abstract. Assuming a full course in real analysis and some basic functional
analysis, this paper examines the theory of the finite element method and its
implementation on curved boundaries. A review of the theory of the finite
element method on polyhedral domains is presented. Then we reveal the de-
ficiencies of the theory on domains with curved boundaries. Code exhibiting
these failures is provided. To remedy these deficiencies, we present and apply
the theory of isoparametric elements.
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1. Introduction

Although closed form solutions to partial differential equations (PDEs) do exist
in some cases, there are remarkably simple examples or remarkably important ex-
amples where no useful closed form solution exists. For example, Poisson’s equation
is widely used in engineering applications yet has no closed form solution (use of a
Green’s function is not a closed form solution) except in some specific cases. In the
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40s, 50s, and 60s computers enter the picture and mathematicians, scientists, and
engineers started to numerically solve these problems. One of the key methods that
was created is called the finite element method (FEM). By the 60s and 70s, the gen-
eral mathematical theory was provided for the FEM and software that implemented
the FEM became more readily accessible. However, in the same era, serious issues
were discovered when the method was applied to curved boundaries. Various solu-
tions were found to these issue in short order. For a more detailed history, see [11].
The objective of this paper will be to provide the theory behind FEM, demonstrate
the theory’s shortcomings on curved boundaries via computational and theoretical
examination, and then remedy the shortcomings.

As I aim to make the paper intelligible to someone who has only taken a year
long course in analysis, the first section will briefly introduce some concepts that
allow us to formulate the theory. These concepts essentially orbit around the idea
of Sobolev spaces. We provide few definitions and no proofs. Instead, we highlight
a few technical details and results that hugely influence the theory.

We now make a note about notations and conventions:

Notation 1.1. Unless otherwise stated, all of our domains are subsets of Rn. In
particular, Ω is such a domain. If we mention h, it is an element of (0, 1]. The
Jacobian and the Jacobian determinant are the same thing. If we state a problem,
we assume that it is well posed. We will not state p =∞ cases, but they do exist for
almost all results that have a p attached to them. Finally, when we define a space
of functions V on top of a set Ω, we mean that the functions in V have domain Ω

2. Background and Setting

The first idea that we need is that in PDE we often weaken our notion of what
a solution to a PDE is by weakening our notion of derivative.

Remark 2.1 (Weak Derivatives). In particular, we replace the notion of differentia-
bility with the notion of weak differentiability and then require that our solutions
satisfy our PDE with derivatives replaces by weak derivatives. Although we do not
define the weak derivative, we note that the weak derivative of a function does not
need to have pointwise values defined and is only unique up to sets of measure 0.
For example, the weak derivative of f(x) = |x| is f ′ on R\{0} and can be undefined
or take any value at 0.

If g(x) = −1 on (−1, 0) and 1 on (0, 1) and c0 at 0 then we know that g will
have a weak derivative on (0, 1) and (−1, 0), but not on (−1, 1). Thus, even if a
boundary has zero measure, we cannot easily stitch together sets where a function
has a weak derivative and still continue to have a weak derivative on the resulting
set.

With this notion in place, we can introduce the next idea, the Sobolev space.
When you are looking for solutions to a PDE in the weak sense, these are the spaces
where you look. We start by defining the Sobolev semi-norm and norm.

Definition 2.2 (Sobolev Norm). Suppose f : Ω → R. If for every multi-index,
α = (a1, . . . , an) with ai ∈ N and |α| :=

∑
ai = k, the weak partial derivative

Dα
wf := ∂f

∂x
a1
1 ···x

an
n

exists, then we say that the Sobolev semi-norm of order (k, p)
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on Ω is

(2.3) |f |k,p,Ω := (
∑
|α|=k

‖Dα
wf‖

p
p,Ω)

1
p where ‖·‖p,Ω is the Lp(Ω) norm.

If the same condition is repeated for all α such that |α| ≤ k then we say the Sobolev
norm of order (k, p) on Ω is

(2.4) ‖f‖k,p,Ω := (
k∑
j=0
|f |pj,p,Ω)

1
p .

We can now define our solution spaces.

Definition 2.5 (Sobolev Space). The Sobolev space on Ω of order (k, p) is the
set of all functions f : Ω → R such that ‖f‖k,p,Ω < ∞. If p = 2, then Wk,p,Ω is a
Hilbert space notated Hk,Ω.

With these spaces in place, we can now talk about the next idea, the weak for-
mulation of a PDE. An example of a PDE that has a weak formulation is Poisson’s
equation:

Problem 2.6 (Poisson’s). Fix a bounded domain Ω. Fix f, h ∈ L2(Ω) and g ∈ R.
Let Γ ⊂ ∂Ω. We wish to find u ∈ H2,Ω such that

−∆u = f on Ω
u = g on Γ ⊂ ∂Ω

∂u

∂n
= h on ∂Ω \ Γ.

(2.7)

In order to convert this PDE to its weak formulation, we need to make a defini-
tion.

Definition 2.8. A bounded bilinear functional on a Hilbert space H is coercive if
there is a γ > 0 such that for all u ∈ H, a(u, u) ≥ γ ‖u‖2H .

For our purposes, the weak formulation looks like this problem:

Problem 2.9. Fix a bounded domain Ω and a closed subspace V ⊂ H on top of
it. Fix a bounded linear functional G on V and a bounded bilinear functional a on
V ×V that is coercive on V . Then we want to find a u ∈ V such that for all w ∈ V

(2.10) a(u,w) = G(w)

We note that this is a simplified presentation; there are other things called a
weak formulation of a PDE, but we focus in on this particular type of problem. We
also note several things about this problem.

Remarks 2.11. First, typically H ⊆ Hr,Ω for some r. Second, via the Lax-Milgram
Theorem, a unique solution exists. Third, for Poisson’s problem with g = h = 0
and Γ = ∂Ω, we have that G(w) =

∫
Ω fw, a(u,w) =

∫
Ω∇u · ∇w, and

(2.12) V = {v ∈ H1,Ω : v |Γ= 0} .

This last item, the definition of V , is crucial to observe because it shows
that the boundary conditions on some PDE occasionally affect the defi-
nition of V . This observation plays a crucial role in our theory.
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We are almost read to begin the general theory, but we need three more facts to
grease the wheels. The first two free us from ever thinking about the definition of
weak derivative and the final one shows how we can sometimes recover Ck functions
from functions in Sobolev spaces. It is known as Sobolev’s Inequality. See [5]
(Chapter 5) for more information on these facts.

Proposition 2.13. (1) If a function is Ck then for all weak derivatives cor-
responding to multi-indices |α| ≤ k, the standard partial derivatives agree
with the weak ones.

(2) If Ω is a domain, then C∞(Ω) ∩Wk,p,Ω is dense in Wk,p,Ω.
(3) Fix a domain Ω ⊂ Rn with a Lipschitz boundary. Fix k,m ∈ N with m < k.

If p = 1 and k −m ≥ n or if 1 < p < ∞ and k −m > n/p then there is
some constant C such that for all u ∈ Wk,p,Ω, there is a Cm function in
the equivalence class of u and ‖u‖m,∞,Ω ≤ C ‖u‖k,p,Ω.

We now move to the general theory.

3. The General Theory

In this section we will develop the general theory of the finite element method.
The first thing that we do is introduce the finite element abstraction. The next idea
is that we reduce Problem 2.9 to a collection of finite dimensional problems using
a finite dimensional space indexed by h. We state the finite dimensional problem.

Problem 3.1. Fix a bounded domain Ωh and a finite dimensional Hilbert subspace
Vh ⊂ H on top of it. Fix a bounded linear function Gh on Vh and a bounded bilinear
functional ah on Vh × Vh that is coercive on Vh. Then we want to find a uh ∈ Vh
such that for all w ∈ Vh
(3.2) ah(uh, w) = Gh(w).

