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Abstract

We give a brief exposition of the Iwasawa theory of cyclotomic extensions, so as to discuss its relation-

ship with p-adic zeta functions. We give an overview of these connections and the arithmetic significance

of the theory, leading up to a statement of the main conjecture.
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1 Overview

We are interested in the structures of ideal class groups of number fields. This is an enormous question to

tackle in general, but an easier but still very interesting case is that of cyclotomic extensions of a given base

field. This study was initiated by Kenkichi Iwasawa in the 1950s, and has led to connections with a vast

world of arithmetic and analytic objects, which we will explore the beginnings of here.

The treatment we give of the core of Iwasawa theory will be somewhat technical but as brief as possible,

attempting to give proofs of all the core statements of the classical theory in full generality. It owes much to

the accounts given in [5], [19], and [17], which each give partial treatments. We will eschew any cohomo-

logical tools in the entirety of this essay.1

1.1 First definitions

Let F be a number field, and fix a prime p. Our basic object of study will be a tower of field extensions

F = F0 ⊂ F1 ⊂ . . . ⊂ Fn ⊂ . . .

such that Gal(Fn/F) ∼= Z/pnZ. Denote F∞ =
⋃

Fi; we will call F∞/F a Zp-extension. Note that by higher

ramification theory it is immediate that F∞/F is unramified except at the primes above p.

In particular, the basic object of study we will be interested in is the cyclotomic Zp-extension, which is

the unique Zp-extension inside the extension obtained by adjoining µp∞ - for example, when F = Q and

p is odd, this is the extension given by setting Fn as the unique field of index p− 1 inside F(µpn); here, p

ramifies totally. Most of the following will hold for arbitrary Zp-extensions; we will note when we need the

cyclotomic hypothesis.

We are interested in understanding the ideal class groups of the fields in this tower, but even this is too much

to ask for. Instead, we will set An := Cl(Fn)p the p-Sylow subgroup. In other terms, if Mn is the maximal

unramified abelian p-extension of Fn, then global class field theory tells us that An ∼= Gal(Mn/Fn). We

set M∞ :=
⋃

Mi, which is the maximal unramified abelian p-extension of F∞. We then can define A∞ as

Gal(M∞/F∞) ∼= Cl(F∞); we have A∞ ∼= lim←− An under the norm maps.

Understanding the An was our original motivation, but there is a related set of modules which will also

be important, especially in the formulation of the relation to zeta functions later. Let Nn be the maximal

abelian p-extension of Fn unramified away from p, and take N∞ =
⋃

Nn, the maximal abelian p-extension

1We phrase a little Kummer theory in a cohomological manner since it is convenient, but of course these ideas predate cohomology.
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of F∞ unramified outside the primes above p. Define X∞ = Gal(N∞/F∞). Then let Xn ∼= Gal(Nn/F∞);

again, lim←−Xn ∼= X∞.

Iwasawa’s insight, developed in his series of papers [7] [8] [9] [10] between 1956 and 1959, was that it is

possible to understand the structure of “infinity-objects” like A∞ and X∞, from which information about

the otherwise intractable finite layers can be retrieved as quotients.

We will, as is standard, use the letter Γ for Gal(F∞/F) ∼= Zp. Then X∞, under its interpretation as

Gal(M∞/F∞), has a continuous Γ-action via inner automorphisms: consider it as a subgroup of Gal(M∞/F);

the action passes to the quotient Gal(M∞/F)/X∞ ∼= Γ because X∞ is abelian. Further, it is a pro-p-group,

and hence is naturally Zp-linear.

Define the Iwasawa algebra, then, to be

Λ = Zp[[Γ]] := lim←−Zp[Γ/H]

where H runs over the finite-index subgroups of Γ; the previous discussion shows that X∞ has a continuous

Λ-action.

1.2 Structure theory

The entire theory rests essentially on the observation that, amazingly, we can identify Λ as a very familiar

object:

Theorem 1.1. There exists a topological isomorphism of rings ϕ : Λ ∼−→ Zp[[T]] sending a fixed topological generator

γ of Γ to 1 + T.2

Proof. We have a topological generator γ of Λ as a Zp-algebra, so there is at most one map sending γ 7→

1 + T. We will show such a map does exist. First, one can extend to γt for any t ∈ Zp, because (1 + T)t will

be a well-defined power series with coefficients in Zp by p-adic continuity of binomial coefficients.3

The Iwasawa algebra is, additively, the formal (potentially infinite) Zp-combinations of Zp-powers of γ,

where only finitely many terms in the sum are outside any p-adic neighborhood of zero. We can extend the

map to such sums as well, since two Z-linear combinations of powers of γ which are congruent modulo a

high power of p will map to power series whose coefficients are congruent modulo the same high power of

p. Hence we have a well-defined map ϕ.

2Why is this so amazing? It is the reason why we had to restrict to the Sylow-p: if the coefficient ring were Z or its completion at

some l 6= p, the analogous attempted definition for the Iwasawa algebra would degenerate into an infinite product which is not even

noetherian.
3Explicitly, two integers t1, t2 are congruent modulo pk , the respective binomial coefficients (t1

n ) and (t2
n ) will be as well. This is

more-or-less equivalent also to the existence of the p-adic exponential and logarithm maps, whose convergence properties as formal

series are a formal exercise to verify.
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To construct the inverse, note that 1 + T is also a topological generator, as truncated polynomials (taking

T-adic approximations) are polynomials having Taylor expansions at −1 whose coefficients are p-integral,

since they are evaluations of derivatives. We can send construct an inverse by sending 1+ T to γ, and again

we need to show that everything can be extended. Indeed, we can again extend to Zp-powers, since we

can do so for γ, and we can take arbitrary (possibly infinite) linear combinations of such powers so long as

only a finite number of the coefficients are outside any given p-adic neighborhood of zero. �

Our new description of the ring Λ gives us a very nice structure to work with. Call a monic polynomial

f (T) ∈ Zp[[T]] distinguished if all its non-leading coefficients are divisible by p. We then have the follow-

ing description of the prime ideals of the power series ring:

Theorem 1.2. Zp[[T]] has as prime ideals (p), ( f (T)) for f (T) irreducible distinguished, and the unique maximal

ideal (p, T).

Proof. This is a consequence of a pseudo-division algorithm on Zp[[T]] which can be stated as follows:

Lemma 1.3 (Division algorithm). For any power series f , g ∈ Zp[[T]] such that the coefficients of f up to degree

n− 1 are divisible by p but not the degree-n coefficient, there is a unique expression

g(T) = q(T) f (T) + r(T)

with r a polynomial of degree ≤ n− 1.

Proof. The following is an argument due to Manin. Let the head H and the tail T be linear operators defined

by

H

(
∞

∑
i=0

aiTi

)
=

n−1

∑
i=0

aiTi

and

T

(
∞

∑
i=0

aiTi

)
=

∞

∑
i=n

aiTi−n.

We wish to find q so that T(g) = T(q f ), which a few manipulations turn into

T(g) =
(

1 + T ◦ H( f )
T( f )

)
(qT( f ))

since T( f ) is evidently invertible. The operator on the RHS is unipotent mod p since p|H( f ), hence invert-

ible mod p, hence invertible; thus we obtain a q.

Finally, such an expression is unique because if q f + r = 0, we may assume that q and r are not both

divisible by p. r must be divisible by p, since modulo p, it has the only low-degree terms. But then p| f q so

p|q; contradiction. �

Given this lemma, by tne analogue of the classical Euclidean algorithm argument we obtain that Zp[[T]] is a

unique factorization domain with irreducibles p and f (T) for irreducible distinguished f . Then for general
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reasons, (p) and such ( f (T)) are precisely the height-1 primes, and (p, T) can be the only height-2 prime.

�

Iwasawa discovered an important structure theorem for modules over Λ, analogous to the structure theo-

rem for finitely generated modules over a PID. We say that two Λ-modules M, N are pseudo-isomorphic,

and write M ∼ N, if there exists a Λ-module morphism M→ N with finite kernel and cokernel.

Theorem 1.4 (Iwasawa structure theorem). Every finitely generated Λ-module is pseudo-isomorphic to a direct

sum of the form

Λr ⊕
⊕

Λ/(pri )⊕
⊕

Λ/( f j(T)
sj)

where the f j(T) are irreducible distinguished polynomials, and these canonical forms are unique up to order of the

factors.

Proof. First, note Zp[[T]] is a 2-dimensional regular local ring. All of its localizations at height-1 prime

ideals are then discrete valuation rings.

Let M be a finitely generated Λ-module, and let T be its torsion submodule. We claim that there exists a

map M → T which has finite cokernel and such that the composite T ↪→ M → T has finite kernel. Indeed,

consider hom(M, T); in particular, its localization at an arbitrary height-1 prime ideal p is hom(Mp, Tp);

furthermore, Tp = 0 for almost all p almost by definition. If T is nonzero and not finite (otherwise the

assertion is trivial), we can find some p so that hom(M, T)p is nontrivial, as by structure theory over the

DVR Λp, M is a finite direct sum of free terms and Tp, which is in turn is a finite direct sum of terms of the

form Λp/pn. Hence there is always an element with cokernel zero, and kernel zero after composition: take

a projection onto Tp or any multiple of it by an element which goes to a unit in Λ/p.

