RECURSIVE DERIVATION OF 2N GON TOPOLOGIES

CATHERINE WOLFRAM

ABSTRACT. A compact surface can be presented as a polygon whose edges are
identified in pairs with orientation. Some presentations like this are commonly
used, such as drawing a torus as a square with opposite edges identified. But
there are many other ways to identify the 2n edges of a polygon with ori-
entation. For a given n, the set of possible identifications define a set Py,
of polygons with identified edges. Each element of P, is a presentation of a
compact surface, determined by two invariants: orientability and Euler Char-
acteristic. We will prove various results about these invariants in the sets Py,
mostly using an indexed collection of maps from P, — Pp41. Ultimately,
we will find a computational formula for the number of elements of P, that
present a given compact surface S.
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1. INTRODUCTION

It is often useful to represent a more complicated topological object as something
simpler with additional identifications. One example of this is presenting a compact
surface as a polygon with “glued” edges. Here are a few examples of commonly
used “glued polygons”:

Example 1.1. The single torus T2:
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H- - o

Example 1.2. The Klein Bottle K (equivalent to the double projective plane 2P?):

K- & D

Example 1.3. The double torus 27°2:

VOO

The notation above isn’t standard, but it will be useful later (it comes from
Hilbert, [3] pg. 309).

These examples are constructed based on a set of rules about how to glue edges
together: every edge must be glued to exactly one other edge (and not to itself)
with one of two possible orientations (straight or twisted). To make this precise,
we must label the 2n edges of the polygon X, with eq,es, ..., €2, marked clockwise
from a basepoint a fixed at the upper left vertex of X,,. A gluing A,, is determined
by the pairs of labelled edges it identifies, and the orientations of these identifica-
tions. We will call A,, an identified polygon, and define the set P, to be the set
of identified polygons A,, with 2n edges.

The purpose of this paper is to study the topology of identified polygons A,
which are elements of the sets P,,. Given the rules mentioned above for gluing edges
(which are the rules we will consider in this paper), every A,, is homeomorphic to
a compact surface without boundary ([4], pg. 6). Every compact surface without
boundary can be triangulated, and even more, can be presented as an identified
polygon, and thus is presented by an element of P, for some n ([4], pg. 6). A com-
pact surface without boundary is determined by only two invariants: orientability
and Euler Characteristic ([4], pg. 18). We can study these invariants in P,, (which
are much easier to deal with computationally) to study the topology of identified
polygons A,.

In some sense this study might seem like a cataloging exercise, and it may not
be clear why it is interesting. And it is not particularly interesting that there are
10 ways to present a torus as an identified hexagon. But there are 42 ways to
present a klein bottle as an identified hexagon, and it is interesting that there are
comparatively many more ways to present a klein bottle as an identified hexagon
than a torus. Studying identified polygons A,, provides a different and interesting
perspective on the surfaces they present.
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Before outlining what we will study in more detail, know that the work described
here is original to this paper, and aside from some relevant background in topology,
does not (so far as I know) appear elsewhere.

In the next section, we will provide more rigorous definitions of identified poly-
gons and the sets of them. In the third section, we will briefly mention a few
relevant results in topology (without proof) that will be useful to us. In the fourth
section, we will prove the following theorem about orientability in the sets P,,:

Theorem 1.4. (Later Theorem 4.4.) Let O, C P, be the set of orientable
identified polygons. As n — oo,

[On| — 0.
| Pl
In the fifth section, we will define an indexed collection of maps fq, 4;,- : Pn —
P, 1 which we will call augment maps. We will prove three theorems about prop-
erties of these maps which make them useful. This is arguably the most important
section, as these maps will be the primary tool used to prove the rest of the results
in this paper.

In the sixth section, we will study the behavior of the Euler Characteristic in P,
using augment maps, and develop a recursive formula that computes the number of
elements of P, with Euler Characteristic x. We will start by briefly explaining how
to compute the Euler Characteristic of an identified polygon. Next, we will define
graphs that correspond to each element of P,,. Together with augment maps, this
allows us to show that

Theorem 1.5. (Later Theorem 6.14.) Let A, be an element of P,,. If x(A,) = z,
then X(fai,a;,-(An)) isx, x =1, or x — 2.

After that, we will define partitions which correspond to each element of P,,. Ul-
timately, we will recursively compute partitions using augment maps, constructing
a tree of partitions. This tree of partitions has the following relationship with the
distribution of Euler Characteristics in P,,, which is how we recursively compute
the number of A, € P,, with Euler Characteristic x:

Theorem 1.6. (Later Theorem 6.26.) Let C(n,x) be the number of A, € P,
with Euler Characteristic x. Let Q(n, k) be the number of partitions of length k at
level n of the partition tree. Then

Qn, k
C(’Il,ﬂ?) = (n(—l))!’

where t =1 —n+k.

After that, we note a property of the subset O,, C P, which allows us to show
that

Corollary 1.7. (Later Corollary 6.29.) For any n, given the tree of partitions
and a compact surface without boundary S, we can compute the number of A,, € P,
that present S.

In section seven, we apply these theorems and compute results with a computer.
The code used to produce these results is included at the end of the paper. Finally,
in section eight, we pose a few further questions.
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2. PRELIMINARY DEFINITIONS

Definition 2.1. The space A is a quotient space of X if there exists an equiv-
alence relation ~ on X such that the elements of A are the equivalence classes of
~ on X. This means that there is a surjective map p : X — A such that if x ~ y,
then p(z) = p(y). The map p is strong continuous, meaning that U € A is open if
and only if p~}(U) € X is open. If z ~ y, we will say that x is identified to y.
([2], pgs. 137, 139).