Since this problem is finite dimensional, we can use linear algebra to compute
a solution to the problem and show that it is well posed. This is exactly how the
method is used once you determine what Vh is. Solving it and representing Vh is
where most of the computer science happens.

The next idea is to estimate the error of ‖u− uh‖H . To do this, we mandate
relationships between Problem 2.9 and Problem 3.1 that allow us to reduce the
problem to estimating infv∈Vh

‖u− v‖H . The final stage is to develop a theory of
interpolation on top of our finite element abstractions in order to achieve a bound
of similar to ‖u− uh‖V ≤ Chr ‖u‖H .

For the purpose of this section, fix what is required to state Problem 2.9 with
the additional requirement that Ω is polyhedral.

3.1. Finite Elements. In this section, we almost build Vh by introducing finite
elements and the machinery around them. We start with finite elements.

Definition 3.3 (The Finite Element). Let
(1) K ⊂ Rn be a bounded closed set with nonempty interior and piecewise

smooth boundary,
(2) P be a finite dimensional space of functions on K, and
(3) N be a basis of the dual of P .

Then (K,P,N) is called a finite element.
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Now given some Ω, we wish to cover it with finite elements in a way that varies
with h. Thus, we need a notion of how to do this.

Definitions 3.4 (Families of Subdivisions and their properties). Given a domain
Ω, we say that

{
T h
}

is family of subdivisions indexed by h if for every h, any two
A,B ∈ T h have non intersecting interior and ∪T∈T hT = Ω. We say this collection
is good if

(3.5) max
{

diamT : T ∈ T h
}
≤ hdiam Ω

and regular if there is a ρ > 0 such that for all h and all T ∈ T h, we have that

(3.6) diamBT ≥ ρdiamT

where BT is the largest ball in T such that T is star-shaped with respect to BT .

Now, given an Ω divided up via a particular subdivision, we cover it with finite
elements by placing an element on top of every T such that each element on T is
just a copy of one particular element, called the reference element. Here is how we
copy.

Definition 3.7 (Affine Equivalence). We say that two elements (K,P,N) and
(KF , PF , NF ) are affine equivalent if there exists an affine invertible map F = Ax+b
so that

• F (K) = KF ,
• PF =

{
f ◦ F−1 : f ∈ P

}
, and

• NF = {f 7→ n(f ◦ F ) : n ∈ N}.

We note that this is an equivalence relation and almost enough to construct Vh.
However, we do not actually build Vh but rather build conditions related to the
above into our approximation and interpolation theory and then take advantage
of the added structure. In connection with the remaining required constraints and
the interpolation theory, we make more definitions.

Definition 3.8 (Local Interpolant and differentiation order). Let (K,P,N) be a
finite element. If m is the smallest integer so that N ⊂ (Cm(T ))′, then m is the
differentiation order of (K,P,N). Let {φn}n∈N be the basis of P dual to N . Then
the interpolant is a projection from Cm(K) to P defined by

(3.9) IKf =
∑
n∈N

φnn(f).

The idea of the interpolant can be extended and another future requirement on
our finite element based Vh emerges.

Definition 3.10 (Global Interpolant and Continuity Order). Given a domain Ω
and subdivision T where each T ∈ T belongs to a finite element (T, P,N) of
differentiation order m. Then the global interpolant is defined on f ∈ Cm(Ω) by

(3.11) IT f |K= IKf for all K ∈ T .

We say that the interpolant has continuity order r if r is the largest integer so that
IT (Cm(Ω)) ⊂ Cr(Ω).

Now we figure out how we turn estimating ‖u− uh‖ into a more tractable prob-
lem.
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3.2. Cea’s lemma. The first step in examining the error is the following simple
lemma and its corollary due to Jean Cea.

Lemma 3.12. Given problems Problem 2.9 and Problem 3.1 sharing the same
Hilbert super space H and a bounded operator f : Vh → V , there exists a constant
Ca > 0 such that

(3.13) ‖u− f(uh)‖H ≤ Ca inf
v∈f(Vh)

‖u− v‖H + Ca sup
w∈f(Vh)\{0}

|a(u− f(uh), w)|
‖w‖H

.

Proof. For any v ∈ f(Vh), we have that
‖u− f(uh)‖H ≤ ‖u− v‖H + ‖v − f(uh)‖H

≤ ‖u− v‖H + 1
γa

sup
w∈f(Vh)\{0}

|a(v − f(uh), w)|
‖w‖H

≤ ‖u− v‖H + 1
γa

sup
w∈f(Vh)\{0}

|a(v − u,w) + a(u− f(uh), w)|
‖w‖

≤ ‖u− v‖H + 1
γa

sup
w∈f(Vh)\{0}

|a(v − u,w)|
‖w‖H

+ sup
w∈f(Vh)\{0}

|a(u− f(uh), w)|
‖w‖H

≤ ‖u− v‖H + Ca
γa
‖u− v‖+ 1

γa
sup

w∈f(Vh)\{0}

|a(u− f(uh), w)|
‖w‖H

where the second line follows via Definition 2.8 and the last via the continuity of
a. �

We will revisit this later, but for now its corollary is our focus.

Corollary 3.14 (Cea’s Lemma). Given the conditions of Lemma 3.12 with ah =
a,Gh = G,Ωh = Ω, and Vh ⊂ V ⊂ H for all h ∈ (0, 1], we have
(3.15) ‖u− uh‖H ≤ Ca inf

v∈Vh

‖u− v‖H .

Proof. Since uh ∈ Vh ⊂ V , we have for any w ∈ Vh ⊂ V , a(u− uh, w) = a(u,w)−
a(uh, w) = G(w)−G(w) = 0. The result follows via Lemma 3.12 with f = Id. �

This result is essential as it introduces one of the most important constraints on
Vh. Via Remarks 2.11, this essentially requires that Vh inherit information about
the boundary or other well-posedness conditions of the PDE.

3.3. Polynomial Interpolation Theory. We now have turned estimating ‖u− uh‖H
into estimating infv∈Vh

‖u− v‖H . The goal of this section is to estimate a bound on
this quantity,

∥∥u− Ihu∥∥
H

where Ihu is a global interpolant for some subdivision in
a family indexed by h. As we do this, we are going to introduce more constraints
on Vh. In doing so, we are going to pull calculations back to the reference element
and so we note how Sobolev norms behave under affine maps.

Lemma 3.16. Let F (x) = Bx + b be an invertible affine map. If K is a bounded
closed set and F (K) = A then for all f ∈Wm,p,A, we have

(3.17) |f ◦ F |m,p,K ≤ Cm,n ‖B‖m |det(B)|−1/p|f |m,p,A
and
(3.18) |f |m,p,A ≤ Cm,n

∥∥B−1∥∥m |det(B)|
1
p |f ◦ F |m,p,K .
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We do not prove this, but we note the affine map is essential as it makes dealing
with the chain rule considerably easier. The next result proves our desired result
on a reference element.

Lemma 3.19. Suppose that (K,P,N) is a finite element of differentiation order
l. Suppose K is star shaped with respect to some ball, P contains all polynomials
of degree m− 1 on K, P ⊂Wm,∞,K . Further, suppose that p ∈ (1,∞) is such that
m− l − n/p > 0. Then for 0 ≤ i ≤ m and v ∈Wm,p,K , we have that

(3.20) |v − IKv|i,p,K ≤ Cm,n,K,‖IK̂‖(diamK)m−i |v|m,p,K

where K̂ is K under the affine map that divides every coordinate by 1
diamK .

Proof. We first prove the case where diamK = 1.
Via hypothesis, Proposition 2.13 (3) applies so that v has a Cl Representative.

Thus, IK is well defined as a map from Wm,p,K → Cl(K). Also, via staring at (3.9),
and using that K is bounded, we get that {φn}n∈N ⊂ P ⊂ Wm,∞,K ⊂ Wm,p,K so
that ‖IK‖m,p,K <∞.