We claim there is an element in hom(M, T) whose image in each height-1 localization has cokernel zero,

and kernel zero after composition. Indeed, we only have to worry about finitely many height-1 primes,

and further, the property of mapping to a (co)kernel zero map in hom(M, T)p can be subsumed under a

congruence condition modulo some sufficiently high power of p, since adding an element of pk hom(M, T)

for k� 0 will not change the projection map.

That at least one such congruence class will have this property for each p is guaranteed because if we

represent the localization hom(M, T)p in the standard way as pairs (a, s) for a ∈ hom(M, T) and s in the

corresponding multiplicatively closed subset, we can note that the (co)kernels of (a, s1) and (a, s2) visibly

will never differ. Since the image of hom(M, T) in the localization consists of elements of the form (a, 1) (as

we can take the multiplicatively closed subset to be saturated), this guarantees us the existence of at least

one element in hom(M, T) with (co)kernel zero in the localization. Then by the Chinese remainder theorem

over our finitely many congruence conditions corresponding to height-1 p with nontrivial localizations, we

obtain an element of hom(M, T) which has trivial (co)kernel in every height-1 localization. This element
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then must have finite corresponding (co)kernel, since both are supported on codimension 2, which is also

the dimension of the ring.

We then can construct the map M → T ×M/T, which is a pseudo-isomorphism. Hence we can separate

into the torsion-free and the torsion cases. That in the torsion case we always have a pseudo-isomorphism

T → ⊕
Λ/piri follows from the exact same localization argument we gave above - in fact, for two T, T′ with

the same corresponding “canonical” form of this type, it also gives pseudo-isomorphisms in both directions

between T and T′, establishing that for torsion modules, pseudo-isomorphism is an equivalence relation.

Combined with the last portion of this proof, this shows that the representation as above is unique.

For M torsion-free, we take the natural map to the double dual M → hom(hom(M, Λ), Λ); this map must

be an isomorphism localized at each height-1 prime, hence by the same considerations as above is a pseudo-

isomorphism. Replacing M by its image, we obtain a pseudo-isomorphic module which is reflexive - that

is, isomorphic to its double dual. It is a general result of commutative algebra that such modules on 2-

dimensional regular local rings are free; see lemma 6 of [19] for details. �

Returning to the arithmetic content of the theory now that our analytic framework is in place, the key point

is that we can extract knowledge of the finite class groups Xn from X∞.

1.3 Quantitative results

We can now reap the fruits of all the structural knowledge we have obtained.

Theorem 1.5. Let ωn ∈ Λ correspond to the power series (1 + T)pn − 1. Then Xn ∼= X∞/ωnX∞.

Proof. The group Xn ∼= Gal(Nn/F∞) is the quotient of Gal(M∞/F∞) by Gal(M∞/Nn), which is the closure

of its commutator subgroup, by general considerations. Gal(F∞/Fn) is topologically generated by γpn
, so if

we choose a lift h in Gal(M∞/F∞), the latter group is topologically generated by h and X∞. For any x ∈ X∞,

we have that [h, x] = γpn
x− x = ωnx, so indeed Xn ∼= X∞/ωnX∞. �

We can deal with An along the same lines:

Lemma 1.6. We also have A∞/ωn A∞ ∼= An, and the Sylow-p of the class group of F∞ is a finitely generated torsion

Λ-module.

Proof. Let H∞ be the p-Hilbert class field of F∞, and likewise Hn for Fn.

We have a map

A∞ ∼= Gal(H∞/F∞)→ Gal(HnF∞/F∞) ∼= Gal(Hn/Fn) ∼= An.

The kernel is Gal(H∞/HnF∞), which is precisely the commutator of Gal(H∞/Fn). But this group is topo-

logically generated by Gal(H∞/F∞) and γpn ∈ Gal(F∞/F), so just as before we have An ∼= A∞/ωn A∞. The

LHS is a finite group for all n, so the result follows by the structure theory. �
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We will come back to this to calculate the order of An at the end of the section. For now, however, we

can use this to further understand the structure of Xn. In the next theorem, we let r1, r2 as usual be the

number of real and complex places of F, respectively. Notice that the number of real and complex places of

Fn is always pnr1, pnr2, since real places extend solely to real places - true by parity for p odd, and true by

inspection for p = 2.

Theorem 1.7. The Zp-free part of Xn has rank r2 pn + δn for a bounded series of constants δn.

Proof. Write Up,n for the local units of Fn at p, and Up,1,n for those which are 1 mod p. Let En be the global

units, and E1,n those which are 1 mod p for each p above p. Let ϕ : En → ∏p|p Up,n be the natural diagonal

map. Then Artin reciprocity tells us that Gal(Nn/Mn) ∼= ∏p|p Up,1,n/ϕ(E1,n). What is the Zp rank of this

thing? Via the p-adic logarithm map, each term on the top is of rank equal to the degree of the extension of

local fields induced by Fn/F, so the total Zp-rank of the top is [Fn : Q] = pn[F : Q] = pn(r1 + 2r2).

If we take δn = rkZ(En) − rkZp(ϕ(E1,n)), then, using Dirichlet’s unit theorem, we see that the rank of

Gal(Nn/Mn) is pnr2 + 1 + δn. There is an exact sequence

0→ Xn → Gal(Nn/Fn)→ Gal(F∞/Fn)→ 0

where the third term is Zp, so Xn has rank pnr2 + δn.

It remains to show that δn is bounded. Indeed, certainly En,1 is finite-index in En and hence has the same

rank; thus, we may pick δn free generators in En,1 which map under ϕ to pm-powers in ∏p|p Up,n for arbi-

trarily high m. Adjoining the mth roots of these generators to F(µp∞) then gives an unramified extension

by Kummer theory, whose Galois group Bm,n is a product of δn cyclic p-groups whose order is exponential

in our choice of m, i.e. |Bm,n| ∼ pmδn .

To conclude, we only need observe that in fact Bm,n is a quotient of Gal(H(F(µpmax{m,n}))/F(µpmax{m,n})),

where H denotes the p-Hilbert class field construction. This is because we only need the base field to

contain units of Fn and the pmth roots of unity for the Kummer theory to work. The result of theorem 1.6

applies just as well to the “completed” cyclotomic Zp-extension over the base F(µq) ⊂ . . . ⊂ F(µp∞), for

q = p when p odd and q = 4 when p = 2. Hence Gal(H(F(µpmax{m,n}))/F(µpmax{m,n})) is one of the ωk-

quotients of the torsion module Cl(F(µp∞))p, where k differs from max{m, n} by a constant (since F may

already contain some of the roots of unity, causing the “completed” extension to start at an offset).

Suppose the canonical form of Cl(F(µp∞))p as a Λ-module has r components corresponding to quotients by

height-1 primes. Now fix some m and let n grow. Then for large n, by some calculations by an application

of the division algorithm, summands corresponding to Λ/(pr, ωn) have cardinality prpn
by an application

of the division algorithm, and summands corresponding to Λ/( f (T), ωn), deg f = s, have cardinality psn.

Thus the total cardinality is asymptotically either ∼ prpn
or ∼ psn, for some fixed constants r, s. Then in

particular, it is impossible for it to be ∼ pmδn if δn is unbounded. Unboundedness excludes the latter case
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with linear exponent, but δn cannot possibly grow exponentially since the Z-rank of En does not even grow

exponentially, so it is impossible for it to be the former case either. Hence the result. �

Addendum 1.8. Leopoldt conjectured in [15] that δn = 0 always. The more well-known form of the con-

jecture is in terms of the p-adic regulator Rp, defined in analogy to the usual regulator: choose a Z-basis

{ei} for the rank-(r1 + r2 − 1) module E1. There are r1 + r2 ways of embedding E1 into Cp; then Rp is the

absolute value of the determinant of the matrix whose (i, j)th entry is the image of Logp(ei) under the jth

embedding with a column removed, where we have written down the Iwasawa logarithm on Cp. That

this is independent of the choices we have made is proven in much the same way as in the archimedean

case. Equivalence of the two formulations of the conjecture is formal. Also as in the global case, the p-adic

regulator is closely tied to p-adic zeta functions, and a third, analytic, formulation can be stated (see later).

The conjecture is known when the Fn are abelian over Q, due to Brumer in [1], and we will actually prove

a specific case later in this section.

Theorem 1.9. X∞ is a finitely generated Λ-module, and its rank is r2.

Proof. Finite generation is a local property, and there is only one closed point to check; namely, (p, T). But

the reduction of X∞ at (p, T) is X0/pX0 from above, which is finite.

The free rank follows immediately from the structure theorem and the ranks of the Xn from above. �

Let us discuss the case of the cyclotomic Zp-extension over F = Q. Notice we have the exact sequence

0→ Gal(Nn/MnF∞)→ Xn → An → 0,

Moreover, we know that Gal(Nn/MnF∞) ⊕Zp ∼= Gal(Nn/Mn) ∼= ∏p|p Up,1,n/ϕ(E1,n), coming from the

split exact sequence

0→ Gal(Nn/MnF∞)→ Gal(Nn/Mn)→ Gal(MnF∞/Mn)→ 0.