Definition 2.2. Let X,, be a polygonal region in R? with 2n edges, n > 1 (when
n = 1, we allow the edges to be curved so that they do not lie on top of each other).
Label the edges of X,, clockwise with ey, es, ... ea,, fixing the left endpoint of e;
at the upper left vertex of X,,. Denote this by putting a basepoint a at the upper
left vertex of X,,. Define an identified polygon A,, to be a quotient space of X,
defined by a quotient map p : X,, — A,, where p follows two rules, mentioned in
the introduction and explained further here:

(1) pidentifies every edge e; on X,, with exactly one other edge e; on X,,, i # j.

(2) Every edge has an initial point and a final point induced by the clockwise
labelling of X,,. When edges are identified, they can be identified with the
same orientation (i.e. initial point to initial point and final point to final
point), or with opposite orientation (i.e. initial point of one to final
point of the other). If two edges with the same orientation are identified,
this identification is twisted. If two edges with opposite orientation are
identified, this identification is straight.

Ultimately, the map p : X,, — A,, which defines A,, is determined by which n pairs
of labelled edges it identifies, and the orientations of those identifications.
([2], pe. 447-448.)

Remark 2.3. Calling an identification straight if it connects edges with opposite
orientation and twisted if it connects edges with the same orientation might seem
counterintuitive, but we use it because it lines up with what is happening geomet-
rically:

straight

twisted \-_-_,_---

Gluing edges with opposite orientation makes a regular band, whereas gluing edges
with the same orientation makes a band with a half-twist called a M6bius Strip.

Definition 2.4. For each n € N, n > 1, let P, be the set of distinct identified
polygons A, with 2n edges, where identified polygons A, and B, are distinct if
they are images of different quotient maps p and gq.

Remark 2.5. Note that these two identified polygons are different elements of Ps:
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The hexagon on the left is the image of p; which identifies e; to ez, es to e4, and e5
to eg (all straight), while the hexagon on the right is the image of p,. which identifies
e1 to ea, e to es, and ey to eg, (all straight). This might seem strange, since they
look the same and are homeomorphic to the same compact surface (which, as it so
happens, is T72). But as evidenced by p; and p, being different maps, they represent
different presentations of 72. Our goal is to study the set of presentations, and so
we consider these different.

Proposition 2.6. For a given n, the size of P, is

(2n)!
(2.7) |Pn| = v
Proof. Fix n. Then X,, has 2n labeled edges (e1, ..., €2,,) which must be identified

in pairs. It does not matter what order we choose pairs in, so there are

1 /2n\ (2n—2\ (2n—4 2\ (2n)!
n!\ 2 2 2 )7\2)  27(n)!
ways to identify edges in pairs. Next, each identification has two possible orienta-

tions (twisted or straight). There are n pairs of edges and so n identifications, and

thus this equation should be multiplied by 2". Altogether, this gives
2"(2n)!  (2n)!

2 (n)! n! ’

as above. O

|Pn|:

Using this formula, the number of elements in P, for the first few values of n are:

n (1|2 3 4 5 6
|P,| | 2|12 | 120 | 1,680 | 30,240 | 665,280

3. ToPOLOGY

We want to study the topology of elements A,, € P,. As such, we need to know a
little bit of topology. We will provide references instead of proofs here. Regardless,
to understand what we are going to do, there are a few results and definitions from
topology that we must note.

Theorem 3.1. Fvery identified polygon is homeomorphic to a compact surface
without boundary. (4], pg. 6 and [2] Thm 74.1, pg. 450.)

This theorem actually goes both ways, and the following is also true:

Theorem 3.2. Every compact surface without boundary can be presented as an
identified polygon A,, € P, for some n. (4], pg. 6.)

This relies on the following proposition, which is also worth noting:
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Proposition 3.3. Fvery compact surface without boundary can be triangulated.
(14], Appendiz E.)

Further, there are only a few types of compact surfaces without boundary:

Theorem 3.4. (The Classification Theorem). Let S be a compact surface
without boundary. Then S is homeomorphic to one of the following:

(1) the sphere S?,

(2) the connected sum of g tori, denoted gT?,

(3) or the connected sum of p projective planes, denoted pP?.
(14], Ch 1 or Theorem 6.3, pg. 96, and [2], ch. 12, sec. 77)

Here the connected sum of two surfaces S; and S5, denoted S;#Ss, is the
quotient of (S1\D1)U(S2 \ D3) where D; and D5 are disks on S; and S; respectively,
and the quotient map identifies the boundaries of D; and Dsy. ([4], pg. 95). In
simpler terms, the connected sum of two surfaces is the result of cutting a piece off
of each and gluing them together on their newly created boundaries.

Example 3.5. The connected sum of two tori T?#7? is the double torus, 272:

SH# Sz

Since every identified polygon is a compact surface without boundary, the Clas-
sification Theorem classifies every element of P,. Further, if we range over every
value of n, we find every compact surface without boundary, since all of them can
be presented as an identified polygon. This is part of what makes the sets P,
interesting. Finally, the Classification Theorem leads to the following corollary:

Corollary 3.6. Every compact surface without boundary is fully determined by
two topological invariants: orientability and Euler Characteristic. ([4], Thm 1.2,

pg. 18.)