Next via approximation theory that we have neglected, under the name of the
Bramble-Hilbert lemma (see [1]), K being bounded and star shaped with respect
to some ball provides a polynomial w of degree m− 1 on K. Via these polynomials
existing in P and IK being a projection, we get IKw = w. Then we compute:
‖v − Iv‖m,p,k ≤ ‖v − w‖m,p,K + ‖IK(w − u)‖m,p,K

≤ ‖v − w‖+
∥∥IK̂∥∥m,p,K ‖v − w‖m,∞,K (definition of operator norm)

≤ (1 +
∥∥IK̂∥∥m,p,K C) ‖u− w‖m,p,K (Proposition 2.13 (3))

≤ (1 +
∥∥IK̂∥∥m,p,K C ′)|v|m,p,K (Bramble-Hilbert)

which concludes the result with Cm,n,K,‖IK‖ = (1 +
∥∥IK̂∥∥C ′) after noting that

|u|i,p,k ≤ ‖u‖m,p,K and peeking at the statement of Bramble-Hilbert.
To complete the proof for diamK 6= 1, one uses Lemma 3.16 on (3.20) with the

map F sending K to K̂. The (diamK)m−i comes out of the differing powers of the
operator norms of F that appear due to the application of Lemma 3.16 on both
sides of (3.20). �

This lemma summarizes the result that we want on the reference element. We
now study how this result changes as we map into other elements via affine maps.

Lemma 3.21. Fix a reference element (K,P,N) satisfying the conditions of Lemma 3.19.
Suppose (KF , PF , NF ) is an affine equivalent element via affine map F (x) = Ax+b.
Then there is a continuous function χ(A) such that ‖IKF

‖m,p,KF
< C(K,P,N)χ(A)

Proof Sketch. Via the definition of affine equivalence of elements, we have

(3.22) IAf =
∑
n∈N

n(f ◦ F )(φn ◦ F−1).

To take the norm of this, you can examine the norms of n(f ◦ F ) and (φn ◦ F−1).
Applying Lemma 3.16 to both components and doing too much algebra allows one
to extract ‖f‖m,p,KF

, a constant dependent on N and P , and a sum involving
norms and determinants of A i.e a continuous function in A. �

With this in place, we can now extend Lemma 3.19 to an entire domain.
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Proposition 3.23. Suppose we have Ω a bounded polyhedral domain with a good
and regular family of subdivisions T h. Suppose there is a reference element (K,P,N)
satisfying the conditions of Lemma 3.19 so that for each T which is an element of
a subdivision, there is an element (T, PT , NT ) that is affine equivalent to (K,P,N).
Then there exists a constant C > 0 dependent on n,m, p, (K,P,N) and the family
T h such that for 0 ≤ s ≤ m

(3.24) (
∑
T∈T h

∥∥v − Ihv∥∥p
s,p,T

)
1
p ≤ Chm−s|v|m,p,Ω

for all v ∈Wm,p,Ω.

Proof. The proof is in two stages. First, we show the set of A ∈ GL(Rn) that we
use to make our F is compact. This is needed because our constant in Lemma 3.19
varies as we vary A in a manner that can be controlled via a continuous function.

We pick some T in some triangulation with an associated map F (x) = Ax + b.
Using the regularity conditions of the family of subdivisions (3.6) and the measure
preserving properties of affine maps, we get 0 < Cnρ

n ≤ µ(BT ) ≤ µ(T ) =
∫
T
dx =

|detA|
∫
K
≤ |detA|µ(K). From this, we infer that A ∈ {B : |detB| ≥ ε > 0}. This

set is closed. To trap the A in a bounded set, we note that WLOG we can assume
K is positioned so that there is a t0 such that {x :

∑
xi ≤ t0, xi ≥ 0} ⊂ K. From

this, we infer that b ∈ T and for all t ≤ t0, Atei + b ∈ T . Thus, ‖Atei‖ ≤ diam Ω
via (3.5). From this, we can conclude that there is a t1 > 0 such that Aij ≤ t1 for
all i, j. Thus, A ∈ {B : |detB| ≥ ε > 0, |Aij | ≤ t1}, a compact set.

With this, we can conclude that the set of constants Cm,n,K,‖IT̂‖ from Lemma 3.19
over all subdivisions in the family is bounded above by some Cm,n,p,K,T h = C. Via
Lemma 3.16, it is not hard to see that the conditions of Lemma 3.19 are preserved
under affine maps. Thus,

∑
T∈T h

∥∥v − Ihv∥∥p
s,p,T

≤
∑
T∈T h

Cp
m,n,K,‖IT̂‖

s∑
i=0

(diamT )p(m−i)|v|pm,p,T (Lemma 3.19)

≤
∑
G∈T h

Cp
m,n,K,‖IT̂‖

s∑
i=0

(hdiam Ω)p(m−i)|v|pm,p,T (3.5)

≤ Chp(m−s)
∑
G∈T h

|v|pm,p,G

With this, we conclude the result.
�

With this in place, we have the interpolation estimates that we need to conclude
our convergence theory.

3.4. Conclusion. We now have all material in place to state and prove our main
convergence result.

Theorem 3.25. Fixed a bounded polyhedral domain Ω. Fix problems Problem 2.9
and Problem 3.1 sharing the same a,G and Hilbert super space H = Hq,Ω. Suppose
Vh ⊂ V . Suppose that the conditions of Proposition 3.23 are so with a finite element
that has continuity order r and parameters m ≤ q, l, p = 2. Finally, suppose that
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if Ih is the global interpolant then Ih(V ) ⊂ Vh. Then for all 0 < h ≤ 1 and
0 ≤ s ≤ min (r + 1,m), we have
(3.26) ‖u− uh‖s,2,Ω ≤ Ch

m−s |u|m,2,Ω
where C depends on a, l,m, n, p, (K,P,N), and the family T h.

Proof. The conditions of Lemma 3.12 are met so ‖u− uh‖s,2,Ω ≤ infv∈Vh
‖u− v‖s,2,Ω.

Since u ∈ V , we know that Ihu ∈ Vh so we get ‖u− uh‖s,2,Ω ≤
∥∥u− Ihu∥∥

s,2,Ω.
Since we have continuity order at least r+ 1 ≥ s, we are justified in writing that∥∥u− Ihu∥∥

s,2,Ω = (
∑
T∈T h

∥∥v − Ihv∥∥p
s,p,T

)
1
p . To see why this is needed, consult

Remark 2.1 and note that via the definition of Sobolev Norm, we need the weak
derivatives to exist. Then, apply Proposition 3.23 to (

∑
T∈T h

∥∥v − Ihv∥∥p
s,p,T

)
1
p . �

We have completed the result. Note that Ih(V ) ⊂ Vh strongly characterized
Vh to the extent that in many practical applications Vh := Ih(V ). Now, we break
things.

4. The Crime of Solving PDEs on Curved Boundaries

Via computation and theory, we will show the failings of our current theory on
curved boundaries.

Example 4.1 (The Computational Example). Let’s start out with a version of
Poisson’s problem. Let Ω be the unit ball in 2 space. Let Γ be the empty set (the
pure natural condition). Let f = 4ex2+y2 (

x2 + y2 + 1
)
. Let h = 2ex2+y2 (

x2 + y2)
with V =

{
v ∈ H1,Ω :

∫
Ω v = 0

}
. We decide that we want to solve this manufac-

tured problem. Without an ability to divide up a unit circle into polyhedral subsets,
we settle for approximating a unit circle. In Code Snippet 7.1, we do this with the
help of FEnICS ( https://fenicsproject.org). (Figure 1).