With this setup, we obtain:

Corollary 1.10. If F = Q and we take the cyclotomic Zp-extension, An ∼= Xn. In particular, Leopoldt’s conjecture

holds for Q.

Proof. From the above, we need to show that MnF∞ is already the maximal abelian p-extension of Fn un-

ramified outside of p. Stated differently, we need for F∞ to be the maximally wildly ramified extension of

Fn, as it is for Q. Indeed, suppose otherwise; then there must be an abelian extension K/F∞ of degree p

such that K/Q is nonabelian. But there are no nonabelian group extensions 0→ Z/p→ (?)→ Zp → 0, so

this is a contradiction.

From the previous discussion, we find also that ∏p|p Up,1,n/ϕ(E1,n) ∼= Zp, which also establishes that

δn = 0 as promised, and hence that Rp 6= 0 for the fields in the cyclotomic Zp-extension of Q. �
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Our original goal, to understand the An, is also within reach. To conclude this section, we thus exhibit

Iwasawa’s theorem on the orders of the groups An.

Corollary 1.11. There exist constants µ, λ, ν such that the power of p dividing the class group of Fn is µpn + λn + ν

for n� 0.

Proof. From theorem 1.6 A∞ is a finitely-generated torsion Λ-module, and A∞/ωn A∞ ∼= An. This compu-

tation is essentially the one we already did in theorem 1.7; µ corresponds to the sum of the exponents of

the summands Λ/(pri ) in the canonical form of X, λ to the sum of the degrees of the polynomials in the

summands Λ/( f j(T)). �

Iwasawa conjectured that µ = 0 and reduced this problem to a congruence condition between certain

Bernoulli numbers, though discovered it was false for some non-cyclotomic Zp-extensions. Ferrero-Washington

proved the conjecture for cyclotomic Zp-extensions of abelian number fields in [4], giving us the remark-

able result that the growth of vp(|Cl(Fn)|) is linear. This is much stronger than any bound which can be

obtained by analytic methods.

2 Characteristic power series

In this section, we will look at a similar situation as before, but will mostly deal with the “completed”

cyclotomic Zp-extension over F(µq) (recall q = p or 4) with maximal extension F(µ∞). The aim is to obtain

an understanding of the Galois-module structure of the objects involved. We follow [5] closely.

2.1 Setup

We write G∞ = Gal(F(µ∞)/F), ∆ = G(F(µq)/F). Γ = Gal(F(µ∞)/F(µq)), as consistent with before; G∞ is

a product of the latter two groups. Let χ be the p-adic cyclotomic character on G∞, and let θ and κ be its

restrictions to ∆, Γ.

Define N∞ to be the maximal abelian p-extension of F(µ∞) as before, and X∞ = Gal(N∞/F∞), which is a

G∞-representation by inner automorphisms. Define An, A∞ analogously as in the previous section.

Denote by Y the torsion part of X∞; considering it as a representation of ∆, we may decompose it into

the subspaces on which ∆ acts by θi, since ∆ is an abelian group of order prime to p, so a semisimplicity

argument can be constructed for the Zp-group algebra. The powers of the cyclotomic character θi are the

characters of ∆; denote by ei the orthogonal projector associated to that character in the group algebra. Then

by the structure theory of the previous section, we can write

eiY ∼
ri⊕

j=1

Λ/( f ji).
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Let fi = ∏j f ji; we call this the characteristic power series of Yi, well-defined up to a unit. This will be the

analytic object coming from the arithmetic side of the theory, which will have the relation to zeta.

We can use Kummer theory to relate this to class groups. Gluing together the long exact sequences associ-

ated to the short exact sequences

0→ µpn → N×∞ → N×∞ → 0

yields the isomorphism of Galois modules

hom(X∞, µp∞) ∼= V∞ := lim−→(F(µp∞)× ∩ (M×∞)pn
)/(F(µp∞)×)pn

.

We can also write V∞ as the kernel of the map (Qp/Zp)⊗ F(µp∞)× → (Qp/Zp)⊗ I(p)(F(µp∞)), where the

last group is the ideal group of F(µp∞) away from primes dividing p.

Further, the long exact sequences associated to the Kummer sequences

0→ µpn → O×F∞
→ O×F∞

→ 0

afford us a short exact sequence

0→ (Qp/Zp)⊗O×F(µp∞ )
→ V∞ → A∞ → 0.

2.2 Arithmetic to analytic

We now restrict to the case of F totally real, and p 6= 2. In this case, eiO×F(µp∞ )
= 0 for i odd: the action

of ∆ on the units of F(µpn + µpn) factors through a quotient by the subgroup of index 2 corresponding

to “complexifying”, whereas θi does not factor through any such quotient for parity reasons. We use the

following lemma of Hasse:

Lemma 2.1. The units of a totally imaginary extension of a totally real field either are generated by the units of the

totally real field and the roots of unity, or contain an index-2 subgroup generated by them.

Proof. Analyze the action of σ− 1 on the units of the extension, where σ is complex conjugation. For details,

this is Satz 14 in [6]. �

Corollary 2.2. eiV∞ ∼= ei A∞ as G∞-modules for i odd.

Proof. The units of F(µpn) and F(µpn + µpn) thus coincide after tensoring with Qp/Zp since p 6= 2, so

indeed ei((Qp/Zp)⊗O×F(µp∞ )
) = 0. This then follows from the earlier exact sequence. �

Putting it all together, we obtain:

Corollary 2.3. eiX∞(−1) ∼= hom(e1−i A∞, Qp/Zp) for all even integers i.
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Proof. The only part which is not immediate is that eiX∞ = eiY; i.e. that the free part of X∞ contributes

nothing. But the modules hom(e1−i A∞, Qp/Zp) are Λ-torsion, so this is true. �

A slight variation of the power series fi ∈ Λ fits more naturally into the analytic world we will enter. First,

let κ be the cyclotomic character on Gal(F(µ∞)/F(µp)), and set u = κ(γ), so that u is the unit which gives

the action of γ on µp∞ . Then a short formal manipulation gives us

hom(ei A∞, Qp/Zp) ∼
r1−i⊕
j=1

Λ/( f(1−i)i(u(1 + T)− 1)).

Thus, we set gi(T) = f1−i(u(1 + T) − 1) for i odd. The power series which will be compared to zeta

functions are given by Gi(T) = gi((1 + T)−1 − 1) = f1−i(u(1 + T)−1 − 1), which are those corresponding

to the parts of the actual class group ei A∞: to see this, note that taking the pro-p dual changes the action of

γ to γ−1, which corresponds to the power series substitution 1 + T 7→ (1 + T)−1, i.e. T 7→ (1 + T)−1 − 1.

For now, we note the very suggestive fact that we have the following analogue of the analytic class number

formula:

Theorem 2.4. Let F be totally real. G1(us − 1)/(us − u) has a pole at s = 1 if and only if Rp 6= 0. In this case, it

is a simple pole whose residue differs by a p-adic unit from

2d−1hFRp√
∆F/Q

∏
p|p

(1− (Np)−1)

where d = [F : Q], hF = |Cl(F)|, ∆F/Q the discriminant of the extension F/Q.4

Proof. The key step is to compute the index of the embedding of the 1-global units in the product of the

1-local units, and use the local-global discriminant relation. The proof itself is long and technical, involving

chaining together many algebraic intermediary objects; it is given in its entirety in the appendix to [5]. �

This gives yet another way to state Leopoldt’s conjecture, for totally real fields.

2.3 Analogy and motivation

Before moving on to the next section, we take a moment to mention the appearance here of an important

analogy, which in some ways clarifies everything we have done. This is the number field/function field

analogy which underlies vast swathes of number theory; its influence on arithmetic thought in the mid-

20th century is captured in André Weil’s famous 1940 letter from prison to his sister Simone, which can be

found in [22].5

4Apologies for the overloaded notation, but the association of ∆ to the discriminant is extremely strong.
5On a related note, André Weil perhaps has the distinction of being the greatest mathematician of all time who was less interesting

than their sibling.
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Indeed, our topic is the number field incarnation of work by Weil himself on the function field side. If K is

the function field of a algebraic curve over Fq,6 the analogous construction to our cyclotomic towers is to

consider is the base changes to Fqp , F
qp2 , . . .; i.e., extensions of the field of coefficients. In this setting, every

tower of extensions of the field of coefficients actually is very well-understood, thanks to Weil’s proof of the

conjectures which bear his name,7 specifying the behavior of the local zeta function ζK(s) associated to the

curve.

In particular, this zeta function can be proven to satisfy

ζk(s) =
P(q−s)

(1− q−s(1− q1−s))

where P is a polynomial of degree 2g for g the genus of the curve, and is the characteristic polynomial of

the geometric Frobenius acting on the Jacobian of the curve.

In our context, the Jacobian (which, recall, classifies degree zero line bundles, so is analogous to the class

group8) is replaced by (X∞)−, the part of X where complex conjugation acts by −1.9 The action of the

Frobenius is replaced by the action of the generator γ of the Galois group.