This corollary gives us a computational way to classify every identified polygon,
as we can easily compute the orientability and the Euler Characteristic of a given
A,. But more interestingly, we can ask questions about the property of orientability
or the Euler Characteristic in P,, in general, which tells us about the topology of
the elements of P, without having to enumerate or compute for every element
individually.

Remark 3.7. Before continuing, remember that when we refer to A,,, we refer to
it as an identified polygon, defined by a quotient map p and with oriented edge
identifications, not just the surface S that is homeomorphic to A,,.
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4. ORIENTABILITY IN P,

We can now prove a quick result about the behavior of orientability in the sets
P,.

Definition 4.1. A surface S is nonorientable if there exists a closed curve C € S
for which it is not possible to choose a consistent orientation. A surface S is
orientable if no such curve exists.

Lemma 4.2. Let A, be an identified polygon. Then A, is orientable if and only
if mo pair of edges is identified with a twist.

Proof. If a pair of edges is identified with a twist, then there are half-twist curves
(like the Mobiiis Strip) on the surface S determined by A,. Thus there exists a
curve on the S which has no consistent orientation, and .S is nonorientable. If every
pair of edges on X, is identified straight, then every curve on S has a consistent
orientation, and S is orientable. A, is homeomorphic to S, and therefore orientable
if and only if no pair of edges is identified with a twist. ([

Remark 4.3. gT? and S? are orientable for all g, and pP? is nonorientable for all
.
This lemma allows us to prove one of the theorems mentioned in the introduction.

Theorem 4.4. Let O,, C P, be the set of orientable identified polygons. Asn — oo,

On]
— 0.
| P

Proof. By Lemma 4.2, A,, is orientable if and only if all of its edges are identified
straight. Thus the number of elements of P,, which are orientable is

1
O] = 52 1P,
meaning that
0 _ 1
[Pa| 27
Asn — oo,
1
o — 0.
Therefore as n — oo, almost no element of P, is orientable. ([l

The following corollary also follows immediately:

Corollary 4.5. As n — oo, almost every element of P, is nonorientable.

5. AUGMENT MAPS P, — P, 1

Here will we develop and study augment maps, which will be the primary
tool in the rest of our investigations. While this section is not directly about the
topology of elements of P, , it is likely the most important. Without it, none of the
results in later sections of this paper would be possible.

Fix n, and label the vertices of the unidentified polygon X,, with a1, as, as, ...a2y,
where a; is the basepoint a (i.e. the upper left vertex). Choose two of these vertices
a; and a;, i < j (they can be the same vertex) and an orientation, either straight
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or twisted. Denote this choice (a;, a;,2), where z is 0 if the chosen orientation is
straight and 1 if it is twisted. The choice of orientation z is independent of the
choice of vertices (a;, a;).

Definition 5.1. Let {e,} be set of pairs of vertices (a;,a;) on X,.

Definition 5.2. Define the augment map fo, q,,-. : Pn — Pny1, where (a;,a;) €
{a,} and z is 0 or 1, by the following process:

Split the vertices a; and a;, adding a new edge clockwise after each of them. This
creates two new unidentified edges. Identify the new edges with the orientation
determined by z. Note that this induces a shift in the labels of vertices (and edges)
after a; and a;.

Examples 5.3. Here are three examples of augment maps, two from P, — P3 and

one from P3 — P, including relabellingS'
)

a, 0
S| s S @

oy ay

a, .
\\\ “u“z,l ,
‘\\ T
oy a,”
@ s g Q'I %

The bold edges are the ones added by fa
clockwise after the split vertices.

Note that they always appear

iyQj,2"

Proposition 5.4. There are
2n(2n + 1)

augment maps fo, ;.2 Pn — Py

Proof. The number of ways to choose pairs of vertices (a;, a;) is
2
2n + <2n) =n(2n+ 1),

since there are 2n ways to choose the same vertex twice, and (2”) ways to choose
two different vertices. There are two possible values of z (0 or 1), and so there are
2n(2n + 1)

augment maps from P, to Pp41. O

Theorem 5.5. fq4, 4,2 1 Pn — Puy1 is injective for every (a;, a;) € {an}, 2, and
n.
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Proof. Fix n, and pick arbitrary (a;, a;) € {an}, 2 € {0, 1}. Suppose that fo, q;,-(An) =
fai,a;,2(Bn) for some Ay, B, € P,. Then fq, 4, -(A,) and fq, q,..(By) are images
of the same quotient map p, and have exactly the same identifications. The map
fai,a;,= adds one identification, identifying the edges which start with a; and a;1
(because of the label shift) with orientation determined by z on both f4, 4, -(A4x)
and fq;a;,2(Bn). Thus the identification added by fq, q;,. is the same on both,
and the remaining identifications which make up A, and B, must be the same.
Therefore A, and B, have the same identifications, and are images of the same
quotient map. Hence A,, = B,,, and they are the same element of P,,. Thus f, 4, -
is injective. (a;,a;) € {an}, z € {0,1}, and n were all arbitrary, and so this is true
for all (a;,a;), z, and n. O

Theorem 5.6. Every A, 1 € P11 has exactly n preimages in P, (not necessarily
distinct) under the indexed collection of augment maps {fa,a;.2} : Pn — Pny1,
where the indexes range over all combinations of (a;,a;) € {an,} and z € {0,1}.

