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Abstract. This paper provides an introduction to combinatorial group the-

ory, culminating in an exploration of amalgamated free products, HNN exten-
sions, and their actions on trees. This approach to amalgamated free products

and HNN extensions will be in the context of Bass-Serre Theory and fun-

damental groups of graphs of groups, and we will then apply these abstract
notions to a wider range of results, namely the Novikov-Boone Theorem on

the undecidability of the word problem and the Adian-Rabin Theorem on the

undecidability of Markov properties.
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1. Introduction

This paper provides proofs of some important theorems in computability theory,
namely the Novikov-Boone and Adian-Rabin theorems:

Theorem 1.1 (Novikov-Boone). There exists a finitely presented group G “ xX | Ry
for which the word problem in G is undecidable.

Theorem 1.2 (Adian-Rabin). There is no algorithm to decide whether or not a
finitely presented group satisfies a given Markov property.

We will use Theorem 1.1 to prove Theorem 1.2. We will formally define a Markov
property later, but for now note that being trivial, being finite, being free, being
cyclic, being simple, being solvable, and being torsion-free are all Markov properties
of finitely presented groups, so the Adian-Rabin Theorem is a powerful theorem.

While these theorems delve into computability theory, we will provide proofs
based on two concepts constructed via combinatorial group theory: amalgamated
free products and HNN extensions. We build up to these constructions with an
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introduction to combinatorial group theory, including definitions of graphs, group
actions on graphs, and fundamental groups of graphs, and an exploration of Bass-
Serre theory.

Jean-Pierre Serre developed the notion of graphs of groups to describe certain
algebraic groups. He related group actions on trees to iterated applications of amal-
gamated free products and HNN extensions, and defined the fundamental group
of a graph of groups, generalizing these two concepts. We will provide rigorous
definitions of these notions, and our discussion will culminate in the following fun-
damental theorem:

Theorem 1.3 (Structure Theorem). If G “ π1pG, Y, T q, then G acts without in-
version of edges on a tree X such that Y – G zX and the stabilizers of the vertices
and edges of the tree X are conjugate to the images (under the canonical morphism)
of Gv, v P Y 0, and αepGeq, e P Y

1, respectively.
Conversely, if G acts on a tree X, then G is isomorphic to the fundamental

group π1pG, G zX,T q, where T is a maximal subtree of G zX and the vertex and
edge groups correspond to the stabilizers of the vertices and edges of X, respectively.

We build to an application of Bass-Serre theory to computability theory, origi-
nally discovered by Max Dehn. Historically, fundamental groups have been used in
many areas of mathematics, including knot theory in topology. In the early 1900s,
Dehn proposed the problem of deciding whether or not two knots are the same. He
embedded knots in 3-space and considered the fundamental groups of the comple-
ments of these knots (which are not isomorphic for distinct knots). He discovered
that these knot theory problems could be generalized to problems about finitely
presented groups, and identified three problems: the word problem, the conjugacy
problem, and the isomorphism problem r3s.

In this paper, we provide a proof of the undecidability of the word problem
for finitely presented groups (the Novikov-Boone theorem) reliant on an amalga-
mated free product, and a subsequent proof of the Adian-Rabin theorem based on
successive amalgamated products and HNN extensions. This theorem yields the un-
decidability of the isomorphism problem as an easy corollary. These proofs rely on
our group theoretic definitions rather than an intensive treatment of computability
theory. Therefore, we work off of some assumptions, notably the notion of unde-
cidability and the existence of a recursively enumerable set that is not recursive.

2. Some Basic Definitions

First, we construct some preliminary notions of combinatorial group theory, be-
ginning with Serre’s definition of a graph and a corresponding description of a group
acting on a graph. We assume prior knowledge of general group actions.

Definition 2.1. A graph X is a (nonempty) set of vertices X0, a set of edges X1,
and the following three maps:

i) α : X1 Ñ X0 sending an edge to its initial vertex
ii) ω : X1 Ñ X0 sending an edge to its final vertex
iii) ¯ : X1 Ñ X1 sending each edge e P X1 to its inverse ē, where we require

αpeq “ ωpēq, ¯̄e “ e, and ē ‰ e for all e P X1

An oriented graph consists of the verticesX0 and for each e P X1, a choice of exactly
one of te, ēu. We call an edge positively oriented if it is in a given orientation and
negatively oriented if it is not. We denote the set of all positively oriented edges
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by X1
` and the set of all negatively oriented edges by X1

´, and we often refer to an
orientation by this set X1

`.

We will be interested in some specific types of graphs. In particular, we define a
connected graph to be a graph X such that for any distinct u, v P X0, there exists
a path e1e2...ek with αpe1q “ u, ωpekq “ v, and ωpeiq “ αpei`1q for 1 ď i ď k ´ 1.
We call a path p reduced if there are no subsequences eē in p, and we define a tree
to be a connected graph X such that for any v P X0, there is no reduced path
(of length greater than 0) from v to itself. Note that in a tree, there is a unique
reduced path between any two vertices (otherwise, two distinct paths would create
a closed path). We will be interested in groups acting on graphs, particularly on
trees.

Definition 2.2. A (left) group action of G on a graph X is a pair of (left) actions,
G ýX0 and G ýX1, such that gαpeq “ αpgeq and gē “ ge for all g P G and
e P X1. (It follows that gωpeq “ ωpgeq for all g P G and e P X1.)

For the purposes of this paper, we require that G act on X without inversion
of edges, i.e. that for any g P G and e P X1, ge ‰ ē. But we show that this
requirement is not restrictive, because if G acts on X then we can construct the
barycentric subdivision BpXq of X so that G acts on BpXq without inversion of
edges:

Construction 2.3. Form the barycentric subdivision of a graph X as follows:
i) For each e P X1, where αpeq “ u and ωpeq “ v, add a vertex w and replace e

with edges e1 and e2, where αpe1q “ u, ωpe1q “ αpe2q “ w, and ωpe2q “ v.
ii) Set e1 “ pēq2 and e2 “ pēq1.
iii) For G ýX, define the action of G on BpXq so that gpe1q “ pgeq1 and

gpe2q “ pgeq2.