The analogue of Iwasawa’s conjecture that µ = 0 is true in the geometric case, following from computations

with the polynomial P; in fact, this was the motivation for the the conjecture in the first place. Further work

has been done in this direction, building on the fact that the coefficient λ is analogous to the genus of the

curve; see [11].

Most significantly, however, the characteristic power series also come from zeta/L-functions on the number

field side; this is the topic to which almost the entirety of the rest of this essay is devoted. Apocryphally,

Weil predicted the existence of such a result at the time he was formulating his conjectures, over a decade

before Iwasawa’s work.

3 p-adic L-functions

In this section, we will define the p-adic L-functions, going through several different constructions so as to

provide a better understanding of these objects. The essential idea is to p-adically interpolate the rational

special values of an L-function (more precisely, of different L-functions “twisted” by a power of a cyclotomic

character corresponding to the argument) at the nonpositive integers. The result will turn out to be not
6For simplicity and fidelity to the classical treatment, we take a smooth projective model of the function field.
7These Weil “conjectures” are actually theorems for general varieties, the last having been proven by Deligne in 1974.
8In fact, it is the class group of the ring of integral elements of the function field, as is not too difficult to prove: classes of line

bundles over this affine geometric object are in correspondence with degree zero line bundles over the projective closure since the

effect of the extra points is to allow one to move around the degree. With reference to the analogy with the Jacobian, in the case where

µ = 0 the class group A∞ even is quasi-isomorphic to the Tate module-like (Qp/Zp)λ.
9This is another way of restricting ourselves to the odd characters, as we did above; the entire theory can be easily reformulated in

terms of the submodules on which complex conjugation is −1, in place of what we did.
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just continuous, but a p-adic meromorphic function (and analytic except in certain cases); the existence

of this object helps understand the behavior of these special values, which are themselves related to class

numbers, along with being an interesting arithmetic object in its own right which provides the “zeta” part

of the statement of the main conjecture.

3.1 Motivation

We begin by showing that what we are doing is feasible and interesting. First, we define the values we wish

to interpolate. Pick a totally real extension F/Q and a continuous multiplicative character χ of its absolute

Galois group; we can identify it with a character of some ray class group. We can hence set

LS(χ, s) = L(χ, s)∏
p|p

(1− χ(p)(Np)−s).

where S here is the set of primes p dividing p; i.e. we are simply removing the Euler factors above p. The

values LS(χ, n) at integers n ≤ 0 are those we wish to interpolate.

Theorem 3.1. Each LS(χ, n) for n ≤ 0 is an algebraic number contained in Q(χ).

Proof. Certainly the removed Euler factors satisfy this, so we need to show that L(χ, n) does as well. Notice

that for the Riemann zeta function, this follows from Euler’s classical calculation for positive even integers

paired with the functional equation, which gives us the explicit formula ζ(χ, n) = B1−n/(1− n) where Bk is

the kth Bernoulli number, for negative odd integers n. The even values vanish from the functional equation;

this is the analytic/zeta incarnation of the necessity of restricting to (X∞)−.

Euler’s method points to the technique in general, though complex analysis is required for rigor: the iden-

tity

∑
a

χ(a)e−(Na)x =
∞

∑
n=0

L(χ,−n)(−x)n

n!
,

where a runs over ideals of F, can be deduced by calculating the inverse Mellin transform of L(χ, s)Γ(s) in

two ways: one by moving the vertical line of integration to −∞ and adding up the residues, the other the

Dirichlet series/Fourier series dictionary.

By comparing power series coefficients it is evident that the L-values are contained in Q(χ). In the case of

base field Q, we can make a few power series manipulations to obtain the formula

L(χ, n) = − f(χ)−n

1− n

f(χ)

∑
i=1

χ(i)B1−n

(
i

f(χ)

)
where Bk is the kth Bernoulli polynomial; often, this is written using the notation

Bn,χ = f(χ)n−1
f(χ)

∑
i=1

χ(i)Bn

(
i

f(χ)

)

13



and are referred to as “generalized Bernoulli numbers.” Then we can express this last formula as L(χ, n) =

−B1−n,χ/(1− n), in parallel with the result of Euler’s classical calculation.10 �

Why do we localize away from p? The point is to make the values we desire to interpolate p-adically

continuous, so that our task is actually feasible.

To illustrate, in the simple case where we are just taking the Riemann zeta function, Kummer discovered

the congruences

(1− pm−1)
Bm

m
≡ (1− pn−1)

Bn

n
(mod pk)

whenever m ≡ n (mod ϕ(pk)). Kummer’s work which led him to this result also sheds light on the interest

of these values. The analytic class number formula allows one to deduce the following fact, which shows

the arithmetic importance of our zeta functions:

Theorem 3.2 (Kummer’s regularity criterion). p divides the class number of Q(ζp) if and only if p does not divide

the numerators of B2k for 1 ≤ k ≤ (p− 3)/2.11

Proof. Write hp for said class number; we can factor it as h+p h−p , the parts of the class group which are acted

on by complex conjugation by 1 and −1 respectively; alternately, h+p is the class number of the maximal

totally real subextension.

Kummer reduced this to the case of the negative class number; i.e., showed that p|h+p only if p|h−p .12 We omit

the argument here, as it involves a detailed examination of cyclotomic units; it can be found in Kummer’s

original paper [14].

Having reduced to this case, we may apply the analytic class number formula to the full extension Q(ζp)

and its maximal real subextension Q(ζp)+ = Q(ζp + ζp); the quotient of the two equations yields

∏
χ(−1)=−1

L(χ, 1) = π(p−1)/2 ·
RQ(ζp) ·

√
|∆Q(ζp)+ | · 2

RQ(ζp)+ ·
√
|∆Q(ζp)| · 2p

· h−p .

The functional equation tells us that

∏
χ(−1)=−1

L(χ, 1) = ∏
χ(−1)=−1

iπτ(χ)

f(χ)
B1,χ.

10Notice that for odd characters, it is the even values which are the zeroes, and vice versa; naturally, twisting by an odd character

flips the parity that contains the interesting information. This is why we insist on totally real base extensions, since otherwise the

presence of both odd and even twisted L-functions destroys all zeta information at the special values we are considering. The resulting

values, and hence the p-adic L function, would all be zero.
11A regular prime p is precisely one for which p does not divide the class number of Q(ζp). Kummer’s motivation here was that

one can give a very direct argument for Fermat’s last theorem for regular primes; unfortunately, there are infinitely many irregular

primes.
12Vandiver conjectured that, in fact, p never divides p|h+p ; this is still open.
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where τ(χ) is the Gauss sum associated to χ. Notice that τ(χ) and τ(χ) pair to give
√

f(χ), so this is

actually

π(p−1)/2 ∏
χ(−1)=−1

√
f(χ)−1 = π(p−1)/2(−1)(p−1)/4(−1)(p−1)/2

√
|∆Q(ζp)|√
|∆Q(ζp)+ |

the second equality by the conductor-discriminant formula and checking the signs.

An examination of Hasse’s argument on unit groups mentioned earlier shows that the ratio of regulators

RQ(ζp)/RQ(ζp)+ is equal to 2rk(U) = 2(p−1)/3. Putting this all together, we obtain the formula

h−p = 2p ∏
χ(−1)=−1

(
−1

2
B1,χ

)
.

By a manipulation of the Mellin transform computation we did earlier, one can show that the generalized

Bernoulli numbers we are concerned with satisfy the power series relation

f(χ)

∑
k=0

χ(k)ekt

ef(χ)t − 1
=

∞

∑
n=0

Bn,χ
tn

n!

When χ is nonprincipal, by reading off coefficients one obtains that

B1,χ =
1

f(χ)

f(χ)

∑
r=1

χ(r)r.

Pick a generator ω of the character group of Gal(Q(µp)/Q); if we consider the roots of unity as sitting

inside Cp rather than C, we can identify it with the Teichmüller character. We find hence that

B1,ωp−2 =
1
p

p−1

∑
r=1

rω−1(r) ≡ p− 1
p

(mod Zp).

We can thus write 2p(−B1,ωp−2 /2) ≡ 1 (mod p) and strike off those terms. For the other terms correspond-

ing to ω, ω3, . . . , ωp−4, a generalized version of the Kummer congruences shows that

B1,ωk ∼=
Bk+1
n + 1

(mod p)

from which the result follows. This, as mentioned, is possible to prove directly with congruence manipu-

lations, using only the original Kummer congruences, as Kummer himself did. However, we do not cover

this, because it is also a manifestation of a fact that we will see later in the analytic properties of p-adic

L-functions: namely, that their power series expansions at s = 1 have all coefficients of nonconstant terms

divisible by p (except in special cases).13 �

13We see here hints of a much stronger arithmetic/analytic connection that we do not yet have the tools to deal with: notice the sim-

ilarity in our expression of h−p to the breakup of zeta into L-functions and the decomposition of the class group into Galois eigenspaces

from section 2. Indeed, a refinement of our argument shows that in fact the decomposition of the class group into these irreducible

representations does correspond to the decomposition into L-functions, or equivalently to the values of zeta at negative integers if we

local at the behavior modulo p. This is one direction of Herbrand’s theorem, which follows from the main conjecture.
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Analogues of the Kummer congruences also hold for the “generalized Bernoulli numbers,” and this analo-

gously allows the construction of p-adic L-functions in general over Q.14 It is hence theoretically possible

to first prove our desired congruences (as Kummer did for the zeta case), and hence construct the desired

L-functions; this was historically the first construction of the p-adic zeta function for Q by Kubota and

Leopoldt. We will have to end up doing work equivalent to this by the conservation of difficulty in any

case, though often in different guises.