Then we solve the problem on each approximation and to see if we are approach-
ing something, we graph the convergence of the L2 norm (Figure 2). However, if
we plot the solution, we discover that something is seriously wrong (Figure 3). And
in case you attribute this to the funky mesh, using a standard polyhedral approx-
imation with this software, we get the same result (Figure 4,Code Snippet 7.3).
We seem to converge to a solution, but it is certainly not the correct one. One can
manually verify that our solution is u(x, y) = ex

2+y2 +C for some constant C, using
that the unit normal on the boundary of the unit ball at (x, y) is (x, y). Thus, the
solution should appear to be a vertical translate of Figure 5. It is certainly not this.

The main error here is that the problem as computed does not even make sense.
Technically, the boundary conditions as calculated on the unit circle on our approx-
imation only apply on the points of the mesh that touch the unit circle, which is
measure zero of the entire boundary. Thus, we need to enforce the correct boundary
conditions on the problem. This is rather complicated in the software, but doable
(Code Snippet 7.2). We do so and it appears to converge (Figure 6). The solution
appears to have at least the right form (Figure 7). It has the correct shape and we
note that the distance between a point on the boundary and the center is correct
(u(0, 0) − u(1, 0) = e0 + C − e − C = 1 − e) where as this is not the case in the
previous attempt. An analysis of the semi-norm |·|1,2,Ω compared to the numerical
integration of the known solutions shows that this is the correct solution (See Code
Snippet 7.4 for an example numerical integration command and Code Snippet 7.2

https://fenicsproject.org
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for numerical integration of the approximate solution). Thus, with some trickery,
we were able to adopt our method, but we have no reason to think that this trick
should always work.

From all of this analysis, it seems that using our theory on curved boundaries
at the minimum requires some trickiness. There does not seem to be much hope
for the basic idea of solving the problem on a series of polyhedral domains that
approximate it unless we make some new theory. However, it turns out that the
basic idea is simply bad. To really get at why this fails even if we properly adjust the
boundary conditions to the approximation, we include a lucid theoretical example.

Example 4.2 (Theoretical Example or The Polygon Circle Paradox). We again
set Ω to be the unit disk. We fix a problem:

Problem 4.3 (Steklov Problem). Suppose f ∈ L2(Ω) then we wish to find u ∈ H4,Ω
such that

(4.4)
{

∆2u = f in Ω
u = ∆u− (1− σ)κ ∂u∂n = 0 on ∂Ω

where σ 6= 1 and κ is the curvature of the domain Ω.

If we then reformulate this problem on a sequence of polyhedral approximations
so that Pn → Ω in some sense and so that Pn ⊂ Ω, we note that the boundary
condition becomes u = ∆u = 0 because the curvature of a polyhedral domain is 0.
If we take a sequence of solutions to the problem phrased on Pn, they converge to
the problem on Ω with boundary conditions u = ∆u = 0. For more information on
this particular result, see the chapter on the polygon circle paradoxes in [6].

This shows that there is something fundamental about polyhedral domains that
makes them unsuited for approximating problems on curved domains. They are
particularly bad because they may actually appear to converge i.e they fail silently.
For more information on this problem and for some history, see [10],[6], and [11].

With all of this evidence, it is clear that we need to adapt our theory to curved
boundaries. Before doing so, we take a moment to view this problem in the context
of our general theory where no explicit mention of the boundary is made.

Remark 4.5 (Variational Crimes). To find the exact place where our theory fails
with regard to the above examples, we first consult Cea’s lemma and Remarks 2.11.
The second tells us that boundary conditions for PDEs are represented in the spaces
V of Problem 2.9 and Vh of Problem 3.1. Therefore, having differing boundary
conditions on the PDE on the polyhedral approximation amounts to Vh 6⊆ V ,
which is the failure of the main condition of Cea’s lemma.

We call the failure of Vh ⊂ V a variational crime. It can happen in a variety of
ways and these are covered in [1].

5. Isoparametric Finite Elements

In this section, we develop isoparametric finite elements and execute a repair of
our convergence theory. The interpolation theory will be easy to repair, but the
final result will involve new difficulties due to its criminality. We will present a
worked case in the end, a version of Problem 2.6.
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5.1. Definition and Examples. The essential idea of the definition of isopara-
metric elements is that we still intend to use a nice reference element (K,P,N)
so that we can use Lemma 3.19, but we create new elements with sufficiently nice
bijections rather than affine maps as the use of affine maps restrains the shapes of
our elements.

Definition 5.1 (Isoparametric Finite Elements). Given a finite element (K,P,N)
of differentiation order l and a Cl injection F on K with non-vanishing Jacobian,
we define a isoparametric element of order l as a finite element (KF , PF , NF ) where

• KF = F (K),
• PF =

{
p ◦ F−1 : p ∈ P

}
, and

• NF = {f 7→ n(f ◦ F ) : n ∈ N}.
Any element that can be made in this manner from another element (K,P,N) is
isoparametrically equivalent to (K,P,N).

We comment on obvious issues.

Remark 5.2. Note that via the chain rule, we know that f 7→ n(f ◦ F ) for f ∈
Cl(F (K)) is well defined. We note that F−1 exists and is of Cl(F (K)) via the
inverse function theorem.

We now show how one can easily attempt to manufacture examples and then
craft an example of our own.

Construction 5.3 (How to Try to Make an Isoparametric Element). Suppose we
have a finite element (K,P,N) where K is defined by some collection of vertices
{ai}mi=1 (e.g. it is a simplex) and N = {f → f(ai)}mi=1. Suppose there is some
other collection of points {ci}mi=1 and we would like them to be “vertices” of a
curved version of K. Then, it turns out that a good option for F is to define each
component for i = 1, . . . , n by

(5.4) Fi =
m∑
j=1

φjcji.

Via the definition of P and N , we get nj(Fi) = cji so cj = (nj(F1), . . . , nj(Fn)) =
F (aj). The map is clearly C∞. Verifying that this map is one to one with non-
vanishing Jacobian is more complicated as there is no clear way to do so, but people
have for certain choices of K proven simple tests such as only checking that the
Jacobian does not vanish at any vertices. (See [4],[3]).

This idea can be expanded to more complicated elements (such as differentiation
order 1 elements as in [4]), but more generally when the maps in N are some form
of evaluation (at a point, of the directional derivative at a point, etc) trying to craft
maps such that nj(Fi) = cji is the idea.

We now implement the above construction via code, taking a moment to allude
to more software.

Examples 5.5. Let’s fix n = 2 and imagine a right triangle (Figure 8). We make
N evaluation at (1, 0), (0, 1), (0, 0), ( 1

2 ,
1
2 ), (0, 1

2 ), and ( 1
2 , 0) We let P be polynomials

in two variables of degree less than or equal to 2. The corresponding basis dual to
N of P is x(2x− 1), y(2y− 1), (1−x− y)(2(1−x− y)− 1), 4xy, 4y(1−x− y), and
4x(1 − x − y). We implement Construction 5.3 via some matrix multiplication in
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Code Snippet 7.5. You can play around with the result in Mathematica by changing
the ci, but we include a sample output in Figure 9.

Now, generating these polynomials to carry out Code Snippet 7.5 is rather annoy-
ing. Thankfully, there is software (in this case Firedrake (firedrakeproject.org)
and FIAT (https://fenics.readthedocs.io/projects/fiat/en/latest/), the
FInite element Automatic Tabulator) that given the names of several types of finite
elements, (K,P,N), will generate P and N for you. Thus, it is possible to automate
the process carried out in the last paragraph. Towards that aim, we provide Code
Snippet 7.6. This code shows how given an integer d corresponding to the degree of
the polynomials and a matrix a of points in R2, one could automatically generate
the coordinates of the map F just as in Code Snippet 7.5.

We now revise our old theory, starting with the interpolation theory.

5.2. The New Interpolation Theory. We look back at the old theory and see
what needs to change. We can still use Lemma 3.19. However, since we have lost
affine maps, we cannot use Lemma 3.21. We proved Lemma 3.21 via Lemma 3.16,
which also relies on the use of an affine map. Thus, our first goal in repairing the
interpolation theory is a new version of Lemma 3.16. We start with a technical
lemma.