X : u
e

v

BpXq : u
e1

w
e2

v

Note that if we have a group G acting on X with inversion of edges, then we have
gpeq “ ē for some e P X1. But this implies gpe1q “ pgeq1 “ pēq1 “ e2 ‰ e1 and
gpe2q “ pgeq2 “ pēq2 “ e1 ‰ e2. Hence, we have G ýBpXq without inversion of
edges. G ýBpXq behaves (in some sense) like G ýX.

If a group G acts on a graph X, then for each x P X0 YX1 we can consider its
orbit Opxq “ ty P X0 YX1 | gx “ y for some g P Gu. We can now define another
type of graph (corresponding to a group action G ýX):

Definition 2.4. The factor graph G zX is the graph with vertices Opvq for v P X0

and edges Opeq for e P X1, connected such that:
i) Opvq “ αpOpeqq if gv “ αpeq for some g P G
ii) Opēq is the inverse of Opeq for all e

(It follows that Opvq “ ωpOpeqq if gv “ ωpeq for some g P G.)

Example 2.5. Suppose C4 acts on the graph X (shown on the next page), where
1 acts via a 90˝ rotation clockwise. There is a single orbit of vertices Ov “ OpAq “
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tA,B,C,Du and a single orbit of edges Oe “ Ope1q “ te1, e2, e3, e4u, so the factor
graph C4 zX is a loop:

X : A
e1

B

e2

D

e4

C
e4

C4 zX : Ov Oeii

3. Free Groups Actions and Free Groups

In this section, we define free group actions and then reconcile this definition
with that of free groups.

Definition 3.1. A group action G ýX is free if gv “ v for any v P X0 ùñ g “ e.
For example, C4 acts freely on X in Example 2.5.
(Note that this condition is stronger than an action being faithful. Under a free
action a nontrivial element of G cannot fix any vertex, whereas under a faithful
action a nontrivial element of G cannot fix all vertices.)

Suppose we have a group G acting freely (and without inversion of edges) on a
tree X. We want to describe the group G. Consider the canonical projection ψ of
X onto the factor graph G zX. Orient X and G zX such that an edge e P X1 is
positively oriented if and only if its image ψpeq is positively oriented in pG zXq1.
We can choose a maximal subtree T (i.e. a tree containing each vertex of the graph)
in G zX. Note that every vertex of X is the preimage (under ψ) of some vertex
of G zX, and thus of some vertex in T . Furthermore, since T is a tree there is
a unique path between any two v, w P T 0, and thus once we fix some preimage
v0 P X

0 of a given vertex v P T 0, there is a unique preimage of any other vertex
w P T 0. Therefore, we can fix a preimage of some v P T 0 and then lift all of T to a
tree T0 within X, and the elements of G will move T0 around to the other lifts of
T in X.

Now, we consider the set of positively oriented edges in G zX that are not in
our maximal subtree T . Call this set E. Each e P E will have an initial vertex in T ,
so there will be a lift of e to an edge e0 P X

1 with initial vertex in our fixed T0 and
final vertex outside of T0. Suppose there were multiple possible final vertices, and
we had lifts e0 and e10. Then the action of G taking e0 to e10 would fix the initial
vertex, and G ýX would not be free. Hence, our lift e0 is unique. Denote the
set of such e0 (positively oriented edges of X with initial vertices in T0 and final
vertices outside of T0) by E0.

Any e0 P E0 must have a terminal vertex outside of T0 and since G acts freely
on X, we have a unique element ge0 ‰ 1 such that ωpe0q is in ge0T0. Let S0 be the
set of such elements ge0 , where e0 P E

0. We will show that the group G satisfies
the following definition (with respect to basis S0):

Definition 3.2. If G is a group and S Ď G is linearly ordered such that SXS´1 “

H, then G is a free group (with basis S) if each nontrivial g P G can be uniquely
expressed as g “ s1...sn for si P S Y S

´1, where sisi`1 ‰ 1 for any i.
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We have seen that the subtrees gT0, g P G, in our graph X are disjoint and the
set of all such subtrees covers all vertices in X. Since the gT0 are disjoint, we have
a bijection between the elements g P G and the subtrees gT0 in X. Therefore, we
can consider the graph X̃, where each gT0 in X is contracted to single vertex in X̃,
denoted g̃. Since X is a tree, X̃ is a tree. We now want to define an isomorphism
between X̃ and the Cayley graph Γ of G and S0:

Definition 3.3. Construct the Cayley graph Γ of G and S as follows:
Let there be one vertex for every element in G. For all g P G and s P S, draw

an edge e with αpeq “ g and ωpeq “ gs (and a corresponding inverse edge ē with
αpēq “ gs and ωpēq “ g).

Example 3.4. For example, the image below shows the Cayley graph of the free
group generated by two elements a and b (with respect to that basis xa, by) r2s.

Clearly the map g̃ ÞÑ g defines a bijection between the vertices of X̃ and Γ. Now
we want to define a bijection between the edges of X̃ and Γ. For any edge in X̃, e
cannot have been contained in any subtree gT0 in X, and thus must have its initial
and terminal vertices in distinct copies of T0. Let e P X̃1 be an edge in X̃, where
αpeq “ g̃1 and ωpeq “ g̃2, g1 ‰ g2. Then let s “ g1g

´1
2 . Map e P X̃1 to the edge

e1 P Γ, where αpe1q “ g1 and ωpe1q “ g1s “ g2. We want to show that this is in fact
a bijection. Suppose there is an edge from g to gs, s P S0, in Γ. Since s P S0, there
is an edge from T0 to gT0 in X, and thus an edge from 1̃ to g̃ in X̃. Clearly, we
have constructed an isomorphism between X̃ and Γ. To complete our proof that
G is free with respect to basis S0, we show that the Cayley graph of G and S0 is a
tree only if G is free with respect to basis S0.

If Γ is a tree, then for any g P G, g ‰ 1, there is a unique reduced path from 1
to g in Γ. Let this be given by e1...en, n ě 1. Put αpeiq “ hi and ωpeiq “ hisi for
each i, where all hi P G and all si P S Y S

´1. Then we can write

g “ ωpenq “ hnsn “ αpenqsn “ ωpen´1qsn “ hn´1sn´1sn “ ...