Proof. Pick some A, 41 € P,y1. Then A, 1, is defined by n + 1 identifications of
pairs of edges with orientation. To prove this theorem, we will show that exactly
n of the n + 1 identifications that compose A, 1 could have been added by an
augment map, and therefore that it has n preimages under the indexed collection
of augment maps P, = Pp41.

By Theorem 5.5, every augment map fq, 4, . has an inverse on its image in Py, 41.
Call this inverse the collapse map cq; q;,~ corresponding to fq, 4,,.. As an example,
fix fa;,a,,-- Any element in the image of this map has an identification between the
edge whose left endpoint is a; and the edge whose left endpoint is a;+1 (augmenting
induces a relabeling that shifts the labels of points after a;, as a; becomes a;41).
The collapse map deletes this identification, leaving n identifications and 2n edges.
Here is an illustration of a collapse map P3 — P». Vertices on A,41 € P,41 are
relabeled to avoid confusion.

q| q‘L
Ca ay,0 )
Y Y
q‘1 ql, > \\\\\\&
A |
0y . Ay Q3

Given that A, 17 has n + 1 identifications, it remains to show that exactly n of
them can be collapsed.

The basepoint a = a1 could never have been added by an augment map, since
A,, must have a basepoint for every n to induce the labelling of its edges. Augment
maps always add clockwise, and so always add the right endpoint of the edges they
add. ay is the right endpoint of the edge ez(,41) on A1 1, and therefore this edge
could never be added by an augment map (if it were, then the map would have
added the basepoint, which is not possible). Hence whichever identification includes
€2(n+1) cannot be collapsed; and one identification on A, 41 cannot be collapsed.

Every other pair of identified edges has right endpoints which are not a;. Choose
an arbitrary identification on A, 7 that does not have right endpoint a;. Call the
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right endpoints of the identified edges a; and a;11 (a;4+1 must be a vertex on X, 41
for 1 < j < 2n, since we have excluded the last edge), and suppose the identification
has orientation z. Then the collapse cq4; a;,2 : Prny1 — Pp is defined. We chose an
arbitrary identification from the remaining n, and hence there are n identifications
on A, 41 which can be collapsed. O

Theorem 5.7. The indeved collection of augment maps {fa, a;,2} + Pn — Pnt1
n-fold uniformly covers P, 4.

Proof. Every augment map f,, 4. is injective. Since every A1 € P,y1 has
exactly n preimages in P, by the indexed collection of augment maps, the indexed
collection of maps must cover every element of P, exactly n times. Therefore the
indexed collection of maps { fai,aj,z} : P, = P, 1 n-fold uniformly covers P, ;. O

6. THE EULER CHARACTERISTIC IN P,

Studying the Euler Characteristic in P,, will be an application of the augment
maps defined in the previous section. First, some definitions:
Definition 6.1. The Euler Characteristic of a surface S is
x(S)=F—-E+V
where F is the number of faces in a triangulation of S, E is the number of edges,

and V is the number of vertices.

Remark 6.2. The Euler Characteristic has to be calculated based on a triangulation,
but it does not depend on the triangulation.

Proposition 6.3. The genus of A, is g if A, is homeomorphic to gT?, p if
A, is homeomorphic to pP?, and 0 if A, is homeomorphic to S*>. The Euler
Characteristic of A, has the following relationship with its genus:

X(An) =2-2
if A, is orientable and has genus g, and
X(An) =2-p

if Ay, is nonorientable and has genus p.

Remark 6.4. Note that since the minimum genus of A, is 0, the maximum Euler
Characteristic is 2.

In this section, we will develop a computable recursive formula for the number
of elements of P, with a given Euler Characteristic z.

6.1. Calculating the Euler Characteristic of an Identified Polygon. Calcu-
lating the Euler Characteristic of A,, requires choosing a triangulation of A,, (being
careful to choose one that is still a triangulation of the surface A,, presents). Some
calculation from a triangulation shows that

(6.5) X(Ay) =1-n+k,

where k is the number of vertices of A,. The k vertices of A, are equivalence
classes of the vertices of X, induced by the map p : X,, — A,. Each of these k
equivalence classes is a loop: every vertex a; of X,, is part of two edges, each of
which is identified to another edge. As such, a; is identified to two vertices (possibly
the same vertex twice), one by each of its edges. There are only finitely many edges,
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and so this process must terminate, leaving k loops which contain all 2n vertices of
Xn.

Remark 6.6. The number of vertices k of A,, is always between the bounds
1<k<n+1

Every vertex could be in the same equivalence class, giving us the lower bound.
Then the upper bound comes from the fact that the Euler Characteristic of a
surface is never greater than 2.

Given how to calculate the Euler Characteristic, we can prove that which surfaces
are presented by elements of P,, depends on n:

Proposition 6.7. The mazimum genus of a surface presented by an element of P,

is 5 if the surface is orientable, and n if the surface is nonorientable.