Lemma 5.6. Suppose f : U → V and g : V → Z are both maps from Rn → Rn
that are both m times continuously differentiable. Further suppose f is a bijection.
For any point a ∈ U , the map h = g ◦ f satisfies

(5.7) ‖Dmh(a)‖ ≤ Cm
m∑
l=1

∥∥Dlg(f(a))
∥∥ (
∑
i∈Im,l

l∏
j=1

∥∥Djf(a)
∥∥ij )

where ‖·‖ is the operator norm on the appropriate space of multi-linear functions
and Im,l is a finite set of multi-indices that we elide.

Proof. Take any vector x ∈ Rn and denote (x)m = (x, . . . , x). Via section 7 of [2],

(5.8) Dmh(a) · (x)m = m!
m∑
l=1

∑
j∈Jm,l

1
l!D

lg(f(a)) · ×lk=1
1
jk!D

jkf(a) · (x)jk

where Jm,l is some other finite set of multi-indices that we elide. We take the
sup over all vectors ‖x‖ ≤ 1, apply the properties of norms, and then magically
reorganize terms:

sup
‖x‖≤1

‖Dmh(a) · (x)m‖ ≤ m!
m∑
l=1

1
l!
∥∥Dlg(f(a))

∥∥∑
j∈I

Cj

l∏
k=1

∥∥Dkf(a)
∥∥jk

≤ Cm
m∑
l=1

∥∥Dlg(f(a))
∥∥ ∑
i∈Im,l

l∏
k=1

∥∥Dkf(a)
∥∥jk

.

The result follows via noting that ‖Dmh(a)‖ = sup‖x‖≤1 ‖Dmh(a) · (x)m‖ when
h ∈ Cm because then Dmh is a symmetric multi-linear operator via [9]. �

From this we prove the desired replacement of Lemma 3.16.

firedrakeproject.org
https://fenics.readthedocs.io/projects/fiat/en/latest/
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Lemma 5.9. Assume the conditions of Lemma 5.6 only instead of g ∈ Cm(V ), we
have g ∈Wm,p,V for 1 ≤ p <∞ and that the Jacobian of f does not vanish. Then,

(5.10) |h|pm,p,U ≤ Cm,pχm,p(‖f‖m,∞,U )
∥∥∥det J−1

f

∥∥∥p
∞
‖g‖pm,p,V

where χm,p(a) is the max of ap and amp.

Proof. Via continuity of norms and Proposition 2.13, it is sufficient to prove this
for g ∈ C∞(V ). We note that ‖Dmh(a)‖ is larger than the largest of the order m
partial derivatives at the point a. Thus, for some constant dependent on m, we
have

(5.11) |h|pm,p,U ≤ Cm
∫
U

| ‖Dmh(x)‖ |p.

Since
∥∥Djf(a)

∥∥ is less than the sum of the absolute values of all j order partial
derivative at a and since this in turn is less than the number of such derivatives
times the largest single such derivative at a, we get that

(
∑
i∈Im,l

l∏
j=1

∥∥Djf(a)
∥∥ij ) ≤ (

∑
i∈Im,l

l∏
j=1

Cmj |f |
ij
j,∞,U )

≤ (
∑
i∈Im,l

l∏
j=1

Cmj ‖f‖
ij
m,∞,U )

≤ (
∑
i∈Im,l

Ci ‖f‖lm,∞,U )

≤ Cm,l ‖f‖lm,∞,U
We also used that for i ∈ Im,l,

∑
ik = l. We combine all of this to complete the

proof, starting with an application of Lemma 5.6:

|h|pm,p,U ≤
∫
U

|Cm
m∑
l=1

∥∥Dlg(f(a))
∥∥ (
∑
i∈Im,l

m∏
j=1

∥∥Djf(a)
∥∥ij )|p

≤
∫
U

|Cm
m∑
l=1

∥∥Dlg(f(a))
∥∥Cm,l ‖f‖lm,∞,U |p

≤ Cm,p max ‖f‖pm,∞,U , ‖f‖
mp
m,∞,U

∫
U

|
m∑
l=1

∥∥Dlg(f(a))
∥∥ |p

≤ C ′m,p max (‖f‖pm,∞,U , ‖f‖
mp
m,∞,U )

∥∥∥det J−1
f

∥∥∥
∞
‖g‖pm,p,V .

We note that we use that (a+ b)p ≤ 2p−1(ap + bp) for a, b ≥ 0 and p ≥ 1. We also
reused a property of the operator norm of the derivative at a point and change of
variables. �

We can now repair our convergence theory. With this lemma, a new version of
Lemma 3.21 follows easily, but we note the continuous function will be dependent on
derivatives of F and F−1 as well as the Jacobians of these maps. Consequently, the
compactness result at the heart of Proposition 3.23 cannot be replicated. Instead,
to replicate Proposition 3.23, we simply add in new conditions.
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Proposition 5.12. Assume the conditions of Proposition 3.23 but replace affine
equivalence with isoparametric equivalence. Further, require that there are some
C, c > 0 such that for every map F from the reference element to isoparametric
element we have that

• ‖F‖m,∞,K < C,
•
∥∥F−1

∥∥
m,∞,F (K) < C,

• c <
∥∥∥det J−1

f

∥∥∥
∞
< C, and

• c < ‖det Jf‖∞ < C.
Then the result of Proposition 3.23 holds.

The proof is the same only the compactness result is replaced with an application
of the new bounds to constrain the continuous function introduced in Lemma 5.9.
From this, an obvious replacement of Theorem 3.25 occurs where the conditions of
Proposition 3.23 are replaced with those of Proposition 5.12,but we can drop the
requirement that the domain is polyhedral. With this result in place, we note that
it is unsatisfactory.
Remark 5.13. The essential issue with the proposed revisions to Proposition 3.23 is
a practical one in two senses. First, we wish to apply our theory to various domains.
How do we know that we can subdivide them into sets that are all isoparametric
equivalent to one particular set? Second, via Definition 5.1, if we wish to find the
polynomial basis on top of each subdivision, we need to know something about F−1.
So, assuming the maps exist, how do we find them? These two issues indicate that
our current theory of isoparametric elements is insufficient and we need to revise it
for it to be useful.

We tweak our problem. Since it is impractical to exactly approximate Ω, we
adopt a new scheme. We state a new family of problems on a family of polyhedral
approximations to Ω and then lift this to a family of problems on a family of curved
approximations of Ω.
Problem 5.14. Fix a natural k. Fix a bounded Lipschitz domain Ω. Suppose Ωh
is a sequence of inner polyhedral approximations to Ω. Suppose we have a family
of finite dimensional Hilbert sub-spaces Wh ⊂ H on each Ωh. For each h, fix a map
Fh : Ωh → F (Ωh) that satisfies the following properties:

(1) each map Fh is k times weak differentiable;
(2) each map Fh is one to one;
(3) component-wise each map Fh is a piece-wise polynomial map of degree

k − 1;
(4) there are positive C and c so that for all h,

∥∥Fh∥∥
k,∞,Ωh

< C,
∥∥(Fh)−1

∥∥
k,∞,Ωh

<

C, and |detD1Fh(x)| ∈ [c, C];
(5) for each h, Fh = I outside of Ωh;
(6) the distance from a point on ∂Ω to the closet point on ∂Fh(Ωh) is O(hk).

Define Vh :=
{
v ◦ (Fh)−1 : v ∈Wh

}
and suppose it is a Hilbert space. Fix for

each h a bounded linear functional Gh on Vh and a bounded bilinear coercive
functional ah on Vh. For each h, we wish to find uh ∈ Vh such that for all w ∈ Vh
(5.15) Gh(w) = ah(uh, w).