“ αpe1qs1...sn “ s1...sn

Now we just need to show that this expression is unique. Suppose not. Then we
have two distinct paths from 1 to g, contradicting Γ being a tree.

To recap, we have shown that if we have a free action G ýX, where X is a
tree, then we can lift a maximal subtree T in G zX to a subtree T0 in X. This
subtree is translated to other copies of T0 by elements of G. Therefore, we can
contract these gT0 to single vertices, creating a new tree X̃, which is isomorphic
to the Cayley graph Γ of G with respect to the basis S0 (where the elements of S0
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were the elements taking vertices in T0 to adjacent vertices outside of T0). Finally,
we showed that Γ being a tree must imply that G is free with respect to that basis.

This shows that a group G that acts freely (and without inversion of edges) on
a tree is free. We will now show that these two notions are actually equivalent:

Proposition 3.5. A group G acts freely (and without inversion of edges) on a tree
if and only if it is free.

Proof. We have already shown one direction, so we are left to show that all free
groups act freely on a tree. Suppose G is a free group with basis S. Consider the
Cayley graph Γ of G and S. Since S generates G, Γ is connected. We claim that Γ is
in fact a tree. If not, then there exists a closed path e0...en with αpe0q “ ωpenq “ g
for some g P G. But then g “ gsε00 ...s

εn
n , where each si P S and εi P t´1, 1u. But

this contradicts G being free with respect to S. Hence Γ is a tree. Now we claim
that G acts (via left multiplication) freely and without inversion of edges on the
tree Γ. Suppose some g P G fixes a vertex vh P Γo (where vh corresponds to element
h P G). This implies gh “ h ùñ g “ 1. So the action must be free. Furthermore,
this action is without inversion of edges. Otherwise, we would have some g2 “ g1s
and g1 “ g2s for s P S. Then g1 “ g1s

2 ùñ s2 “ 1, which contradicts the freeness
of G with respect to S. �

This result yields the following corollary:

Corollary 3.6 (The Nielsen-Schreier Theorem). Any subgroup of a free group is
free.

Proof. Suppose H is a subgroup of the free group G (with basis S). We have shown
that G acts freely (and without inversion of edges) on the Cayley graph Γ of G and
S. But H ď G, so clearly H does as well. Thus, H acts freely on the tree Γ, and
must itself be free by Proposition 3.5. �

4. Fundamental Groups of Graphs

So far, we have studied group actions on trees, but we now want to look at more
general group actions on graphs. We examine graphs with nondegenerate closed
paths using the notion of fundamental groups, constructed below:

Given a connected graph X and a fixed vertex x P X0, consider the set P of
all paths e0...en in X such that αpe0q “ ωpenq “ x. We define the following
equivalence relation on P : any two paths e0...ei´1eiēiei`1...en and e0...ei´1ei`1...en
are equivalent. Denote the equivalence class of a path p by rps. We note that the
set of reduced paths (where we don’t go back and forth along an edge) is a set of
representatives of these equivalence classes. To make the set of equivalence classes
of P a group, we define multiplication as follows: for two paths p “ e0...en and
q “ f0...fm from x to x, let pq “ e0...enf0...fm and rpsrqs “ rpqs. The identity
element is the equivalence class containing the degenerate path of length 0 from x
to x.

Definition 4.1. This group of equivalence classes of P is the fundamental group
π1pX,xq of the graph X with respect to the vertex x.

This notion is a way of describing the closed paths in a graph. For example,
in a tree, there is a unique reduced path between any two vertices, so there are
no non-degenerate reduced paths from a vertex to itself. Hence, there is only one
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equivalence class of paths from a vertex to itself. The fundamental group of a tree
with respect to any of its vertices is thus the trivial group.

In this way, subtrees in a graph do not contribute to its fundamental group, as
traversing them and returning to the original vertex requires going back and forth
along an edge. But this will be in the same equivalence class as the same path that
does not traverse that edge in the tree. This suggests the following proposition:

Proposition 4.2. Let X be a connected graph, X1
` be an orientation of X, x P X0

be any vertex, and T be a maximal subtree of X. For each v P X0 we know that
there is a unique path from x to v in T, which we denote pv. For each e P X1, let
pe “ pαpeqep

´1
ωpeq. Then π1pX,xq is a free group with basis S “ trpes | e P X

1
`´T

1u.

Proof. First, we want to show that any element of the fundamental group π1pX,xq
can be written as the product of elements of S. Suppose rps P π1pX,xq, where rps
is the equivalence class of a closed path p “ e1...en from x to x in X. Note that
for all i, we have ωpeiq “ αpei`1q, so pωpeiq “ pαpei`1q ùñ p´1

ωpeiq
pαpei`1q “ 1, and

thus:

rps “ rpe1pe2 ...pens “ rpe1srpe2s...rpens

If rpeis R S, then ei is contained in the subtree T , and thus, rpeis “ r1s. Thus, any
rps can be written as the product of elements of S.

To show that π1pX,xq is free with respect to S, we now just need to show that
this representation is unique. Suppose we can write

rps “ rpe1 ...pens “ rpe1s...rpens,

where each rpeis P π1pX,xq (or equivalently, each ei P X
1
`´T

1). Note that for each
i P t1, ..., nu, the path pei is fully contained in T , except at the edge ei. Thus it does
not contain any edge ej , ei ‰ ej , for j P t1, ...nu. Therefore, if we reduce the path
pe1 ...pen , there are no reductions along any ei, and we get a reduced path of the
form t0e1t1...tn´1entn, where each tk is a reduced path in T . But each equivalence
class in π1pX,xq contains exactly one reduced path, so the e1, ..., en are uniquely
determined by p. �

Example 4.3. Consider the following graph X, and the associated orientation and
selection of a maximal subtree T (bolded) shown below it:

A
e1

e4

B

e5

e2
C

e6

D

e3

e7

e10

E

e11

e8
F

e9
G

H
e12

I

A
e1 //

e4

B

e5

C
e2
oo

e6

D

e3

e7 //

e10

E

e11

��

e8
F

e9
G

H
e12

I
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By Proposition 4.2, π1pX,Aq – F4. In order to think about the fundamental
group of graph X, imagine laying a piece of string along a path in X and pulling it
taut. As long as we stay within the maximal subtree, we can pull the string back
to point A, but if we cross e1, e2, e7, or e11 and pull it taut, the string will catch
around a corresponding closed path.