Proof. Let n be given, and choose A, € P,. x(A,) = 1 —n + k, where k is the
number of vertices of A,,. Recall that

X(An) =2—2g
if A,, is orientable and has genus g, and
X(An) =2-p

if A, is nonorientable and has nonorientable genus p. Hence the smallest possible
value of k gives the largest possible genus. The smallest possible value of k is k = 1.
Thus for an orientable surface, the largest possible genus is

2—-29g=1—-n+1

g=mn/2
And for a nonorientable surface,

2—-p=1—-n+1

p=n

6.2. Graphs.

Definition 6.8. Given an identified polygon A, = p(X,), let G(4,) be a graph
on the 2n vertices of X,, where two points in G(A4,,) are connected by a single line
if and only if they were connected by a single identification in A,,.

Remark 6.9. Let p : X,, — A, be the quotient map which defines A,,. G(A,) is a
graph on 2n points with 2n identifications, where each of these points is a vertex of
X,,. Every point in G(A4,,) is connected to another point if and only if it is identified
to that point by p, and so each component of G(A,,) is a vertex of A,,. Note that
this means that every component of G(A4,) is a loop, and more importantly that

# of vertices of A,, = k = # of components of G(A,,).
So instead of trying to count the vertices of A, as equivalence classes of vertices on
X, we can count components of G(A,,).

Example 6.10. Here are a few examples of identified hexagons and their graphs:
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A, G(4,) # of components | x(A4,) | surface
2 0 T2
. ; : 1 -1 3p?
Q
SIS
= = 3 1 p?

6.3. Augments of Graphs. Graphs give us a visual way to determine the Euler
Characteristic of an identified polygon. The question we will answer in this section
is:

Question 6.11. What is the relationship between G(A,) and G(fa;a;,2(An))? If
G(Ay) has k components, how many components can G(fa;a;,2(An)) have?

When we augment the identified polygon that lies under the graph, we add two
points by splitting two existing points a; and a; into a; and a; and a; and a;». Then
we identify one of the a;’s to one of the a;’s, where which one is identified to which
depends on the orientation determined by z. On the graph, this looks like we picked
two points a; and a;, and cut a hole in a component of the graph at each of them.
Then we connect the holes in one of two possible ways as determined by z.

Example 6.12. Consider this example of an augment map P; — P, in the graph
presentation:

o, o,
a, o, "
WA
:ﬁ a
‘\)‘311 a 1 ks
a ¢

a, O DO 3 —_— O 1N
1 [}
4 s 1 3

0 9 a ;

The pink dotted lines are the ones added by the augment map. In this case, the
augment map took a graph with 2 components to one with 3 components.

In the graph presentation, there are two possible relationships that the points
a; and a; can have: either they are in the same component of G(A,,) or they are
in different components. This amount of information about a; and a; is enough to
know what happens when they are augmented:
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Theorem 6.13. Let A, € P, and G(A,) be its graph. Suppose G(A,) has k
components. If a; and aj are in the same component, then one of G(fa;.a;,0(An))
and G(fa;,a;,1(An)) has k components, and the other has k + 1. If a; and a; are
in different components, then G(fa;.a;,0(An)) and G(fa,.a;,1(An)) both have k — 1
components.

Proof. Suppose G(A,,) has k components. There are two cases; consider them one
at a time.

(1) Suppose a; and a; are in the same component. Then the new edges create

two holes in the same loop, making something that looks like this:

ay/
] ay

) L/\) -

One endpoint of the a; hole must be identified to one endpoint of the a;
hole, since edges cannot be identified to themselves. Both pieces of the
divided component have one endpoint that is an a; point and the one that
is an a; point. Thus one type of identification splits the original component
in two, and the other joins it back together again:

%5/ -S-_&_J ay 8y’ o Qg
. -/

In the example illustrated above, a twist rejoins and a straight identifica-
tion breaks apart. But this is not always true (if the two disjoint pieces
crossed once, for example, it would be the other way around). Regardless,
in every situation, one identification joins endpoints of the same piece, and
the other joins endpoints of opposite pieces. As a result, one of f,; 4; 0 and
fai,a;1 takes G(A,) to a graph with & components and one takes it to a
graph with k + 1 components.

Suppose a; and a; are in different components. Then we add one new edge
to each component, effectively cutting a hole in each and create something

like this:
ac
‘13/
a’
4G

The endpoints of these pieces are both from the same edge, and so cannot
be identified together. Thus no matter which orientation we identify the
edges with, we combine the two components:
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Hence both fo, q;,0 and fy; 4,1 take G(Ay) to graphs with £—1 components.

O

This theorem shows that the number of components in the graph of fo, 4, . (An) =
Ap+1 € P,q1 depends on the number of components in the graph of A,. Since
X(A;) is determined by the number of components in G(A,), this gives us the
following result about x(fa;,a;,=(An)):

Theorem 6.14. Let A, be an element of P,. If x(An) = z, then X(fa;,a;,2(An))
isx, x—1, orx— 2.
Proof. We know that
r=x(A,)=1-n+k.

Augments of A, have n + 1 edges instead of n. Further, by the previous theorem,
we have that since G(4,,) has k components, G(fa, a;,2(An)) has k —1, k, or k41
components. Thus

X(fai,aj,Z(An)) =1-(n+1)+v
where v =k — 1, k, or k+ 1. Therefore

X(fa,;,aj,z(An)) =z
ifv=k+1, and
X(faia;.2(An)) =2 — 1
if v = k, and
X(fai,aj,z<An)) =z—2
ifo=k-—1. O

6.4. Partitions. Augment maps and graphs together show that the Euler Char-
acteristics of elements of P41 depend on the Euler Characteristics of elements of
P,,. But they also depend on how many augment maps are based on vertices in the
same component and how many are based on vertices in the different components,
which clearly depends on individual graphs and how they are composed. This is
still information that we have and can generate recursively, and in this section we
will explain how.

