
A BRIEF INTRODUCTION TO ZFC

CHRISTOPHER WILSON

Abstract. We present a basic axiomatic development of Zermelo-Fraenkel
and Choice set theory, commonly abbreviated ZFC. This paper is aimed in

particular at students of mathematics who are familiar with set theory from a

“naive” perspective, and are interested in the underlying axiomatic develop-
ment. We will quickly review some basic concepts of set theory, before focusing

on the set theoretic definition of the natural numbers, and the equivalence of
the axiom of choice, Zorn’s lemma, and well ordering principle.
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1. Motivation and Russel’s Paradox

Before beginning with the Axioms of Zermelo-Fraenkel Set Theory (ZF), it is
worthwhile to engage with the reader’s intuitive notion of a set, and justify the
axiomatic approach to set theory.

Informally, a set is often thought of as a collection of objects. The primitive,
undefined concept of sets is that of belonging. If x and A are sets, either x is in A
(in which case we write x ∈ A), or x is not in A (in which case we write x /∈ A).
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Note that this excludes duplication. Either an object is in a set or it is not, it
doesn’t make sense to think of an object as being in a set multiple times.

At this point, the intrepid reader may think sets could be created in a straight-
forward manner. Namely, we can define a set as being the collection of all objects
x which satisfy a particular property P (x). In such a system, if A were this set, we
would write

A = {x | P (x)}.
Such a theory is said to allow unrestricted comprehension.

Theories of unrestricted comprehension were common in the early days of at-
tempting to formalize mathematics via logic. A particularly famous example is the
theory developed by Gottlob Frege in his work Grundgesetze der Arithmetik.

However, theories of unrestricted comprehension are fundamentally unsound.
Russel’s Paradox is a well known example of an inconsistency which arises in such
a theory. Namely, if we assume unrestricted comprehension, we could consider the
following set

A = {x | x /∈ x}.
That is, A is the set of all sets which do not contain themselves. We proceed with
the following question: is A ∈ A? If A ∈ A, then by the definition of A, we must
conclude A /∈ A. However, if A /∈ A, then again by the definition of A, we conclude
A ∈ A. Ultimately we are left with the highly problematic statement that

A ∈ A ⇐⇒ A /∈ A.
Thus, we will proceed with an axiomatic development which more carefully char-
acterizes sets, and allows us to avoid such paradoxes.

2. The First Axioms of ZF Set Theory

2.1. Exetension, Specification, and the Empty Set. We will now state some
of the basic axioms of ZF set theory with minimal discussion. It is assumed the
reader has worked with sets before in some capacity, and this section will merely
be formalizing what is already known. We begin with a basic statement about set
equality.

Axiom of Extension. For every set A and every set B, A = B if and only if for
every set x, x ∈ A if and only if x ∈ B.

In other words, sets are said to be equal if they contain precisely the same objects.
This axiom tells us that when considering a set, the only thing which matters are
what elements the set has.

Axiom of Specification. If A is a set and P (x) is a formula of first order logic, then
there exists a set B containing precisely each x ∈ A such that P (x) is true.

For instance,
P (n) := ∃k ∈ N such that n = 2k,

is a valid formula. If we applied the axiom of specification to the natural numbers
using this sentence, the result would be precisely the even numbers.1 In general,
the set B given by the axiom of specification is usually written in the following way

B = {x ∈ A | P (x)}.

1The natural numbers are not yet formally defined, but hopefully this example is still
illustrative.
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This helps illustrate that B is dependent on A and P (x). It immediate that B
must be the unique set containing every x ∈ A such that P (x) holds by the axiom
of extension.

At this point, we haven’t actually asserted any sets exist; we may well be working
in a vacuum. Let us suppose for the sake of argument (temporarily) a particular
set A exists. Even with this we reach difficulties, for we don’t know anything about
A, and thus we will have trouble using it to build further sets. There is however,
one set which can easily be constructed out of A. This is the set {x ∈ A | x 6= x}.
Clearly this set can have no elements. This empty set seems like a reasonable
starting point, so we discard the temporary notion of a given set, and instead make
the existence of the empty set an axiom.

Axiom of Empty Set. There exists a set ∅ such that for every set x, x /∈ ∅.

This set is also sometimes denoted {}.

2.2. Subsets. We now introduce a basic set theoretic concept.

Definition 2.1. A set A is said to be a subset of a set B if for every set x,
x ∈ A implies x ∈ B. When this is the case, we write A ⊂ B.

If A ⊂ B, and A 6= B, we write A ( B, and say A is a proper subset of B.

We conclude with the statement of two basic results.