We have shown that given connected graph X and a maximal subtree T , π1pX,xq
(for x P X0) is freely generated by the paths from x to x that cross exactly one
positively oriented edge outside of T . But note that in Section 3, we showed that
if a group G acts freely on a a tree X, then G is free and generated by a set of
cardinality equal to the cardinality of the set of positively oriented edges of the
factor graph G zX laying outside a fixed maximal tree. We have thus shown the
following:

Theorem 4.4 (Fundamental Theorem of Bass-Serre Theory). Let G be a group
acting freely and without inversion of edges on a tree X. Fix any vertex v P X0.
Then G is isomorphic to the fundamental group π1pG zX, vq.

Serre generalized this theorem to an analogous theorem for fundamental groups
of graphs of groups (Section 6). But before we do this, we construct amalgamated
free products and HNN extensions, which we will later recover as examples of this
generalized notion.

5. Amalgamated Free Products and HNN Extensions

We must first define the free product of two groups A and B, which is a group
of normal forms. Given groups A and B such that A X B “ 1 (note that this is
not a restriction as we may take isomorphic copies of any A and B with nontrivial
intersection), a normal form is an expression x1...xn such that for all i, 1 ď i ď n,
we have that xi P AYB and any adjacent xi, xi`1 are not both in A and not both
in B. n is the length of such a normal form and the identity element is said to
have length 0. In order to make the set of normal forms into a group, we define
multiplication on the set of all normal forms as follows:
Let x “ x1..., xn and y “ y1...ym be normal forms of A and B. Put x ¨ y “

i) x if y “ 1
ii) y if x “ 1
iii) x1...xny1...ym if xn and y1 are in different groups
iv) x1...xn´1zy2...ym, where z “ xny1, if xn and y1 are in the same group and

xny1 ‰ 1
v) px1...xn´1q ¨ py2...ymq if xn and y1 are in the same group and xny1 “ 1

The set of all normal forms is clearly a group under this multiplication, and this
group is called the free product of A and B, and is denoted by A ˚B.

Example 5.1. Consider the free product Z˚Z. Let the first copy of Z be generated
by a and the second copy be generated by b. Then a normal form looks like
ae1bf1ae2bf2 ... or bf1ae1bf2ae2 ... (where the ei and fi are nonzero), and clearly,
Z ˚ Z “ xa, by – F2.

Now suppose we have groups G and H with isomorphic subgroups A ď G and
B ď H (where ρ : AÑ B is a isomorphism).
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Definition 5.2. The amalgamated free product, denoted

xG ˚H | a “ ρpaq, a P Ay,

is the quotient group of the free product G ˚ H by the normal closure of the set
tρpaqa´1 | a P Au.
We often write G ˚A H (if ρ is understood).

We can think of the amalgamated free product G ˚AH as the free product of G
and H, glued together along the isomorphic copies of A in each group. To see this,
consider the following example:

Example 5.3. Oriented graphs X and Y (shown below) have the same fundamen-
tal group F2 (by Proposition 4.2). Suppose π1pXq “ xa, by and π1pY q “ xc, dy, and
the free product of these groups is taken with the amalgamation of the isomorphic
copies of Z in the groups. In particular, xby – xcy via the isomorphism ρ : b ÞÑ c.
This can be seen by “gluing” the graphs X and Y together along the loop corre-
sponding to b in X and c in Y to form graph Z. The fundamental group of the
graph Z is the amalgamated product F2 ˚Z F2 – F3:

X : ˝ // ˝

a

��

// ˝

b

��
˝

OO

˝oo ˝oo

Y : ˝ // ˝

c

��

// ˝

d

��
˝

OO

˝oo ˝oo

Z : ˝ // ˝

a

��

// ˝

b„c

��

// ˝

d

��
˝

OO

˝oo ˝oo ˝oo

We now define an A-normal form for the free amalgamated product G ˚A H.
Choose a set of representatives TA of the right cosets of A in G and a set of
representatives TB of the right cosets of ρpAq in H. Assume we have 1 P TA
representing the coset A and 1 P TB representing the coset ρpAq. Then we can
define an A-normal form:

Definition 5.4. An A-normal form is a sequence px0, ..., xnq such that:
i) x0 P A
ii) xi P TA ´ t1u or xi P TB ´ t1u for all i, 1 ď i ď n
iii) either xi P TA, xi`1 P TB or xi P TB , xi`1 P TA for all i ě 1

(Note that we can similarly define a B-normal form.)

For any x P G ˚A H, we can write x as a product of factors which form an
A-normal form, and then move right to left along x, assigning coset representatives
for A and ρpAq and replacing appropriate elements in A with elements in ρpAq and
vice versa (via ρ and ρ´1). This will give us x “ x0...xn, an A-normal form. It is
easy to show that such a representation is unique.
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Now suppose that instead of two groups, we have a single group G with two
isomorphic subgroups A,B P G (where ρ : A Ñ B is an isomorphism). Let t R G
be a new element and xty be the cyclic group of infinite order.

Definition 5.5. The HNN extension of G relative to A,B, and ρ, denoted

xG, t | t´1at “ ρpaq, a P Ay,

is the quotient group of the free product G ˚ xty by the normal closure of the set
tt´1atpρpaqq´1 | a P Au.
We often write G˚ (if ρ is understood).

In other words, we take two isomorphic subgroups of a group G and force them
to be conjugate.

We will now prove a lemma about HNN extensions that yields some basic prop-
erties about HNN extensions and that we will use in our proof of the Adian-Rabin
theorem. In order to do this, we must define a normal form in an HNN extension.
Given an HNN extension G˚ of G relative to A,B, and ρ, choose a set of repre-
sentatives TA (and TB) of the right cosets of A (and B) in G, where 1 P TA (and
1 P TB) represents the coset A (and B).