We must point out a number of things about this problem.
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Remarks 5.16. First, we mandate a Lipschitz domain so that we may apply a certain
Sobolev extension theorem to elements of H so that they are defined on Fh(Ωh)
as we do not require that Fh(Ωh) ⊆ Ω. Second, we note that the properties of the
map Fh ensure that Vh is a Sobolev space of the same order as Wh. Third, we note
that the final two properties tell us that Fh(Ωh) approximates Ω and its boundary
well. They do not matter for interpolation on Fh(Ωh), but tell us that this is a
sane thing to do. They will matter later on. Finally, we note that Vh is called
the isoparametric finite element space and by chopping up Ωh into finite elements,
one can view Vh on top of Fh(Ωh) as a collection of isoparametrically equivalent
elements.

With this in place, we can create the final isoparametric polynomial approxima-
tion proposition.
Proposition 5.17. Fix a problem Problem 5.14 with some k. Suppose for each
Ωh there is a triangulation T h so that the induced family over all h is good and
regular. Let (K,P,N) be a continuity order 0 and differentiation order l reference
element satisfying the conditions of Lemma 3.19 with m := k,l and some p. Further,
suppose that each triangle in the family has an associated finite element that is affine
equivalent to (K,P,N). Then there is a positive constant not dependent on h such
that for 0 ≤ s ≤ 1 and v ∈Wm,p,Ω, we have that
(5.18)

∥∥v − Ihv∥∥
s,p,Fh(Ωh) ≤ Ch

m−s |v|m,p,Fh(Ωh)

where (Ihv)(Fh(x)) := IWh(v ◦ Fh)(x) for x ∈ Ωh.
Proof Sketch. Via an extension result, we can view v as being defined on Fh(Ωh).
Via property (4) of the map Fh, change of variables, and the chain rule, this
gets us

∥∥v − Ihv∥∥
s,p,Fh(Ωh) ≤ C ′

∥∥v ◦ Fh − IWh(v ◦ Fh)
∥∥
s,p,Ωh

. Here, we can ap-
ply with a bit of modification Proposition 5.17 to find that

∥∥v − Ihv∥∥
s,p,Fh(Ωh) ≤

Chm−s
∣∣v ◦ Fh∣∣

m,p,Ωh
. Apply Lemma 5.9 and use property 4 to get the desired

result.
�

With this result in place, we now turn to the replication of Theorem 3.25.

5.3. Acquittal. Suppose that we have Problem 2.9 fixed and an associated Prob-
lem 5.14. We have no reason to suspect that Vh ⊂ V even if we required that
Wh ⊂ V . Even though Fh may map a boundary to a boundary, since Fh(Ωh)
might have a boundary outside of Ω, we cannot be sure that the boundary condi-
tions enforced in V or Wh are passed on to Vh. The lessons of the previous section
tell us that this is criminal and that we must not use Corollary 3.14. Instead we
use Lemma 3.12 and introduce additional assumptions to bound the extra term.
Assumption 5.19. Suppose that we have Problem 2.9 and an associated Prob-
lem 5.14 with k ∈ N. We assume four things:

(1) There is a k diffeomorphism Φh : Ω → Fh(Ωh) whose partials, Jacobian,
and inverse Jacobian satisfy the same properties as Fh such that for all h,
v 7→ v ◦ Φh is bounded operator Vh → V and v 7→ v ◦ (Φh)−1 is a bounded
operator from V → Vh. We denote these bounded operators by v → v̂ and
v → v̌. We also assume that

(5.20)
∥∥DΦh − I

∥∥
∞,Ω = O(hk−1).
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(2) For all f, g ∈ Vh,

(5.21)
∣∣∣ah(f, g)− a(f̂ , ĝ)

∣∣∣ ≤ Ca(hk−1)
∥∥∥f̂∥∥∥

H
‖ĝ‖H .

(3) For all g ∈ Vh,

(5.22) |F (ĝ)−Gh(g)| ≤ CG(hk−1) ‖ĝ‖H .

(4) This could be several items. The needed one is that ‖ûh‖H ≤ C ‖u‖H
with C independent of h, but it could be phrased as the convergence or
boundedness of the sequence uh in H.

With this assumption, the reader is probably pulling their hair and wondering

Remark 5.23 ( where are these maps coming from?). We have essentially summoned
from nowhere maps Fh and Φh that are crucial to our solutions to the problem.
Where do they come from? The answer is that it is all due to [8]. This is not
particularly satisfying, but the details are actually quite nasty and explicating them
in any useful way is another paper’s job. We should also note that we only have
these maps in n = 2 or n = 3, but these are where most practical applications
happen so this is okay.

We now state and prove the final theorem.

Theorem 5.24. Fix a bounded domain Ω with a Lipschitz boundary. Fix prob-
lems Problem 2.9 and Problem 5.14 that together satisfy Assumption 5.19 with a
Hilbert super space H := Hq,ω and k := q + 1. Suppose that the conditions of
Proposition 5.17 are meet with a finite element that has continuity order r = 0 and
parameters m ≤ q, l, p = 2. Finally, suppose that if Ih is the global interpolant then
Ih(V ) ⊂ Vh. Then for all 0 < h ≤ 1 and 0 ≤ s ≤ min (r + 1,m), we have

(5.25) ‖u− ûh‖s,2,Ω ≤ Ch
m−s ‖u‖m,2,Ω

where C does not depend on h.

Proof. We apply Lemma 3.12 with f(v) = v ◦ Φh:

(5.26) ‖u− ûh‖s,2,Ω ≤ Ca inf
v∈Vh

‖u− v̂‖s,2,Ω + Ca sup
w∈Vh\{0}

|a(u− ûh, ŵ)|
‖ŵ‖s,2,Ω

.

Bounding the first term here is the same as in Theorem 3.25, but we use Propo-
sition 5.17 and liberally apply our assumptions on Φh along with the chain rule and
change of variables:

inf
v∈Vh

‖u− v̂‖s,2,Ω ≤ C inf
v∈Vh

‖ǔ− v‖s,2,Fh(Ωh)

≤ C
∥∥ǔ− Ihǔ∥∥

m,s,Fh(Ωh) ≤ Ch
m−s ‖ǔ‖m,s,Fh(Ωh) ≤ Ch

m−s ‖u‖m,s,Ω .

Here C does change from step to step, but no dependence on h is introduced.
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Then we note that via the definition of the problems ((5.15) and (2.10)) and
then via our assumptions, we have

|a(u− ûh, ŵ)| = |G(ŵ)− a(ûh, ŵ)|
= |G(ŵ)−Gh(w) + ah(uh, w)− a(ûh, ŵ)|
≤ |G(ŵ)−Gh(w)|+ |ah(uh, w)− a(ûh, ŵ)|
≤ Ca,Ghk−1(1 + ‖ûh‖s,2,Ω) ‖ŵ‖s,2,Ω (2) and (3)

≤ C ′a,Ghk−1(1 + ‖u‖s,2,Ω) ‖ŵ‖s,2,Ω (4)

Combine these two results with (5.26) and the result follows. �

This is the final result, but you might not believe Assumption 5.19 is realistic.
Thus, we verify it for Problem 2.6.

Proposition 5.27. Set Problem 2.6 as problem Problem 2.9 with Γ = ∂Ω, H :=
H1,Ω, and V := {v ∈ H : v |∂Ω= 0}. We have G(v) =

∫
Ω fv and a(u, v) =

∫
Ω∇u ·

∇v. Set Gh(v) =
∫
Fh(Ωh) fv and ah(u, v) =

∫
Fh(Ωh)∇u · ∇v for Problem 5.14 with

the map Fh supplied via [8]. Let Wh = {v |Ωh
: v ∈ H, v |∂Ωh

= 0} . Then we can
verify Assumption 5.19.