Example 6.15. Consider the following two graphs, which correspond to elements

of PQI
&
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Both of these graphs have £ = 2 components, which means that they both have
Euler Characteristic x = 1. But there are 6 ways to chose two points in the same
component from the graph on the left, and 7 ways to choose two points in the same
component from the graph on the right. As a result, augments of these graphs in
P3 will not have the same distribution of Euler Characteristics.

Definition 6.16. Fix A, € P,. The graph G(A,) has k components, which
together contain 2n points. We can write the graph as a partition (pi,ps, ..., px)
of 2n of length k, where each p; in the partition is the number of points in a
component of G(4,,). We will call each p; a piece of the partition.

Examples 6.17. The graphs in Example 6.10 have the following partitions: (3,3),
(1,5), (6), and (1,2,3), respectively. The two graphs in Example 6.15 have partitions
(2,2) and (1,3).

Proposition 6.18. Given a partition (p1,p2,...,pr) of 2n, the number of ways to
choose two points in the same piece of this partition (and so the same component
of the graph it represents) is

=N

.
(6.19) S(An)=n+)_ 5

Consequently, the number of ways to choose two points in different pieces of this
partition 1s
k 7 k »
— iy —9n?2 _ ]
(6.20) D(An) =n(2n+1) = (n+» 5) =2 >

‘ e 2
i=1 =1

SN

It is already clear that knowing the partitions for P, is sufficient to know the
distribution of Euler Characteristics in P,, as the number of partitions of length k
corresponds to the number of elements of P, with Euler Characteristicx = 1—n+k.
But we want to show that we can recursively compute partitions. As such, our goal
with be to prove that

Claim 6.21. The partition of A, together with the augment map fq, 4, . deter-
mines the partition of f,, 4, .(Ax), and therefore augment maps recursively generate
partitions.

Given that, we will lay out the process for computing the partitions for P,
from the partitions for P,, and apply this to count elements of P,, 1 with a specified
Euler Characteristic.

There are three possible situations an augmented partition can be in, corre-
sponding to a partition (or graph) of length & being mapped to one of length k — 1,
k, or k + 1. Two correspond to (a;,a;) being in the same piece of the partition,
and one to them being in different pieces.

(1) Suppose a; and a; are in the same partition piece p;. Then
(a) The partition of fg, a;,2(P1, .., Dis s Pk) I8 (D1, .0 Ps + 2, ..., Dk), & Par-
tition of 2n + 2 of length k,
(b) The partition of fai,aj,z(ph -y Disy "'7pk) is (p17 - 41,42, Pi+1, "'apk)v a
partition of 2n 4 2 of length k£ + 1, where ¢1 + g2 = p; + 2.
Both of these outcomes occur, one for z = 0 and one for z = 1.
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(2) Suppose (a;,a;) are in different partition pieces p; and p;. Then the parti-
tion of fu, a;.2(P1, - Px) i (P1, -, Pi +Pj + 2, ..., px), a partition of 2n + 2
of length k — 1, for both z =0 and z = 1.

These calculations are a consequence of Theorem 6.13 (about graphs) which we
proved in the previous section. Given this, to make partitions for P, computable
from partitions for P,,, we have to determine the frequency with which these three
situations occur. Consider them one at a time.

Proposition 6.22. The partition of fa; a;,2(P1, s Dis s Pk) 18 (D1, -0y Di 42, vy D)

with frequency
L (pi\ _pilpi +1)
por () =2
for each p;.

Proposition 6.23. For every pair of positive integers q1, g2 with q1 + g2 = p; + 2,
the partition of fa, .a;=(P1s -, Piy s Pk) 18 (P1, -+, Q15 G25 Pit1, -5 P) With frequency
pi

if i # q2, and

if 1 = qa.
Proposition 6.24. The partition of fa; a;,2(P1, s Pk) 15 (P1, s D +Dj + 2, ..., D)
with frequency
2pip;
for every pair p;, p;.

Example 6.25. Consider the graphs in Example 6.15 and their respective parti-
tions, (2,2) and (1,3). Each has 20 augments.

Augments of (2,2): (2,4) 6 times, (1,2,3) 4 times, (2,2,2) 2 times, (6) 8 times.
Augments of (1,3): (3,3) 1 time, (1,5) 6 times, (1,1,4) 3 times, (1,2,3) 4 times, (6) 6 times.
Given these formulas which construct the partitions for P, from the partitions

for P,, we can construct a tree of partitions. The first layer of this tree is the
partitions for P,

(1,1) and (2).
Each following layer is composed of all the augments of the partitions on the layer
before it, preserving multiplicities. The second layer is then

(1,3), (1,2,1), (4), (4), (1,3), (1,2,1), (1,3), (4), (2,2), (4), (1,3), (4).
Note that since we preserve multiplicities, each (4) in the second layer of the tree is
its own unique node, and the third layer of the tree will include every augment of
all five (4)s. This tree has a relationship with the Euler Characteristic that makes
the distribution of Euler Characteristics in P, 11 computable:

Theorem 6.26. Let C(n,x) be number of A, € P, with Euler Characteristic x.
Let Q(n, k) be the number of partitions of length k at level n of the partition tree.