Definition 5.6. A normal form is a sequence g0t
ε1g1...t

εngn, where each gi repre-
sents an element of G and each εi is contained in t´1, 1u, such that:

i) if εi “ ´1, then gi P TA
ii) if εi “ 1, then gi P TB
iii) there is no subsequence tε1t´ε

Any element x P G˚ has a unique representation x “ g0t
ε1g1...t

εngn, where
g0t

ε1g1...t
εngn is a normal form. A formal proof of this fact is left to the reader,

but can be seen by applying the following rule: write x “ g0t
ε1g1...t

εngn, where each
gi P G and each εi P t´1, 1u, via the canonical homomorphism G ˚ xty Ñ G˚, and
move from right to left along the representation, creating the coset representatives
and replacing any t´1a, a P A, with ρpaqt´1 and any tb, b P B, with ρ´1pbqt.

This unique normal form results in the following lemma, which yields several
important properties of HNN extensions as corollaries:

Lemma 5.7 (Britton’s Lemma). If a word w can be expressed w “ g0t
ε1g1...t

εngn,
n ě 1, with no subwords of the form t´1git, gi P A, or tgjt

´1, gj P B, then w ‰ 1
in G˚.

Proof. Given w “ g0t
ε1g1...t

εngn, n ě 1, rewrite w in its normal form using the
rule described above. This rule preserves the length |w| “ 2n ` 1 ě 3 (since w
did not violate condition (iii) of Definition 5.6). But we know this normal form is
unique, and 1 has a normal form of length less than 3, so w ‰ 1. �

Some basic properties of HNN extensions follow from Britton’s lemma, including:

Corollary 5.8. The canonical homomorphism φ : G Ñ G˚ is injective, and thus
G ď G˚.

Proof. Consider any nontrivial g P G. φpgq has no subwords t´1at, a P A, or tbt´1,
b P B, so by Britton’s Lemma, φpgq ‰ 1. Thus, kerφ “ t1u and G ãÝÑ G˚. �

Corollary 5.9. If x P G˚ has finite order, then x is conjugate to some element
g P G.
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Proof. Assume x ‰ 1. Let x “ g0t
ε1g1...t

εngn be the unique normal formal repre-
sentation of x. We have xm “ 1 for some m ě 2. Thus

pg0t
ε1g1...t

εngnq...pg0t
ε1g1...t

εngnq
loooooooooooooooooooooomoooooooooooooooooooooon

m times

“ 1

By Britton’s Lemma, there must be some subsequence t´1at, a P A, or tbt´1,
b P B in this expression of xm. However, by Britton’s lemma, we know that this
subsequence cannot occur in the expression g0t

ε1g1...t
εngn. Thus, we must have

tεngng0t
ε1 satisfying this condition.

Without loss of generality, suppose we have tεngng0t
ε0 “ t´1at. Thus, we have

εn “ ´1, gng0 P A, and ε1 “ 1. Let gng0 “ a P A, where ρpaq “ t´1at “ b, b P B.
We can now conjugate x by g0 and then by t to obtain:

x “ g0t
ε1g1...gn´1t

εngn “ g0tg1...gn´1t
´1gn

g´1
0 xg0 “ g´1

0 g0tg1...gn´1t
´1gng0 “ tg1t

ε2 ...gn´1t
´1a

t´1g´1
0 xg0t “ t´1tg1t

ε2 ...gn´1t
´1at “ g1t

ε2 ...tεn´1gn´1b

Note that conjugation is a group automorphism, so it preserves orders of elements.
Therefore, pg0tq

´1xpg0tq also has order m. So we can repeat the application of
Britton’s Lemma to this word. But the word pg0tq

´1xpg0tq “ g1t
ε2 ...tεn´1gn´1b

has shorter length than the word x “ g0t
ε1g1...t

εngn. Therefore, we proceed by
induction on the length of x.

Eventually, we get to a word of length 1: y´1xy “ g, where y P G˚ and g P G.
Thus, x is conjugate to an element of G. �

Now that we have defined amalgamated free products and HNN extensions and
established some basic properties, we can now generalize these notions via the
fundamental group of a graph of groups.

6. Fundamental Groups of Graphs of Groups

Definition 6.1. A graph of groups pG, Y q is a connected graph Y , along with:
i) a vertex group Gv for each v P Y 0

ii) an edge group Ge for each e P Y 1, where all Ge “ Gē
iii) a set of injections tαe : Ge Ñ Gαe | e P Y

1u

We now want to construct a notion of fundamental groups of graphs of groups
that generalizes the notion of fundamental groups of graphs developed in Section 4,
and similarly compose a generalized version of the Fundamental Theorem of Bass-
Serre Theory (Theorem 4.4). This theorem states that for a group G acting freely
on a tree X, we can identify G with the fundamental group of G zX. We want to
similarly identify any group G acting on a tree X with the fundamental group of a
graph of groups π1pG, G zX,T q.

We were, however, restricted by the requirement that G be free. But now that
we can play with vertex and edge groups, we can loosen this requirement. We define
the fundamental group of a graph of groups pG, Y q in such a way that we are able
to “quotient out” by those elements which would fix a vertex in the tree X. This
inspires the following definition:

Definition 6.2. The fundamental group π1pG, Y, T q of a graph of groups pG, Y q
with respect to a maximal subtree T of Y is the quotient group of F pG, Y q by the
normal closure of the set tte | e P T

1u, where F pG, Y q is the quotient group of the
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free product of all groups Gv, v P Y
0, and the free group with basis tte | e P Y

1u

by the normal closure of the sets tt´1
e αepgqte ¨ pαēpgqq

´1 | e P Y 1, g P Gu and
ttetē | e P Y

1u.
(Note that we can think of F pG, Y q as a series of successive HNN extensions.)

Now we can account for the “non-freeness” of G ýX. This action is not free
if there exist v P X0 and g P G such that gv “ v, i.e. if there are nontrivial
stabilizer groups. We deal with the “non-freeness” by putting the stabilizers of the
vertices Gv “ tg P G |gv “ vu into vertex groups and the stabilizers of the edges
Ge “ tg P G |ge “ eu into edge groups.

This suggests the following proposition, a generalization of Theorem 4.4 to in-
clude actions that are not free:

Theorem 6.3 (Structure Theorem). If G “ π1pG, Y, T q, then G acts without in-
version of edges on a tree X such that Y – G zX and the stabilizers of the vertices
and edges of the tree X are conjugate to the images (under the canonical morphism)
of Gv, v P Y 0, and αepGeq, e P Y

1, respectively.
Moreover, for the corresponding map p : X Ñ Y , we can lift the pair pY, T q to

pỸ , T̃ q such that:

i) the stabilizer of any ṽ P T̃ 0 in G is equal to the group Gv (and the stabilizer

of any ẽ P Ỹ 1 with αpẽq P T̃ 0 in G is equal to the group αepGeq)

ii) if for some ẽ P Ỹ 1 we have ωpẽq R T̃ 0, then t´1
e carries this vertex into T̃ 0.