Proof. (1) The existence of the map Fh follows via [8] in the case n = 2 or
n = 3. We ignore the other cases. The boundedness of the defined operators
follows from the properties of the map and Lemma 5.9. The mapping from
V → Vh is clear by the boundedness of the operator. The mapping from
Vh → V follows because the continuity of Φh and continuity of the inverse
of Φh ensures that boundaries are mapped to boundaries.

(2) Via change of variables and then the chain rule, we have that

(5.28) ah(f, g) =
∫

Ω

∣∣detDΦh
∣∣∇f̂(DΦh)−1 · ∇ĝ(DΦh)−1.

and

(5.29) a(f̂ , ĝ) =
∫

Ω
∇f̂ · ∇ĝ.

Then write

ah(f, g)− a(f̂ , ĝ) =
∫

Ω
|detDΦh| ∇f̂(DΦh)−1 · ∇ĝ(DΦh)−1 −

∫
Ω
∇f̂ · ∇ĝ

=
∫

Ω
|detDΦh| ∇f̂((DΦh)−1 − I) · ∇ĝ(DΦh)−1

+
∫

Ω
∇f̂ · ∇(ĝ(DΦh)−1 |detDΦh|)−

∫
Ω
∇f̂ · ∇ĝ

=
∫

Ω
|detDΦh| ∇f̂((DΦh)−1 − I) · ∇ĝ(DΦh)−1

+
∫

Ω
∇f̂ · ∇(ĝ(

∣∣detDΦh
∣∣ (DΦh)−1 − I)).

Using bounds on the uniform bounds above and below
∣∣detDΦh

∣∣, (5.20),
and continuity of inversion, the result follows.
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(3) This is similar. We we write G(ŵ) = (f, ŵ) and G(w) = (f, w)h. We use
change of variables, (5.20), the continuity of det, and Holder’s inequality:

|(f, ŵ)− (f, w)h| = |
∫

Ω
(f(x)− f̂(x))|det JΦh

|(x)ŵ(x)|

≤ |
∫

Ω
(f(x)− f̂(x))|det JΦh

|(x)ŵ(x) + fŵ − fŵ|

≤ |
∫

Ω
fŵ(|det JΦh

| − 1)|+ |
∫

Ω
fŵ − f̂ ŵ|det JΦh

||

≤ Chk−1 ‖f‖1,2,Ω ‖ŵ‖1,2,Ω + ‖f‖1,∞,Ω
∫

Ω
|(|det JΦh

| − 1)ŵ

≤ Chk−1 ‖f‖1,2,Ω ‖ŵ‖1,2,Ω + ‖f‖1,∞,Ω C
∫

Ω
hkŵ

≤ Chk−1 ‖f‖1,2,Ω ‖ŵ‖1,2,Ω + C ′ ‖f‖1,∞,Ω h
k ‖ŵ‖1,2,Ω

≤ CGhk−1 ‖ŵ‖1,2,Ω .

(4) We skip this item because it involves machinery that has not been devel-
oped. One would also typically use techniques that rely more closely on a
choice of Ωh and the last two properties of Fh. See [11] and [8] for an exam-
ple of how this might be done. Another example lies in the recommended
passages for [6]

�

6. Acknowledgments

I’m thankful for the support, bemusement, and banter of my mentors: Claudio
Gonzales and Eric Stubley. I’m particularly thankful for their willingness to put
confidence in me and follow me into a topic outside their defined areas of interest.
Many of the results and proofs of this book are elaborations on or combinations of
proofs from [1],[3],[4],and [8]. Of these, [1] is the most deserving of praise. I also
enjoyed the material in [7],[11], and [10]. I would also like to thank all the faculty
involved in the REU. In particular, I would like to thank Professor Peter May for
envisioning, creating, organizing, and hosting the REU.

References
[1] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite Element

Methods. Springer.
[2] Henri Cartan. Differential Calculus.
[3] Philippe G. Ciarlet. The Finite Element Method for Elliptic Problems.
[4] Philippe G. Ciarlet and Pierre-Arnaud Raviart. Interpolation Theory over Curved Elements,

with Applications to Finite Element Methods.
[5] Lawrence C Evans. Partial Differential Equations.
[6] Fillippo Gazzola, Hans-Chirstoph Grunau, and Guido Sweers. Polyharmonic Boundary Value

Problems: Positivity Preserving and Nonlinear Higher Order Elliptic Equations in Bounded
Domains.

[7] Thomas J. R. Hughes. The Finite Element Method Linear Static and Dynamic Finite Ele-
ment Analysis.

[8] Marc Lenoir. Optimal Isoparamametric Finite Elements and Error Estimates For Domains
involving Curved Boundaries.

[9] T. Muramatu and S. Wakabayashi. On the norms of a symmetric multilinear form.



THE FINITE ELEMENT METHOD AND CURVED BOUNDARIES 19

[10] H. Chongo Rhee and Satya N. Atluri. Polygon-Circle Paradox in the Finite Element Analysis
of Bending of a Simply Supported Plate.

[11] L. Ridgway Scott. Finite Element Techniques for Curved Boundaries.

7. Appendix

7.1. Code and Commentary.

Code Snippet 7.1. This snippet presents python and FEniCS code that solves Pois-
son’s equation on series of polyhedral approximations. Since the boundary condi-
tion is natural, some work is done to ensure uniqueness via a Lagrange multiplier
like scheme.

import math
from dolfin import *
import mshr
import numpy as np
import matplotlib.pyplot as plt
parameters["form_compiler"]["cpp_optimize"] = True
parameters["form_compiler"]["optimize"] = True
parameters["ghost_mode"] = "shared_facet"

results = []

#define the mesh points
def meshPoints(n):

return((map(lambda x: Point(np.array((math.cos(2.0*math.pi*float
↪→ (x)/n),(math.sin(2.0*math.pi*float(x)/n))))), range(0,n)))
↪→ )

n = 500
for q in range(4,n):

mp = (meshPoints(q))
dom = mshr.Polygon(mp)
mesh = mshr.generate_mesh(dom,1)
#generate and plot mesh
if q % 50== 0 or q < 8:

plot(mesh,interactive=True)

# Create mesh and define function space
P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
R = FiniteElement("Real", mesh.ufl_cell(), 0)
V = FunctionSpace(mesh, P1 * R) #use lagrange to make problem

↪→ unique

# Define variational problem
(u, c) = TrialFunction(V)
(v, d) = TestFunctions(V)
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f = Expression("0-4*exp(x[0]*x[0]+x[1]*x[1])*(x[0]*x[0]+x[1]*x
↪→ [1]+1)",element=P1)

h = Expression("2*exp(0)",element=P1)
a = (inner(grad(u), grad(v)) + c*v + u*d)*dx
L = f*v*dx + h*v*ds

# Compute solution
if q % 1 == 0:

w = Function(V)
solve(a == L, w)
(u, c) = w.split()
eq = norm(u,"L2")
print("On {0} mesh points the norm is: {1}".format(q,eq))
a = mp[3]
print(abs(u(0,0)-u(a)))
results.append(eq)
if q % 250 == 0:

file = File("poisson.pvd")
file << u
# Plot solution
plot(u, interactive=True)
plot(mesh,interactive=True)

# Save solution in VTK format
if q == -10:

file = File("poisson.pvd")
file << u
# Plot solution
plot(u, interactive=True)

x = range(4,n)
plt.plot(x,results)
plt.savefig("pois1l2.png")

Code Snippet 7.2. This snippet presents python and FEniCS code that solves Pois-
son’s equation on series of polyhedral approximations. Unlike the previous code
however, this code takes into account the correct boundary conditions on the ap-
proximation.