Then
Qn, k)

C(n,x) = m,

where t =1 —n+ k.
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Proof. Since x = 1 — n + k, a partition of length k£ at level n corresponds to an
element of P, with Euler Characteristic . Since the next level of the partition tree
is constructed by applying augment maps to the partitions at the previous level,
by Theorem 5.7 we must divide by (n — 1)!. O

6.5. Restriction to Orientables.

Lemma 6.27. Suppose that A, is orientable and G(A,) has k components. If a;
and a; are in the same component, then G(fa;a;,0(An)) has k +1 components. If
a; and aj are in different components, then G(fa; a;,0(An)) has k —1 components.

Proof. Let G(A,) be a graph with k& components.

(1) Suppose that a; and a; are in the same component. A, is orientable, and
so the two pieces of this component have endpoint a; and a;- and a; and a;.
Jai,a;,0(An) adds a straight identification, and so identifies a; to a; and a;
to a;. Hence G(fa;,a;,0(An)) has k + 1 components.

(2) Suppose that a; and a; are in different components. Then by Theorem
6.13, G(fa;,a;,0(An)) has k — 1 components.

O

Theorem 6.28. The tree of partitions corresponding to elements of O,, C P, is a
subtree of the tree of partitions.

Proof. By Lemma 4.2, A,, € P, is orientable if and only if none of its identifications
are twists. Therefore elements of O,, must follow a path down the tree of only
straight augments fq, 4;0. By Lemma 6.27, these paths are always determined,
taking a k — 1 path if a; and a; are in different components and the k 4 1 path if
they are in the same component. ([

Corollary 6.29. For any n, given the tree of partitions and a compact surface
without boundary S, we can compute the number of A,, € P, that present S.

7. RESULTS

For n > 3, it isn’t realistic to do these computations by hand. But they are
well-suited to be done by a computer. Using the initial conditions defined by P;
(two elements, with partitions (1,1) and (2). (1,1) is orientable, and (2) is not),
we can compute the number of A, € P, with a given Euler Characteristic, and
the number that present each compact surface S. Here are some interesting results
found by a computer.

First, here are histograms of the number of elements of P, with each possible
number of graph components k for n = 3 to n = 20. Note that to k = 1 corresponds
to A, which is homeomorphic to a surface with the maximum possible genus pre-
sentable in P,, and kK = n + 1 corresponds to A,, which is homeomorphic to the
sphere S2.
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Interestingly, observe that the number of elements of P, that present the maxi-
mal genus surface is lower than the number that present second maximal surfaces.
Also observe that by n = 20, k = 2 and k& = 3 are almost equally frequent.

Here are similar histograms for the subset of orientables, O,, (note that the scale
on these histograms is different from the ones for all of P,). Combining this data
with the data for all of P, is what would allow us to compute the number of elements
of P, which present S for a given compact surface S.
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Finally, observe a plot of the difference between the expected number of compo-
nents in P, and P, 41 as a function of n.
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This plot suggests that difference between the expected number of components
for P, and P,; might converge to 0, and so the expected number of components
might converge as n — oo. If it does converge, that would imply that the average
Euler Characteristic decreases by 1 from P, to P, 11 for large n.

8. OTHER QUESTIONS

The results in the previous section ask more questions than they answer. A few
of the questions they ask are asked here. There are also other interesting ways to
look at the sets P,, other ways to filter these sets with additional restrictions, or
generalize them by taking some of those restrictions away. A few of these questions
are also asked here.

1. Is there a distribution that fits the distribution of Euler Characteristics in
P,7 If it converges, what does the distribution of Euler Characteristics in P, limit
to as n — 00?

2. Does the second maximal genus continue to be the most frequent as n — co?
Does it become second and third maximal, or does the most frequent band continue
to widen? Why?

3. Does the expected number of components k of A,, € P, converge as n — oo?
Does it have any otherwise predictable behavior?

4. What are the answers to questions 1, 2, and 3 for O,, C P,? How are the
answers for O,, similar (or not) to the answers for P,?

5. A set with a preorder is a finite topological space. Is there an interesting
preorder structure that we can put on the sets P, to turn them into spaces? One
possible preorder is to order the elements of P, based on how many twists they
have. Is this the most interesting structure we can put on the sets P,?

6. What happens if we allow the identification of different numbers of edges
(such as identifying three edges together, or letting the number of edges identified
together vary), or allow some edges to not be identified at all?

7. What happens if we invoke other restrictions on the orientation of identifica-
tions, such as requiring that every identified polygon have exactly one twist?