Conversely, if G acts on a tree X, then G is isomorphic to the fundamental
group π1pG, G zX,T q, where T is a maximal subtree of G zX and the vertex and
edge groups correspond to the stabilizers of the vertices and edges of X, respectively.

A formal proof of this generalized theorem is beyond the scope of this paper, but
can be found in r4s.

We now demonstrate some examples of these fundamental groups of graphs of
groups, beginning with the simplest case:

Example 6.4. If each vertex and edge group is trivial, our action G ýX is free
and G – π1pG zX,xq. We see that the Structure Theorem is in fact a stronger
version of Theorem 4.4.

We now want to recover amalgamated free products and HNN extensions as
examples of fundamental groups of graphs of groups. To do this, we need to identify
the factor graphs of these objects acting on trees. We make the following two claims:

Proposition 6.5. Let G “ G1 ˚A G2. Then there exists a tree X on which G
acts without inversion of edges such that G zX is a segment, where we define a
segment as a graph with two vertices and an edge (and its inverse) connecting them.
Moreover, this segment can be lifted to a segment in X such that the stabilizers in
G of its vertices and edges are equal to G1, G2, and A, respectively.

Proposition 6.6. Let G˚ “ xG, t | t´1at “ ρpaq, a P Ay. Then there exists a tree
X on which G˚ acts without inversion of edges such that G˚ zX is a loop, where
we define a loop as a graph with one vertex and an edge (and its inverse) from that
vertex to itself. Moreover, there is a segment in X such that the stabilizers of its
vertices and edges in G˚ are equal to G, tGt´1, and A, respectively.
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Proof. We provide a proof of Proposition 6.5, and the proof of Proposition 6.6 is
very similar.

Given G “ G1˚AG2, we define the graph X as follows. Let the set of vertices X0

be the set of left cosets G{G1 and G{G2. Let the set of edges X1 be the set of left
cosets G{A, where for each gA P X1, αpgAq “ gG1 and ωpgAq “ gG2. The group
action G ýX will be G acting on these cosets via left multiplication. Clearly, this
action is without inversion of edges.

First, we prove that X is a connected graph. Note that the vertices G1 and G2

are connected via edge A, so if the vertices in G{G1 are connected and the vertices in
G{G2 are connected, then X is connected. Without loss of generality, we show that
the vertices in G{G1 are connected, i.e. that there is a path between G1 and gG1

for any g P G. Write g “ g0...gn, where pg0, ..., gnq is the unique A-normal form of g
(Definition 5.4). Then for each i, we have gi P G1, gi`1 P G2 or gi P G2, gi`1 P G1.
If gi P G1, then G1 “ giG1, so the vertex g1...gi´1giG1 is exactly the vertex
g1...gi´1G1. Otherwise, we have gi P G2, and there is a path from g1...gi´1G1 to
g1...gi´1G2 (which is equivalent to g1...gi´1giG2) to g1...gi´1giG1. In either case,
we have g1...gi´1G1 and g1...gi´1giG1 connected, so we proceed by induction on i.
Hence, X is connected.

Now, we show that X is a tree. By contradiction, suppose we have a closed,
reduced path e0...em (m ą 0) in X. Without loss of generality, suppose αpe0q “

ωpemq “ G1. Note that for each i, αpeiq P G{G1 ùñ ωpeiq P G{G2 and αpeiq P
G{G1 ùñ ωpeiq P G{G2, so we must have m odd. Set k “ m´1

2 . We have elements
a0, ..., ak P G1 ´A and b0, ..., bk P G2 ´A such that

αpe1q “ a0G2 ùñ αpe2q “ a0b0G1 ùñ ... ùñ αpemq “ a0b0...akG2

ùñ ωpemq “ a0b0...akbkG1

But we also have ωpemq “ αpe0q “ G1, which contradicts the uniqueness of A-
normal forms in G1 ˚AG2. Hence, we have our tree X on which G “ G1 ˚AG2 acts.
G ýX has two orbits of vertices: those in G{G1 and those in G{G2. Furthermore,
these are clearly connected by the orbit of all edges G{A, so G zX is a segment
and can be lifted to the following segment in X:

G1
A

G2

�

Now we can easily define a graph of groups pG, Y q so that the fundamental group
G “ π1pG, Y, T q is either an amalgamated free product or an HNN extension:

Example 6.7. Suppose Y is a segment:

P
e

Q

Then take T “ Y , and G is isomorphic to the free product of GP and GQ amalga-
mated over the subgroups αepGeq and αēpGeq.

Example 6.8. Suppose Y is a loop:

P eff

Then take T “ P , and G is isomorphic to the HNN extension of GP with associated
subgroups αepGeq and αēpGeq.
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Note that given any group of graphs pG, Y q, we can construct G “ π1pG, Y, T q
via successive amalgamated products and HNN extensions. We can first determine
H “ π1pG, T, T q by constructing amalgamated products of the segments in T .
Then, we can think of T as contracted to this group H, and take successive HNN
extensions to determine G.

Fundamental groups of graphs of groups yield some interesting extensions (to
complexes, etc.) in topology, specifically in covering space theory. A discussion of
this can be found here: [1]. However, we instead delve into some applications of
amalgamated free groups and HNN extensions to group-theoretic decision problems.

7. The Novikov-Boone Theorem

Now that we have explored HNN extensions and amalgamated free products in
the context of combinatorial group theory, we demonstrate their power in proving
some very different propositions, beginning with the Novikov-Boone Theorem on
the undecidability of word problems. We begin with some preliminary definitions:

Definition 7.1. Given a group G, a set X, and a set of relations R, we say G has
presentation xX |R y if G – F {N , where F is the free group generated by X and
N is the normal subgroup generated by the relations in R. Such a presentation is
called finite if both X and R are finite. Additionally, such a presentation is called
recursive if R is recursively enumerable (see Definition 7.5).