# Begin demo
import math
from dolfin import *
import mshr
import numpy as np
import matplotlib.pyplot as plt
import math
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parameters["form_compiler"]["cpp_optimize"] = True
parameters["form_compiler"]["optimize"] = True
parameters["ghost_mode"] = "shared_facet"
# Define Dirichlet boundary x < 0
def boundary(x,on_boundary):

return on_boundary
results = []

def meshPoints(n):
return((map(lambda x: Point(np.array((math.cos(2.0*math.pi*float

↪→ (x)/n),(math.sin(2.0*math.pi*float(x)/n))))), range(0,n)))
↪→ )

n = 500
meh = range(4,n)
for q in meh:

mp = (meshPoints(q))
dom = mshr.Polygon(mp)
mesh = mshr.generate_mesh(dom,1)
#operation to make sure that we compute the correct boundary

↪→ conditions
class MyExpression0(Expression):

def eval(self, value, x2):
x1 = list(x2)
x = x1[0]
y = x1[1]

p = Point(np.array((x,y)))
minlist = np.array(map(lambda x: p.distance(x),mp))
minids = minlist.argsort()[-2:]
p1 = mp[minids[0]]
p2 = mp[minids[1]]
nx = 0.5*(p1.x()+p2.x())
ny = 0.5*(p1.y()+p2.y())

res = 0-2*(math.e**(x**2 + y**2))*(nx*x+ny*y)
value[0]=res

def value_shape(self):
return (1,)

# Create mesh and define function space
# mesh2 = UnitSquareMesh(64, 64)
P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 3)
R = FiniteElement("Real", mesh.ufl_cell(), 0)
V = FunctionSpace(mesh, P1 * R)
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# Define variational problem
(u, c) = TrialFunction(V)
(v, d) = TestFunctions(V)
f = Expression("-4*exp(x[0]*x[0]+x[1]*x[1])*(x[0]*x[0]+x[1]*x

↪→ [1]+1)",element=P1)
#h = Expression("2*exp(0)",element=P1)
h = MyExpression0(element=P1)
a = (inner(grad(u), grad(v)) + c*v + u*d)*dx
L = f*v*dx + h*v*ds

# Compute solution
if q % 1 == 0:

w = Function(V)
solve(a == L, w)
(u, c) = w.split()
eq = norm(u,"H10") #nuermical integration of approximate

↪→ solution
print("On {0} mesh points the norm is: {1}".format(q,eq))
a = mp[3]
print("The value at (0,0) is {0}".format(u((0,0))))
print("The value at a is {0}".format(u(a)))
print("The error between the two is {0} and should be {1}".

↪→ format(abs(u(0,0)-u(a)),abs(1-math.e)))
results.append(eq)
#print(c(0,0))
#print(u(0,0))
#plot(u,interactive=True)
if q % 250 == 0:

file = File("poisson.pvd")
file << u
# Plot solution
plot(u, interactive=True)
plot(mesh,interactive=True)

#actualu = Expression("exp(x[0]*x[1]*x[0]*x[1])-exp(1)",element=
↪→ V.ufl_element())

#Iu = interpolate(actualu,V)
#eq = norm(u,"H1")
#print("On {0} mesh points the correct norm is: {1}".format(q,eq

↪→ ))

# Save solution in VTK format
if q == -10:

file = File("poisson.pvd")
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file << u
# Plot solution
plot(u, interactive=True)

x = range(4,n)
plt.plot(x,results)
plt.savefig("ploth22.png")

Code Snippet 7.3. The solution for our Poisson’s equation on the recommended
circle approximation.

import math
from dolfin import *
import mshr
import numpy as np
parameters["form_compiler"]["cpp_optimize"] = True
parameters["form_compiler"]["optimize"] = True
parameters["ghost_mode"] = "shared_facet"

domain = mshr.Circle(Point(0.,0.),1.0,120)
mesh = mshr.generate_mesh(domain, 120, "cgal")

# Build function space with Lagrange multiplier
P1 = FiniteElement("Lagrange", mesh.ufl_cell(), 1)
R = FiniteElement("Real", mesh.ufl_cell(), 0)
W = FunctionSpace(mesh, P1 * R)

# Define variational problem
(u, c) = TrialFunction(W)
(v, d) = TestFunctions(W)
f = Expression("0-4*exp(x[0]*x[0]+x[1]*x[1])*(x[0]*x[0]+x[1]*x[1]+1)

↪→ ",element=P1)
g = Expression("2*exp(0)",element=P1)
a = (inner(grad(u), grad(v)) + c*v + u*d)*dx
L = f*v*dx + g*v*ds

# Compute solution
w = Function(W)
solve(a == L, w)
(u, c) = w.split()

# Plot solution
plot(u, interactive=True)
plot(mesh,interactive=True)

Code Snippet 7.4. This shows the bit of Mathematica code used to numerically in-
tegrate the derivatives. We tested the derivatives because they would be unaffected
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by an unknown additive constants that the nature of the problem added to the
solution.

NIntegrate[((2*y*Exp[xˆ2 + yˆ2]))ˆ2, {x, y} \in Disk[{0, 0}, 1]]

Code Snippet 7.5. We first do some matrix multiplication to define the map F
via a multiplication of C (whose columns are the points ci ) and p ( a vector of
polynomials that is a basis for P ). Then we plot the image of K. By changing the
choices of C, you see how you get a different curved element. For the image with
the current choice of C, which pinches the mid points of the lines of K inward, see
Figure 9.

p = {x*(2*x - 1), y*(2*y - 1), (1 - x - y)*(2*(1 - x - y) - 1), 4*x*
↪→ y,

4*y*(1 - x - y), 4*x*(1 - x - y)}
C = {{1, 0, 0, 0.4, 0.1, 0.5}, {0, 1, 0, 0.4, 0.5, 0.1}}
ir = ImplicitRegion[x >= 0 && y >= 0 && x + y <= 1, {x, y}]
ParametricPlot[
Dot[C, p], {x, y} \[Element]
ImplicitRegion[x >= 0 && y >= 0 && x + y <= 1, {x, y}]]

Code Snippet 7.6. Using the modern software packages Firedrake and FIAT, this
code shows how one can generate the maps assocaited to some isoparametric ele-
ments automatically. Here, you set d to request a certain degree polynomial. Then
you fill in the matrix a wit the coordinates. This will then output the coordinates of
the polynomial map so that one can plot them with software such as Mathematica.

from firedrake import *
import tsfc
import sympy as sp
import numpy as np

#set me:
d=3 #the degree of the polynomials
dim = 2

mesh = UnitSquareMesh(1,1)
V = FunctionSpace(mesh,"Lagrange",degree=d)

cord_element = V.ufl_element()
rf = tsfc.fiatinterface.create_element(cord_element,vector_is_mixed=

↪→ False)
symbols = [[sp.Symbol("x%d" % i) for i in xrange(V.mesh().

↪→ topological_dimension())]]
basis = np.array((rf.tabulate(0, np.array(symbols)))[(0,0)])

numberOfNodes = len(basis)



THE FINITE ELEMENT METHOD AND CURVED BOUNDARIES 25

a = np.ones((dim,numberOfNodes),dtype="float")
#overwite me just like C
#the above is the array of coordinates associated to the new map
#overwite it to change the map

polys = np.dot(a,basis)
p=polys.flatten()
print("The X1 cord poly is {0}".format(p[0]))
print("The X2 cord poly is {0}".format(p[1]))
#print("The Z cord poly is {0}".format(p[2])) add if dim =3

7.2. Figures.
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(a) The first

(b) The second

(c) Sometime later

Figure 1. Polyhedral approximations to the unit disk.

Figure 2. Convergence of L2 norm as the approximation gets better.
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Figure 3. Plot of a solution.

Figure 4. Plot of a solution.
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Figure 5. Plot of an analytic solution that the previous two im-
ages should conform to.

Figure 6. Convergence of L2 norm as the approximation gets better.
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Figure 7. Plot of a solution with correct boundary conditions on
the approximation.

Figure 8. A base set for a finite element
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Figure 9. A possible image of Figure 8 via the code Code Snippet 7.5.
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