How do these congruences relate to the construction of the L-functions, more explicitly? The point is that

a function defined at a dense subset of Zp can be p-adically interpolated if and only if it is p-adically

continuous, by taking limits. The condition of being p-adically continuous is precisely that of the function

Lp(χ, s) satisfying Lp(χ, m) ∼= Lp(χ, n) modulo a high power of p whenever m and n are congruent modulo

a high power of p, i.e. exactly Kummer-like congruences. The (p− 1) factor in ϕ(pn) is necessary as well,

because rather than interpolating the values LS(χ, n), the values to be interpolated are the twisted L-values

LS(χωn−1, n), and ω is of order p − 1; in this case, the dense subset of nonpositive integers which are 1

(mod p − 1) give us the values which the Kummer congruences allow us to interpolate. The essence of

the construction, then, is that this leads to the in-between values to be twisted L-values (which can also be

expressed using congruences), and that the result is p-adic analytic (except possibly at 1).

Maybe this is unsatisfying. Why should we expect that p-localization gives rise to Kummer-type congru-

ences, allowing us to p-adically interpolate? As mentioned, Kummer stumbled across them when proving

his regularity criterion, but the calculations do not provide much conceptual satisfaction. One way to think

about it is that in removing the terms of a Dirichlet series corresponding to a prime, we are forcing the

conductor of the associated character to be divisible by p. This has to be the case when we look at the arith-

metic side of things, since the characters of the totally ramified extension F(µp)/F all satisfy this. Indeed,

this can be viewed as a sort of inverted version of the l-adic philosophy; the total ramification of p in the

tower of extensions we are considering means that we in some sense are throwing away all information

about behavior at that prime, and thus we can use characteristic p objects (and inverse limits thereof) to

fruitfully study the resulting arithmetic.

3.2 Analytic constructions

We first outline a very explicit and direct construction using the generalized Bernoulli formula derived

above, though it has the disadvantage of only working over Q. Let us write the formula down in the

slightly modified form

L(χ, n) =
1

f(χ)(n− 1)

f(χ)

∑
i=0

χ(i)
in−1

∞

∑
j=0

(
1− n

j

)(
f(χ)

i

)j
Bj.

14In general, formulas are not known for arbitrary real base extensions. Siegel gave formulas for the real quadratic case in [20].
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We have used the classic interpolative trick of replacing the finite sum with an infinite one which collapses

to the finite case when 1 − n is a positive integer. This almost looks like it can be directly interpolated

by replacing n with an arbitrary p-adic variable s, but it cannot since the values are not even p-adically

continuous; indeed, by inspection, the infinite sum cannot converge.

We need to multiply by the localization factor 1 − χ(p)p−n, but it turns out one other manipulation is

necessary: instead of using the expression

Bn,χ = f(χ)n−1
f(χ)

∑
i=1

χ(i)Bn

(
i

f(χ)

)
for Bn,χ, it turns out from a short power series computation that it is equivalent to replace the role of f(χ) in

this sum with any integral multiple thereof; we thus write instead

Bn,χ = F
F

∑
i=1

χ(i)Bn

(
i
F

)
where F is the least common multiple of f(χ) and q, which is either p or 4 (for typical persnickety 2-

reasons).15 Then our total expression becomes

(1− χ(p)p−n)L(χ, n) = (1− χ(p)p−n)
1

F(n− 1)

F

∑
i=0

χ(i)
in−1

∞

∑
j=0

(
1− n

j

)(
F
i

)j
Bj.

This gives us the presence of increasing powers of F, divisible by q, which is promising for convergence

purposes. Likewise, the localization factor allows us to remove p from denominators. Knowing we have to

twist, we can turn this by a change of characters into

(1− χ(p)ωn−1(p)p−n)L(χωn−1, n) =
1

F(n− 1)

F

∑
(i,p)=1

χ(i)〈i〉1−s
∞

∑
j=0

(
1− s

j

)(
F
i

)j
Bj.

where ω is the Teichmüller character considered as a Dirichlet character, and 〈−〉 is defined by 〈a〉ω(a) = a.

Theorem 3.3.

Lp(χ, s) :=
1

F(n− 1)

F

∑
(i,p)=1

χ(i)〈i〉1−s
∞

∑
j=0

(
1− s

j

)(
F
i

)j
Bj.

converges on the open disk of radius qp1/(1−p) in Cp, and on that disk defines a p-adic analytic function when χ is

nonprincipal, and a p-adic meromorphic function with a simple pole at s = 1 with residue (p− 1)/p otherwise.

Proof. We have given all the main ideas for the necessary manipulations; the rest is a few formal results in

p-adic analysis which we do not cover here. For details, consult chapter 6 of [17]. �

As promised, analytic properties of these functions allow recovery of congruences.

Corollary 3.4. If χ is nonprincipal and pq does not divide f(χ), then the p-adic power series expansion of Lp(χ, s)

at 1 has all nonconstant coefficients divisible by p, and integral constant coefficient.

15Actually, F can be any multiple of (f(χ), p); it makes no difference to the final definition of the L-function.
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Proof. Again, see chapter 6 of [17]; this is painstaking analysis of the explicit formula given above. �

The Kummer congruences follow formally from this, as do the congruences

B1,ωn ≡ Bn+1

n + 1
(mod p)

which we needed earlier, for odd n such that p− 1 does not divide n + 1.

The second analytic construction, using p-adic integration, is due to Mazur [16], and is interesting for its

conceptual clarity and the presence of a p-adic analogue of the Mellin transform. We will consider for now

only the case over Q because it is easier to state with the tools that we have.

The main idea is that one can define a suitable p-adic measure on G∞ ∼= Z×p , i.e. a Qp-functional on the space

of locally constant functions whose value on indicator functions of compact-open subspaces is p-adically

bounded, so that Riemann sum integrals can be defined. The values −(1− pk−1)Bk/k can be expressed as

an integral against this measure, which gives the p-adic zeta function as a “Mellin transform” when n is

replaced with a general p-adic variable.

Essentially, we are able to simply define the measure to do what we want in terms of the Bernoulli numbers

thanks to Euler’s formula. The work of proving the Kummer congruences (since of course somehow this

work needs to be done) is hidden inside the analytic manipulations needed to prove that we have indeed

defined a measure.

Indeed, we first define a family of p-adic distributions (that is, functionals on the space of locally constant

functions) on the whole of Zp by specifying that µk(a + pnZ) = pn(k−1)Bk(a/pn). This certainly is not p-

adically bounded, but can be “regularized” by setting µk,α(U) = uK(U)− α−kµk(αU) for U compact-open,

and α some arbitrary p-adic unit.

Theorem 3.5. µk,α defines a measure on Zp. Furthermore,∫
U

dµk,α = k
∫

U
xk−1dµ1,α

for any compact-open U.

Proof. Manipulations of Bernoulli generating functions. See chapter 7 of [17]. The latter statement is essen-

tially the Kummer congruences in disguise, and can be written in the form

dkµk,α(a + pNZp) ∼= dkkak−1µ1,α(a + pNZp) (mod pN)

where dk is a term which clears all the denominators of the coefficients of the kth Bernoulli polynomial. �

µk,α does what we want it to: µk,α(Zp) = (1− α−k)Bk, so we find that µk,α(Z
×
p ) = (1− α−k)(1− pk−1)Bk.

Hence we have that

−(1− pk−1)Bk/k =
1

α−k − 1

∫
Z×p

dµk,α =
1

α−k − 1

∫
Z×p

xk−1dµ1,α.
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Here is our p-adic Mellin transform. However, we can not simply replace 1− k with s; we have no guarantee

the result is p-adically continuous, since we do not have such continuity results on varying the integrand

as parameterized by a p-adic variable; in fact, it is not continuous. After all, recall that we do not ever

construct a p-adic zeta function which interpolates all the untwisted special values.

The idea becomes clearer if we view it as imitating Tate’s idea from his famous thesis of the argument of

the zeta function coming from the character one is integrating over (up to some simple factor); in this case,

instead of the complex characters of the ideles, the relevant character group is homc(Z×p , Q×p ),16 which is

canonically isomorphic to Z/(p− 1)×Zp, by specifying where the root of unity ω(1) goes, and where the

topological generator exp(1) goes. The p-adic integral is a continuous operator on this group, so in this

way, it gives a natural domain for the argument. Indeed, it is customary to define

ζp,s0(s) =
1

α−s0+(p−1)s − 1

∫
Z×p

xs0+(p−1)s−1dµ1,α

with (s0, s) ∈ Z/(p− 1)×Zp, where s0 is identified with its representative in {0, . . . , p− 2}. For each fixed

s0, this function is referred to as a “branch” of the p-adic zeta function. This provides a conceptual reason

why we must interpolate zeta/L-values which are “twisted” based on residue modulo p − 1, instead of

being able to interpolate all the values of a single complex L-function. This perspective is developed in [12].