Example 7.2. The dihedral group D2n has presentation

xr, s | r2n “ 1, s2 “ 1, s´1rs “ 1y

where r can be thought of as a rotation by π{n and s can be thought of as a
reflection across an axis of symmetry.
Also, the cyclic group of order n has presentation xx |xn “ 1y.

We will be interested in the word problem for groups: Given a group G “ xX |Ry
and words w,w1 in the generators, is w “ w1 in G? (Or equivalently, given a word w
in the generators, is w “ 1?) Note that by word, we just mean a sequence x1...xn,
xi P X YX

´1.
We can now state the Novikov-Boone Theorem:

Theorem 7.3 (The Novikov-Boone Theorem). There exists some finitely presented
group G such that the word problem in G is undecidable, i.e. there exists a finitely
presented group G for which there is no algorithm to determine whether a word in
the generators represents the identity in G.

Our proof of this theorem will rely on the following lemma:

Lemma 7.4 (Higman Embedding Theorem). A finitely generated group G can be
embedded in a finitely presented group if and only if G is recursively presented.

A proof of this theorem is omitted, but can be found in r5s.

In order to prove the Novikov-Boone Theorem, we will take advantage of some
concepts in computability theory. An in-depth treatment of this topic is beyond
the scope of this paper, but we do provide the following definitions before beginning
our proof:
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Definition 7.5. A set S Ď N is recursively enumerable if there is an algorithm
that enumerates the elements of S.

Definition 7.6. A set S Ď N is recursive if if there is an algorithm that halts on
all inputs and decides whether or not the input belongs to S.

Note that recursive sets are always recursively enumerable, but recursively enu-
merable sets are not always recursive. Proof of the existence of a set that is recur-
sively enumerable but not recursive is left to the reader.

We can now begin our proof of the Novikov-Boone Theorem:

Proof. Let S be a recursively enumerable but non-recursive set. We want to con-
struct a group GS so that the membership problem in S (which is undecidable since
S is not recursive) can be reduced to the the word problem in GS . This will show
that the word problem in GS is undecidable.

Let F “ xa, by and F 1 “ xc, dy be two isomorphic copies of F2. Take the free
product of F and F 1 with amalgamation of xa´sbas | s P Sy and xc´sdcs | s P Sy
(which are clearly isomorphic via ρ : s ÞÑ s):

GS “ xa, b, c, d | a
´sbas “ c´sdcs, s P Sy

Now consider the word w “ a´tbatc´td´1ct in GS :

w “ 1 ðñ a´tbat “ pc´td´1ctq´1 ðñ a´tbat “ c´tdct ðñ t P S

Hence, the membership problem in S can be reduced to the word problem in
GS , and the word problem in GS is thus undecidable. And since S is recursively
enumerable, the Higman Embedding Theorem tells us that GS can be embedded
in a finitely presented group (in which the word problem will clearly also be unde-
cidable). �

We have only shown that there exists some finitely presented group G in which
the word problem is undecidable. Explicit finite presentations for groups in which
the word problem is undecidable have been found, and a reasonably short one
(discovered by Collins and discussed in r6s) is provided for context:

x a, b, c, d, e, p, q, r, t, k |

p10a “ ap, pacqr “ rpcaq, ra “ ar,

p10b “ bp, p2adq2r “ rp2daq2, rb “ br,

p10c “ cp, p3bcq3r “ rp3cbq3, rc “ cr,

p10d “ dp, p4bdq4r “ rp4dbq4, rd “ dr,

p10e “ ep, p5ceq5r “ rp5ecaq5, re “ er,

aq10 “ qa, p6deq6r “ rp6edbq6, pt “ tp,

bq10 “ qb, p7cdcq7r “ rp7cdceq7, qt “ tq,

cq10 “ qc, p8ca3q8r “ rp8a3q8,

dq10 “ qd, p9da3q9r “ rp9a3q9,

q10 “ qe, a´3ta3k “ ka´3ta3 y



16 ESME BAJO

8. The Adian-Rabin Theorem

Finally, we apply the Novikov-Boone Theorem (along with further applications
of amalgamated free products and HNN extensions) to prove the Adian-Rabin
Theorem on the undecidability of Markov properties of finitely presented groups.
We begin with a necessary definition:

Definition 8.1. A group property P is a map φ from the set of all groups to the
set ttrue, falseu. We require that if G1 – G2, then φpG1q “ φpG2q. A property
M of finitely presented groups is Markov if the following additional conditions are
satisfied:

i) φ ‰ 0, i.e. there exists some finitely presented group satisfying M
ii) there exists a finitely presented group that cannot be embedded into any

finitely presented group that satisfies M

We now provide some examples of Markov properties to preface the significance
of the Adian-Rabin Theorem:

Proposition 8.2. The property M of finitely presented groups such that MpGq is
true if and only if G is abelian is a Markov group property.

Proof. If G1 – G2, then clearly G1 is abelian ðñ G2 is abelian, so M is a
group property. Furthermore, the cyclic group of order n is abelian and finitely
presented (as shown in Definition 5.1), so M satisfies condition (i) of Definition
6.1. Furthermore, we cannot embed (via θ) a nonabelian group H (i.e. S3 which
clearly has a finite presentation) in an abelian group G: take a, b P H such that
ab ‰ ba ùñ θpabq ‰ θpbaq ùñ θpaqθpbq ‰ θpbqθpaq, which would contradict G
being abelian. Hence, M also satisfies condition (ii), and is Markov. �

It is easy to show that being trivial, being finite, being free, being cyclic, being
simple, being solvable, and being torsion-free are also Markov group properties.
This theorem will thus end up giving us many undecidable decision problems in
group theory.

We can now state and prove the Adian-Rabin Theorem:

Theorem 8.3. There is no algorithm to decide if a finitely presented group satisfies
a given Markov property.