8. The augment maps fy, a; . from P, to P, 1 define limiting “paths” through
the space of compact surfaces, based on a sequence of choices of (a;,a;) and z. Us-
ing a sequence of choices (which could be something simple like choosing (a1, aq,0)
every time, or something more complicated), we can iterate the maps fq, q;,. de-
termined by the chosen sequence. Each sequence defines a “limit” of A, € P, as
n — oo. What are the “limit” surfaces {fa, q;,-}°°(A4n)? Does every infinite path
defined by a sequence of augment maps have a unique resulting object, or are some
of them the same? What are they?
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9. Asn — oo, each A,, approaches a circle with infinitely many identifications of
different “points” (edges with side lengths < €). If we direct the graph of vertices in-
duced by the identified polygon, we can think of the components of G(A,,) as orbits
on the circle. What sort of dynamical systems on the circle do the identifications
of A, define? Do most points have a dense orbit?
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nizy= partitions[partition: {__Integer}] := Merge[Join[
Flatten[MapIndexed[{p, i} —
Join|[
{Sort@ReplacePart[partition, i»>p+2] > (1/2*p=* (p+1))},
Sort@eFlatten[ReplacePart[partition, i -» #], 1] -»
If[#[[1]] ==#[[2]], P/ 2, p] &/@IntegerPartitions[p+2, {2}]
1
, partition], 11,
(*Pairsx)
Map [
j -
Sort@Append[Delete[partition, j[[All, 2111, jI[1, 1]1]1 +Jj[[2, 1]] +2] »
JI01, 111 %3002, 111 %2,
DeleteDuplicates[Sort /@DeleteCases]
Tuples[MapIndexed[List, partition], 21, {n_, n_}11]

1
Total]

Table[Block[{counts = Total /@
GroupBy[Normal@Nest[p — Merge[KeyValueMap[partitions[#1l] »#2 &, p], Total],
partitions[{{1, 1}, {2}}], n], LengthexFirst - Last]},
Table[Lookup[counts, v, 0] / (n+1) !, {v, Min@Keys[counts], Max@Keys[counts]}]],
{n, 1, 18}]

Table[Block[{counts = Total /e
GroupBy[Normal@Nest[p — Merge[KeyValueMap[partitions[#1l] »#2 &, p], Total],
partitions[{{1, 1}, {2}}], n], LengthexFirst -» Last]}, DiscretePlot][
Lookup[counts, v, 0] / (n+1) !, {v, Min@Keys[counts], Max@Keys[counts]},
ExtentSize -» Full, PlotLabel -» n+2, ImageSize -» 300]], {n, 1, 18}]

n@i4= orientablepartitions[orientablepartition: {__Integer}] := Merge[Join[
Flatten]
MapIndexed[{p, i} — Sort@Flatten[ReplacePart[orientablepartition, i » #], 1] »
If[#[[1]] =#[[2]]1,pP/2,p] &/@
IntegerPartitions[p+2, {2}], orientablepartition], 1],
(*Pairsx)
Map [
j +— Sorte@Append[Delete[orientablepartition, j[[All, 2]1]1],
JI01, 111 +30[2,1]11+2] »3[[1,1]]*3[[2, 1]1,
DeleteDuplicates[Sort /@ DeleteCases[Tuples]|
MapIndexed[List, orientablepartition], 21, {n_, n_}11]

1
Total]



2 | appendix_code.nb

Table[Block[{counts = Total /@ GroupBy[Normale
Nest[p — Merge[KeyValueMap[orientablepartitions[#1l] »#2 &, p], Total],
orientablepartitions[{1, 1}], n], LengthexFirst » Last]},
Table[Lookup[counts, v, 8] / (n+1) !, {v, Min@Keys[counts], Max@Keys[counts]}]],
{n, 1, 18}]

Table[Block[{counts = Total /@ GroupBy[Normale
Nest[p — Merge[KeyValueMap[orientablepartitions[#1l] = #2 &, p], Total],
orientablepartitions[{1, 1}], n], LengthexFirst -» Last]},
DiscretePlot[Lookup[counts, v, 0] / (n+1) !, {v, Min@Keys[counts],
Max@Keys[counts]}, ExtentSize » Full,
PlotLabel » n+2, ImageSize » 300]], {n, 1, 18}]

Table[Block[{counts = Total /@
GroupBy[Normal@Nest[p — Merge[KeyValueMap[partitions[#1] » #2 &, p], Total],
partitions[{{1, 1}, {2}}], n], LengthexFirst » Last]},
Mean[WeightedDataee Transpose@Table[{v, Lookup[counts, v, O] / (n+1) !},
{v, Min@Keys[counts], Max@Keys[counts]}]]], {n, 1, 18}] // N

ListPlot[Table[Block[{counts = Total /@
GroupBy[Normal@Nest[p — Merge[KeyValueMap[partitions[#1l] »#2 &, p], Total],
partitions[{{1, 1}, {2}}], n], LengthexFirst -» Last]},
Mean[WeightedDataee Transpose@Table[{v, Lookup[counts, v, O] / (n+1) !},
{v, Min@Keys[counts], Max@Keys[counts]}]]1], {n, 1, 18}] // N]

ListPlot[Differences[Table[Block[{counts =
Total /@ GroupBy[Normal@Nest[p — Merge[KeyValueMap[partitions[#1] % #2 &, p],
Total], partitions[{{1, 1}, {2}}], n], Length@exFirst » Last]},
Mean[WeightedDataee Transpose@Table[{v, Lookup[counts, v, O] / (n+1) !},
{v, Min@Keys[counts], Max@Keys[counts]}]]], {n, 1, 18}] // N1]
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1 Appendix: Table of Results for Number of Orientable
Gluings of a 2n-gon

I learned in August 2018 that the number of orientable gluings of a 2n-gon was also computed (by
a different method) in [1] in order to calculate euler characteristics of moduli spaces of curves. The
original version of this paper only presented the numerical results we computed as histograms. Below
is a table of the precise values computed with the method outlined in this paper, for comparsion
with the table of precise values in [1] computed using Gaussian integrals.
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