This choice of representatives is kind of artificial in the context of the weight space, but is the convention

since it aligns more naturally with the interpolation. To make the relationship to the weight space more

comprehensible, the integrand should look like ω(x)s0 · 〈x〉s1 , in which case s0 can genuinely be thought

of as a class modulo (p − 1). Indeed, if we fix s0 = 0 here and take s = −s1 as the argument, this latter

formulation recovers for Lp(χ0, s) the formula

1
〈α〉s−1 − 1

∫
Z×p
〈x〉−sdµ1,α.

The procedure for more general L-functions, over more general fields, is not very different, but requires one

to explicitly prove strong Kummer-type congruences, which will be established in the next section. We will

briefly mention this generalization at that point.

3.3 Algebraic theory

From this point forward, we will insist p is an odd prime, because the algebraic theory becomes rather

finicky for p = 2. The construction of p-adic L-functions does in fact go through for p = 2 with only minor

changes, as we saw via the analytic constructions, but the main conjecture needs significant reworking

which we will not undertake, so there is no reason for us to accomodate for it.
16Iwasawa calls this the weight space. Notice that just as characters of the ideles are the same as characters of the absolute abelian

Galois group, elements of the weight space are the characters of the Galois group of the total composite of our tower of extensions.
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As before, F is a totally real field, and we will often refer to the Zp-extension given by the cyclotomic

extension with base field F(µp). G∞, ∆, and Γ are defined with respect to this cyclotomic extension as in

section 2.

What are, actually, the p-adic L-functions? Our two analytic constructions defined them as meromorphic

(analytic when χ is nonprincipal) functions from a disk in Cp to Cp, but eventually they will be compared

to the “characteristic power series” Gi(T), which live in Λ.

Let us think of Λ ∼= Zp[[T]] as an algebra of functions on Zp, where the evaluation-at-s homomorphism

is given by substituting s for T; note that these homomorphisms are only well-defined for |s|p < 1 for

convergence reasons.

The p-adic L-functions do not live in Λ, first because the zeta function has a pole, and second because as

mentioned previously, the L-functions can take on non-Zp values in Qp(χ) for some character χ. Hence,

we will often want to consider the extended Iwasawa algebras Λχ
∼= Λ⊗Z Q(χ), as well as their fields of

fractions Q(Λχ).

Let ω be the cyclotomic character for ∆.17 Axiomatically, Lp(χ, s) can be specified then as the unique ele-

ment of Q(Λχ) such that:

(a) Meromorphicity: if the degree |∆| divides i, (γ− u)Lp(χ, s) ∈ Λχ. Else, Lp(χ, s) ∈ Λχ.

(b) Interpolation: under the evaluation homomorphism induced by κn, κn
∗ : Λχ → Cp, (γ− u)Lp(χ, s) maps

to κn
∗(γ− u)LS(χωn−1, n) (or, as the case may be, Lp(χ, s) maps to LS(χωn−1, n) for all integers n ≤ 0).18

As the names suggest, these correspond precisely to the two specifying conditions of meromorphicity and

interpolating the special values of the localized complex L-function; the previous section’s constructions

show that these are enough to specify Lp(χ, s) uniquely.

Note that s is not the formal variable T. Our construction will produce functions G(T, ωi) ∈ Q(Λω) ∼=
Q(OQp(ω)[[T]]), and we will end up setting Lp(χ, s) = G(us − 1, ωχ−1). It is then visible that the factor

γ− u corresponds to removing a simple pole at s = 1, and that κn
∗ corresponds to evaluation at s = n, since

sending γ 7→ un amounts to sending T 7→ un − 1.19

Let m be a modulus of F. It will be convenient to formulate things in terms of the partial zeta functions

17We earlier referred to this in the algebraic theory as θ, but now use ω to emphasize the connection with the Teichmüller character.
18Recall that κ is the cyclotomic character for Γ, and u the image of γ under the induced homomorphism. This condition can be

equivalently stated as Lp(χ, s) maps to LS(χ, n) under κn
∗ for n ≡ 1 (mod [F(µp) : F]), i.e., the behavior at the values where the

twisting is trivial is sufficient to specify the function, as we mentioned briefly earlier. This follows from a continuity argument and the

Chinese remainder theorem.
19It was apparent some sort of substitution of this sort would be necessary, because the evaluation homomorphisms only exist for

|T|p < 1, whereas the p-adic L-functions are defined on the disk |s|p < p(p−2)/(p−1). Indeed, us is defined and is ≡ 1 (mod p)

precisely when s is in that disk by the properties of the p-adic exponential map.
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associated to ray ideal classes C modulo m, which are defined by the series

ζm(C, s) = ∑
α∈C

(Nα)−s

for Re(s) > 1, the sum over integral ideals. Notice that these encode the same information as L-functions:

Artin L-functions associated to characters of conductor m are linear combinations of partial zeta functions

with roots-of-unity coefficients, so by Fourier inversion we can write the partial zeta functions as linear

combinations of the L-functions with similar such coefficients; this immediately gives us analytic continu-

ation. Explicitly,

ζm(C, s) =
1
|Cm| ∑

χ∈Ĉm

χ(C)L(χ, s).

Further, if σ ∈ Gal(M/F) for some abelian extension M, we will write

ζF(σ, s) = ∑
C

ζm(C, s)

where m is the conductor of the extension, and the sum is over ray ideal classes modulo m mapping to σ

under the Artin map. Notice in particular that the S-localized L-function can be equally written as

LS(χ, s) = ∑
C

χ(C)ζ(p,f(χ))(C,−s).

Theorem 3.6. Each ζM(σ, n) for n ≤ 0 is a rational number.

Proof. Recall the formula

∑
a

χ(a)e−(Na)x =
∞

∑
k=0

L(χ,−k)(−x)k

k!
.

It suffices to prove the theorem for partial zeta functions associated to ray classes; hence let [b] be a ray class

in Cm the ray group modulo m. Substituting in the Fourier-theoretic relation

ζm(σa,−k) =
1
|Cm| ∑

χ∈Ĉm

χ([b])L(χ,−k)

from above, we obtain

∞

∑
k=0

L(χ,−k)(−x)k

k!
=

1
|Cm| ∑

χ∈Ĉm

χ([b])∑
a

χ(a)e−(Na)x = ∑
a∈[b]

e−(Na)x

where a runs over integral ideals. By comparing coefficients we are done. �

Define the Stickelberger elements for the extension M/F as

αn(M) = ∑
σ∈Gal(M/F)

ζM(σ,−n)σ−1.

Note that the Stickelberger elements belong to Q[Gal(M/F)].

Theorem 3.7 (Stickelberger’s theorem). If F = Q, then α0(M)Z[Gal(M/F)] ∩ Z[Gal(M/F)] annihilates

Cl(M).
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Addendum 3.8. A common older definition of “the Stickelberger element” α0(M) for extensions of Q was

as
1
m ∑

Gal(a∈(Z/m)×)

aσ−1
a

for M = Q(ζm), where σa ∈ Gal(M/Q) corresponded to the automorphism sending ζm 7→ ζa
m, and then

functorially extending to all abelian extensions by restriction. This differs only slightly from our definition

above, as we can compute. The Fourier inversion formula from above tells us that

ζm(σa, 0) =
1

ϕ(m) ∑
χ∈ ̂Gal(Q(ζm)/Q)

χ(σa)L(χ, 0).

Calculating L(χ, 0) is a classical problem; one can compute L(χ, 1) from the Dirichlet series, using a Gauss

sum identity and some analytic manipulations, then use the functional equation. Recall that for χ not the

principal character, we have

L(χ, 0) = − 1
m

m

∑
r=1

χ(r)r.

Let us pretend for now that this formula holds even for χ principal; we will make the correction at the end.

Combining our formulas, we find

ζm(σa, 0) = − 1
mϕ(m) ∑

χ,r
χ(a−1r)r = − 1

mϕ(m) ∑
r

r ∑
χ

χ(a−1r).

The inner sum will be zero unless a−1r = 1, in which case it is ϕm. Hence our result is − aϕ(m)
mϕ(m)

= − a
m . We

make our correction now; we have an excess term corresponding to the wrong formula for L(χ0, 0) (where

χ0 is the principal character):

− 1
mϕ(m)

m

∑
r=1

χ0(r)r = −
1

mϕ(m)

mϕ(m)

2
= −1

2

so that we finally get − a
m + 1

2 . Compare this to the coefficient a
m in the “classical” definition.

The zeta definition is thus a “centralizing around zero” of the coefficients, and is also the definition which

points to the generalization, revealing the relationship with the analytic world. A further advantage is how

cleanly one case works:

Proposition 3.9. Stickelberger’s theorem is trivially true for totally real extensions of Q.

Proof. The partial zeta functions each evaluate to zero because σa and σ−a become identified. �

We will not digress to prove Stickelberger’s full theorem here, though the proof is not beyond our tools; it

relies on an explicit computation with a canonical element of the Stickelberger ideal, which then extends

without obstacle to the full ideal by Kummer theory. See section 3 of [5].