Proof. Let M be a Markov property. By definition, we have some finitely presented
group E satisfying M and some finitely presented group F that cannot be embedded
in any finitely presented group satisfying M. By the Novikov-Boone Theorem
(proved in Section 7), we also have a finitely presented group H such that the
word problem in H is undecidable. Consider the free product H ˚ F . Since H
has an undecidable word problem, H ˚ F also does. Also, since H and F both
have finite presentations, H ˚F also has a finite presentation. Let this be given by
H ˚ F “ xx1, ..., xn |Rpx1, .., xnqy, where R is a set of relations on the generators.
This proof is completed by reduction of the word problem in H ˚F (which we know
to be undecidable) to the Markov problem:

Suppose we are given a word w in the generators x1, ..., xn of H ˚ F . We will
construct a finitely presented group Gw such that Gw satisfies M ðñ w “ 1,
thus proving the theorem. Gw “ E if w “ 1 and F ãÝÑ Gw otherwise will suffice.

First, let xs0y be the infinite cyclic group generated by s0, and consider the free
product G “ pH ˚F q ˚ xs0y. Define si “ s0xi for 1 ď i ď n, and we have that these
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s0, ..., sn now generate G:

G “ xs0, ..., sn|Rpx1, ..., xnqy “ xs0, ..., sn|Rps
´1
0 s1, ..., s

´1
0 snqy

Take n`1 successive HNN extensions ofG relative to associated subgroups xs0, ..., sny
and xs2

0, ..., s
2
ny, with the n` 1 corresponding stable letters t0, ..., tn. We obtain the

group:

G1 “ xs0, ..., sn, t0, ..., tn|Rps
´1
0 s1, ..., s

´1
0 snq, tisit

´1
i “ s2

i , 1 ď i ď ny

Since our ti are not in any of our associated subgroups, Britton’s Lemma (Lemma
5.6) applied to our successive HNN extensions tells us that the subgroups xt0, ..., tny
and xt20, ..., t

2
ny are free on those generators. Therefore, the subgroups xt0, ..., tny

and xt20, ..., t
2
ny are isomorphic under ρ : ti ÞÑ t2i . Since ρ defines an isomorphism of

these subgroups of G1, we can take an HNN extension of G1 (with these associated
subgroups and with stable letter u), given by:

G2 “ xs0, ..., sn, t0, ..., tn, u |

Rps´1
0 s1, ..., s´1

0 q, tisit
´1
i “ s2

i , utiu
´1 “ t2i , 1 ď i ď ny

Now, let G0 be the infinite cyclic group:

G0 “ xay

Take the HNN extension of G0 with respect to the associated subgroups xay and
xa2y with stable letter b to obtain G1:

G1 “ xa, b | bab
´1 “ a2y

Then take the HNN extension of G1 with associated subgroups xby and xb2y with
stable letter c to obtain G2:

G2 “ xa, b, c | bab
´1 “ a2, cbc´1 “ b2y

At this point we can define a penultimate group Jw, into which we claim F will
inject if w ‰ 1 and which we claim will be trivial if w “ 1. Given a word w, define
Jw as the free product of G2 and G2, subject to the relations u “ a and c “ rw, s0s

(where rw, s0s is the commutator ws0w
´1s´1

0 of w and s0).
First, we claim that if w “ 1, then this group is trivial:

w “ 1 ùñ rw, s0s “ 1 ùñ c “ 1 ùñ b “ 1 ùñ a “ 1 ùñ u “ 1

ùñ ti “ 1@i ùñ si “ 1@i ùñ Jw “ x1y

Next, we show that F ãÝÑ Jw otherwise. If w ‰ 1 then the commutator rw, s0s has
infinite order in G, and thus in G2. But c is a stable letter with respect to G1,
so u “ a and rw, s0s “ c freely generate xu, rw, s0sy. Therefore, xu, rw, s0sy and
xa, cy are isomorphic copies of F2 in G2 and G2, respectively, and we can think of
Jw as the the amalgamated free product of G2 and G2, with associated subgroups
xu, rw, s0sy and xa, cy. Hence, we have the following sequence of injections:

F ãÝÑ H ˚ F ãÝÑ G ãÝÑ G1 ãÝÑ G2 ãÝÑ Jw

But by assumption, F cannot be embedded in any finitely presented group satisfying
M, so Jw must not satisfy M.

Now that we have a finitely presented Jw that is trivial if w “ 1 and contains a
group F that does not satisfy M if w ‰ 1, we simply define Gw as the free product
of Jw and E (which we know does satisfy M):

Gw “ Jw ˚ E
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If w “ 1, Gw “ E ùñ Gw satisfies M. If w ‰ 1, Gw “ Jw ˚ E ùñ F ãÝÑ Jw ãÝÑ

G ùñ Gw does not satisfy M. At this point, we have reduced the word problem
for finitely presented groups to the Markov property problem for finitely presented
groups. Thus, there is no algorithm to decide if a finitely presented group satisfies
a given Markov property. �

The Adian-Rabin Theorem thus tells us that, given a finite group presentation,
there is no algorithm to determine whether or not that group is abelian, trivial,
finite, free, cyclic, simple, solvable, or torsion-free.

The Adian-Rabin Theorem also yields the undecidability of Dehn’s proposed
group isomorphism problem (for finitely presented groups) as a corollary:

Corollary 8.4. There is no algorithm to determine whether or not two finite group
presentations represent the same group.

Proof. If there were such an algorithm, we could compare any finitely presented
group G to the trivial group, but this contradicts the Adian-Rabin theorem. There-
fore, the group isomorphism problem for finitely presented groups is undecid-
able. �

We will conclude with a brief application of these group theoretic decision prob-
lems to a different area of mathematics, topology, to demonstrate the scope of such
studies. In particular, the Adian-Rabin theorem has an important consequence in
manifold theory. There is the following theorem in algebraic topology:

Theorem 8.5. For every n ě 4, every finitely presented group G is isomorphic
to the fundamental group of a closed n-manifold M . Furthermore, given a finite
presentation of G, there is an algorithm to compute a representation of such an M ,
say, as a simplicial complex.

Therefore, if there were algorithm to determine whether or not a given n-manifold
is simply connected, then given a finitely presented group G, we could compute an
n-manifold with fundamental group G, decide if that manifold is simply connected,
and consequently decide if G is trivial. This would contradict the Adian-Rabin
Theorem, and so we get the following corollary of Theorem 8.5:

Corollary 8.6. Let n ě 4. There is no algorithm to decide, given an n-manifold
M as a simplicial complex, whether M is simply connected.
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