The strong generalization of the Kummer congruences, proven by Deligne and Ribet in [3], was first for-

mulated by Coates in our reference [5]. We will state the congruences in Coates’ formulation because it is

most convenient, though this is at the expense of some naturality.
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Define

δn(b, c, f) = (Nc)n+1ζf(b,−n)− ζf(bc,−n).

for nonnegative integers n. Further, let wk(L) for a field L be the maximum integer n such that the exponent

of the group Gal(L(µn)/L) divides k.

Theorem 3.10 (Deligne-Ribet, Coates formulation). We have the following two congruence relations:

(A) For n ≥ 0, if p does not divide Nc, then δn(b, c, f) ∈ Zp

(B) For n > 0, if p|f, then for n > 0,

δn(b, c, f) ∼= (Nbc)nδ0(b, c, f) (mod wn(Mf)Zp)

where Mf is the field associated to Cf.20

Proof. The heavily technical proof of [3] uses p-adic Hilbert modular forms, which certainly we cannot

cover here. It should be noted that their result is formulated in a seemingly more general way, and is stated

in terms of L-functions rather than partial zeta functions, but in fact Coates’ congruences (A) and (B) are

equivalent to Deligne and Ribet’s statement. See [18] for details. �

This is a strict generalization of all our previous concrete Kummer congruences from this: (A) gives us

the result, implicit in the Kummer congruences, that Bk/k is p-integral whenever p− 1 does not divide k.

Taking the linear combinations of the identities (B) over representatives b of all classes inside Cf for some f

to be determined, with weights χ(bc), the expression we obtain is

((Nc)n+1χ(c)− 1)L(χ,−n) ≡ ((Nc)n+1χ(c)− 1)L(ωnχ, 0) (mod wn(Mf)Zp).

Notice that the norm map modulo pn can be identified with ω. Take F = Q. Setting χ to be the principal

character modulo f = (p) recovers the congruence

B1,ωn ≡ Bn+1

n + 1
(mod p)

given that p− 1 does not divide n+ 1, for example, since w1(Mf) here is p, and we need (Nc)n+1 ∼= ωn+1(c)

to not be the identity character. Setting f = (pk) recovers the classical Kummer congruences, because the

order of ω with respect to f is precisely ϕ(pk). The only potential problems arise when a power of p divides

(Nc)n+1− 1, but in fact this leads precise to the same “excess” power of p dividing wn(Mf), as by class field

theory the latter is also the greatest common divisor of (Nc)n − 1 across all ideals c whose Artin symbol

20The use of the strange constants wn(−) here is probably the part of our convenient formulation which detracts most from com-

prehensibility, especially since we did not discuss the Stickelberger ideals in depth, where they play an important role. It may be

enlightening to state that in fact, congruence (B) is equivalent to the apparently weaker statement that for for every n ≥ 0, there exists

an integer m = m(n) such that if pm|f, then the congruence holds modulo pnZp. There is a natural way to strengthen these congru-

ences by breaking up the partial zeta functions into sums of partial zetas with respect to larger conductors; wn(−) can be thought of

as precisely the strongest possible modulus one obtains via this technique.
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under the modulus f is the identity, so we simply have to use the change of character χ→ χω−1 and take c

an ideal in the kernel of the Artin symbol; one sees that this leads to the correct twisting as well.

We can also see the relation to the p-adic integration approach discussed above. Indeed, congruence (B)

resembles the result of theorem 3.5. This is not a coincidence; it is in fact a special case, and we can sketch

the more general application as follows: for c an ideal of F prime to p, define the measures µc by

µk,c(a + pnZp) = (Nc)−kζpn(ca, 1− k)− ζpn(a, 1− k).

This is a direct generalization of Mazur’s construction which we discussed earlier.

Theorem 3.11. Each µk,c defines a measure on Zp, and µk,c = xk−1µ1,c as measures.

Proof. That the measures assign Zp values to locally constant Zp-valued functions is congruence (A), and

the identity is congruence (B). Notice that taking formal differentials of both sides in the identity results in

the identity from the proof of theorem 3.5. µ1,c is certainly a measure, so the result follows. �

With this, one can write down the formula

Lp(χ, s) =
1

χ(c)〈κ((c, F(µp∞)/F))〉s−1 − 1

∫
Z×p

χ(x)〈x〉−sdµ1,c

where (−, L/K) denotes the Artin symbol and κ is the character giving the isomorphism of Γ with Zp. Once

again, one can also twist by powers of ω(x) to get the “branches” of the L-function in the spirit of Tate’s

thesis, or equivalently an L-function with domain Z/(p− 1)×Zp. See [18] for details.21

With this understanding of the congruences, we are ready for our main construction. We will follow [5]

almost to the letter. Let M/F be an arbitrary finite abelian extension with Galois group G, and let χ be

a faithful multiplicative character of G; we regard its values as living in Cp. Set M0 = M(µp) and let

qn = pnw1(M0); then take M0 ⊂ M1 ⊂ . . . ⊂ Mn ⊂ . . . to be the cyclotomic Zp extension M0 ⊂ M0(µq1) ⊂

. . . ⊂ M0(µqn) ⊂ . . .. As before, let M∞ be the total composite extension, and we set Gn = Gal(Mn/F), so

that G∞ = Gal(M∞/F). Denote ξn = α0(Mn) for the zeroth Stickelberger element of Mn/F.

The gist of our approach is to projectively glue together the ξn along our tower of extensions, pushed

down to Λ with a twist by the character χ; the presence of zeta in the definition of Stickelberger elements,

along with the fact that they naturally live (up to some factor of integrality) in quotients of the associated

Iwasawa algebra, is what suggests this approach. In fact it is not hard to see that the evaluation maps from

the cyclotomic characters κn assemble the partial zeta summands of the Stickelberger elements in just the

right way, and this is the essence of the proof that our construction works below.

Furthermore, Stickelberger’s theorem for Q suggests to us that the Stickelberger elements are somehow

related to the characteristic power series of X∞, since they annihilate the class group.22

21Be warned that Ribet uses nontrivially different conventions than we have used here; we changed the conventions to match [17]

so as to make the generalization clear.
22One might think that Stickelberger’s theorem would follow from the main conjecture (see later) since the latter is such a strong
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Write Oχ for the ring of integers of Qp(χ); all our group rings will be with Oχ coefficients, since our L-

function will live in Λχ.

Let F0 ⊂ F1 ⊂ . . . be the unique Zp-extension of F contained its p-cyclotomic extension. Let pe+1 = q0 so

that we have a restriction map rn : Gn → Gal(Fn+e/F), and let ρn : Oχ[Gn] → Oχ[Gal(Fn+e/F)] be the

induced homomorphism extending linearly by sending σ ∈ Gn to χ(σ)rn(σ).

For c a nontrivial ideal of F prime to p and f(χ), set νn(c) = Nc− (c, Fn+e/F)χ(c); this is the factor needed

to make the Stickelberger coefficients integral so we can work in the integral group algebra, by congruence

(A). Explicitly, we have the elements

νn(c)ρn(ξn) = ∑
σ∈Gn

δ0(σ, c, Mn)χ(σ)
−1rn(σ)

−1 ∈ Oχ[Gal(Fn+e/F)]

which we will denote by ηn(c). Since the primes ramified in the extensions Mn/F are eventually stable, a

final collection of these elements fit together in the inverse limit to yield η ∈ lim←−Oχ[Gal(Fn+e/F)] ∼= Λχ.

Denote by fc(T, χ) the corresponding power series.

A final collection of the νn also yield an element ν of Λχ for the same reason, which corresponds to the

formal power series

uc(T, χ) = Nc− χ(c)(1 + T)τ(c).

where τ(c) is defined as the additive character which satisfies (c, F∞/F) = γτ(c). This allows us then to

define the twisted pro-Stickelberger element, as we wanted:

G(T, χ) := fc(T, χ)/uc(T, χ) ∈ Q(Λχ).

We drop the c from the subscript since by construction the result is independent of it.

Before taking the short step to defining the L-functions themselves, we analyze the poles of G(T, χ). Recall

that ω (previously referred to as θ) denotes the cyclotomic character of the Galois action of Gal(M0/F) on

µp.

Theorem 3.12. If χω−1 is nontrivial on the subgroup of Gal(M0/F) fixing Fe, G(T, χ) ∈ Λχ. Otherwise, we have

(µχ(1 + T)− u)G(T, χ) ∈ Λχ, where µχ is the peth root of unity given by χω−1(γ).

Proof. Let h(T) be the greatest common divisor of uc(T, χ) as c varies; certainly any poles must be present

in h(T). Let us suppose that it is nontrivial, since otherwise everything lives in Λχ.

structural statement, but only small parts of it follow - for one thing, by nature, the main conjecture (and p-adic L-functions) can only

“see” the negative part of the class group; for another, the p-adic L-functions are built from “stable” Stickelberger elements, in that

they do not project down to the group rings corresponding to extensions with any lesser ramification. However, results in the reverse

direction are considered by Coates in section 5.3 of [5]; in particular, the main conjecture over F would follow from a generalization

of Stickelberger’s theorem over F and a strong structural assumption on the class group. Little progress has been made in either

direction, and with the Mazur-Tate and Rubin proofs, interest seems to have waned.
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Let π be a local parameter for Oχ. Picking c so that τ(c) is a unit, we see that h(T) cannot reduce to zero

modulo π, so by the structure theory, we can assume that h(T) is a distinguished polynomial. Say that it

has a root α ∈ Cp; we find then that

χ(c)ω−1(c) =

(
u

1 + α

)τ(c)

for all c, where we have used the factorization Nc = uτ(c)ω(c) coming from considering the norm map as

being defined on the Galois group of the ray class field of F[f(χ)p∞], then taking the projections onto Γ and

its direct complement.

Since |α|p < 1, χω−1 must be trivial on the subgroup fixing Fe, as the RHS is some power of a p-power root

of unity divided by something 1 (mod π), while the image of c corresponding to an element of Gal(M0/Fe)

necessarily has non-p power torsion.

Then taking c in the preimage of γ under the Artin symbol, we obtain α = µ−1
χ u − 1. Since by taking a

formal derivative uc(T, χ) can only have simple roots, the result follows. �

We now finally define Lp(χ, s) := G(us− 1, χ−1ω). Note that the potential poles of G(T, χ−1ω), which arise

when ω is trivial on Gal(M0/Fe), do not actually in general give rise to poles of Lp(χ, s): we would need

us−1 = µχ, which is impossible for µχ 6= 1, i.e. the case of χ principal and s = 1. Hence we recover the

same meromorphicity/analyticity conditions for Lp(χ, s), as expected.23

Theorem 3.13. This is a good definition of Lp(χ, s); i.e.

G(u−k − 1, χ) = LS(χ
−1ω−k,−k)

for integers k ≥ 0.

Proof. We need to work out that the evaluation map κ−k combines the partial zetas in the elements ηn(c) in

the correct way. Indeed, since κ also acts on eachOχ[Gal(Fn/F)], we have that fc(u−k− 1, χ) = lim←− κ−k
∗ ηn(c).

We calculate

κ−k
∗ ηn(c) ≡ ∑

b∈Cf(Mn/F)

δ0(b, c, f(Mn/F))χ−1(b)〈Nb〉k (mod qnOχ).

By congruence (B), this is further congruent to

(Nc)−s ∑
b∈Cf(Mn/F)

δk(b, c, f(Mn/F))χ−1(b)ω−k(b) (mod qnOχ)

which assemble in the inverse limit to give (Nc− χ−1(c)ω−k(c))(Nc)−kLS(χ
−1ω−k,−k). Similarly, the first

two terms come from uc(u−k − 1, χ), so we are done. �

23The condition on a p-adic function f of having an analytic function ϕ for which f (s) = ϕ(us − 1) is not unimportant, however,

and is called Iwasawa analyticity. Thus Lp(χ, s) is Iwasawa analytic precisely when χ is nontrivial on Gal(M0/Fe).
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Recall Dirichlet’s classical formula

L(χ, 1) = −τ(χ)

f(χ)

f(χ)

∑
r=1

χ(r) log(1− ζ−r
f(χ)

).

Leopoldt derived an exact analogue for the p-adic L-functions abelian over Q:

Theorem 3.14 (Leopoldt’s formula). Let χ be a nonprincipal even Dirichlet character. Then

Lp(χ, 1) = −
(

1− χ(p)
p

)
τ(χ)

f(χ)

f(χ)

∑
r=1

χ−1(r)Log(1− ζ−r
f(χ)

).

Proof. The proof is a long and technical manipulation of formal power series, based on the formula from

the first analytic construction. See chapter 8 of [17]. �

From this, we can derive an equally precise analogue of the analytic class number formula for abelian

extensions of Q; this will wait until the next section.

4 Main conjecture

Finally, we can state the main conjecture of Iwasawa. Let F be a totally real number field, p ann odd

number, and let ω be the cyclotomic character of the extension F(µp)/F. Recall Gi(T) ∈ Λ is the power

series for ei A∞, i.e. such that Gi((1 + T)−1 − 1) is the characteristic power series for hom(ei A∞, Qp/Zp) ∼=
e1−iX∞(−1), where here A∞ and X∞ are defined with respect to the cyclotomic Zp-extension starting at

F(µp).

Theorem 4.1 (“Main conjecture”). For odd integers i 6≡ 1 (mod [F(µp) : F]), (G(T, ωi)) = (Gi(T)) as ideals

of Λ. Else, ((1 + T − u)G(T, ω)) = (Gi(T)).

Proof. This was first proven by Mazur and Wiles in a very technical way using modular forms; later, Rubin

gave a simpler argument using Euler systems. �

Here, finally, we have interpreted zeta (or rather its “Iwasawa analytified” version G(T, ωi)) as the charac-

teristic polynomial of γ acting on a Jacobian-like module, as Weil did in the geometric case, up to a unit in

Λ.

4.1 Beginnings

We give some indications of further results which historically pointed towards the truth of the main conjec-

ture, which also become important first steps in the proof of Rubin and the development of Euler systems

by Kolyvagin.
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First, as promised, there is a p-adic analytic class number formula. Compare the following theorem to

theorem 2.4; no explanation of its suggestiveness is needed. We will use the notation ζp(K, s) for Lp(χ0, s)

where χ0 is the principal character of the absolute Galois group of K.

Theorem 4.2 (p-adic analytic class number formula). Let F/Q be a totally real abelian extension of degree d.

Then

lim
s→1

(s− 1)ζp(K, s) =
2d−1hFRp√

∆F/Q
∏
p|p

(1− (Np)−1)

Proof. Analogously to the archimedean case for p-power cyclotomic fields, the Frobenius determinant for-

mula yields the following formula for the regulator of the 1-cyclotomic units:

Rp(C1) = (−1)d−1 ∏
χ 6=1

1
2 ∑

σ 6=1
χ−1(σ)Log(ξσ)

where characters and Galois elements range over ̂Gal(K/Q) and Gal(K/Q) respectively, and

ξσ := ∏
(a,K/Q)=σ

ξa := ∏
(a,K/Q)=σ

1− ζa
f(χ)

1− ζf(χ)

is the cyclotomic unit basis element associated to σ ∈ Gal(K/Q), σ 6= 1; these project onto a basis of the

1-cyclotomic units C1 ⊂ E1. This works because the Iwasawa logarithm factors through the projector to E1

in the unit group (i.e. non-p-power roots of unity are sent to zero).

The rest is much as we have seen before: we may write

ζp(F, s) = ∏
χ∈ ̂Gal(F/Q)

Lp(χ, s),

and recalling that the residue of ζp(Q, s) at s = 1 is 1− 1/p, and using Leopoldt’s formula for the other

L-terms, we see that the Euler factors cancel out and our statement is equivalent to

(−1)d−1 ∏
χ 6=χ0

τ(χ)

f(χ)

f(χ)

∑
r=1

χ−1(r)Log(1− ζ−r
f(χ)

) =
2d−1hFRp√

∆F/Q

which by the conductor-discriminant formula reduces to

(−1)d−1 ∏
χ 6=χ0

f(χ)

∑
r=1

χ−1(r)Log(1− ζ−r
f(χ)

) = 2d−1hFRp.

We rewrite the LHS as

(−1)d−1 ∏
χ 6=χ0

(
f(χ)

∑
r=1

χ−1(r)Log(ξr) +
f(χ)

∑
r=1

χ−1(r)Log(1− ζf(χ))

)
= (−1)d−1 ∏

χ 6=χ0

∑
σ 6=1

χ−1(σ)Log(ξσ)

since the second term in each sum is a constant times character sum of a nonprincipal character, and then

we collapse the residues modulo the conductor to their Artin symbols in the Galois group. But as above,
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this last expression is precisely 2d−1Rp(C1). Looking at volumes, Rp(C1) = [E1 : C1]Rp = hKRp by classical

results on the Archimedean side, so this completes the proof.

For details of Leopoldt’s original proof, see [15]. Note that this gives us yet another way to state Leopoldt’s

conjecture. �

The proof for any totally real base K instead of Q was resolved more recently by Colmez, in [2]; the proof

would take us considerably far afield.

For convenience, denote by H(T, ωi) either G(T, ωi) or (1 + T − u)G(T, ωi) as per the conditions in the

theorem. An immediate corollary here is that G1(T) and H(T, ω) have the same λ and µ values. This rela-

tionship between numerical invariants is actually extremely important, and the following generalization is

the foundation for the proof by method of Euler systems employed by Rubin:

Theorem 4.3. If F is abelian over K totally real, then ∏ Gi(T) and ∏ H(T, ωi) have the same λ and µ values.

Proof. This follows immediately by functoriality of p-adic L-functions and the more general p-adic analytic

class number formula of Colmez (though in fact this result precedes that one). �

The results generated by the method of Euler systems involve showing a whole array of annihilation results,

which in total prove that Gi(T) divides H(T, ωi) for each i. When combined with the above numerical

result, this yields the main conjecture. Kolyvagin’s article [13] introducing Euler systems discusses these

two fragments of the proof as “xi ≤ yi” and “∑ xi = ∑ yi,” respectively.
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