Theorem 2.2. A = B if and only if A ⊂ B and B ⊂ A.

Theorem 2.3. For every set A, ∅ ⊂ A.

2.3. Pairing, Union, Intersection, and Difference. At this point, we have a
way to make “smaller” sets out of given sets. The following axioms allow us to
“combine” given sets.

Axiom of Pairing. If a and b are sets, then there exists a set containing precisely a
and b.

It is common to denote this set {a, b}. In the case where a = b, we would simply
write {a} (i.e, {a, a} = {a}) At this point, we may pair ∅ with itself to obtain the
set {∅}. We may repeat this process to obtain the series {{∅}}, {{{∅}}}, etc. We
may also pair ∅ with {∅} to obtain {∅, {∅}}. It’s easy to see there are many more
combinations which we might make.

Rather than combining a collection of sets into one set, we may wish to combine
the elements of a collection of sets into one set. The next axiom guarantees this is
possible.

Axiom of Unions. Let A be a collection of sets. Then there exists a set
⋃
A∈A

A such

that x ∈
⋃
A∈A

A if and only if there exists an A ∈ A such that x ∈ A.

The uniqueness of the union over a collection is guaranteed by the axiom of
extension. Usually we denote the union over a collection of two sets by A ∪ B.
That is,

A ∪B :=
⋃

X∈{A,B}

X.
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Note that a set x is an element of a union if there exists a set in the collection
containing x. There is a symmetric concept, the intersection of a collection, that
has the defining property that x is a member of the intersection if it is a member
of every set in the collection. We restate this more formally.

Definition 2.4. Let A be a nonempty collection of sets. Let X ∈ A. Then the
intersection of A is the set⋂

A∈A
A = {x ∈ X | x ∈ A for every A ∈ A}.

Note that we didn’t need a new axiom to define this concept, it relied on the
axiom of specification. In fact, the particular choice of X ∈ A does not matter.
This is because x ∈

⋂
A∈AA if and only if x ∈ A for every A ∈ A, regardless of

which X ∈ A is chosen, so the axiom of extension guarantees all of these sets are
the same.

Also, unlike unions, we were unable to define the intersection over an empty
collection.2 As before, we can define the intersection between two sets as

A ∩B :=
⋂

X∈{A,B}

X.

We proceed to define one more operation between two sets.

Definition 2.5. Let A and B be sets. The difference of A and B is the set

A \B = {x ∈ A | x /∈ B}.

These three operations have a variety of interesting and useful properties, which
we assume the reader is already familiar with, and thus omit (see [1], pg. 17).

2.4. The Power Set, Ordered Pairs, Relations, and Functions. We have
been considering a variety of special subsets. The next axiom allows us to collect
every subset of a given set into a set.

Axiom of powers. For every set X, there exists a set P(X) such that A ∈ P(X) if
and only if A ⊂ X.

This axiom will prove to be powerful tool in our construction of relations and
functions. To begin, we will need to formalize the concept of an ordered pair.

Definition 2.6. Let a and b be sets. The ordered pair (a, b) is the set {{a}, {a, b}}.

Theorem 2.7. (a, b) = (c, d) if and only if a = c and b = d.

This theorem allows us to think of ordered pairs in the usual way; given an
ordered pair (a, b), we can think of a as the first coordinate of (a, b), and b the
second coordinate.

Suppose A and B are given sets, a ∈ A, and b ∈ B. Note then that the ordered
pair (a, b) is an element of P(P(A ∪B)). This allows for the following definition

Definition 2.8. Let A and B be given sets. The cartesian product of A and B is

A×B = {z ∈ P(P(A ∪B)) | z = (a, b) for some a ∈ A, b ∈ B}.

2If we tried to ignore this, x ∈
⋂

A∈∅ A if and only if x ∈ A for every A ∈ ∅. Clearly, every set

x satisfies this criteria, leading to the intersection being the set of all sets, which is problematic.
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Then in particular, A × B is the set of all ordered pairs (a, b) with a ∈ A and
b ∈ B. With this in hand, we can now define some more complex structures.

Definition 2.9. Let A and B be sets. A relation R from A to B is a subset of
A×B. If (a, b) ∈ R, we write aRb.

The domain and range of R are respectively the sets

dom(R) = {a ∈ A | ∃b ∈ B s.t. aRb}, ran(R) = {b ∈ B | ∃a ∈ A s.t. aRb}.
If R is a relation from A to A, we say R is a relation in A.

Definition 2.10. A function f from A to B is a relation from A to B with the
following property. For every a ∈ A, there exists a unique b ∈ B such that (a, b) ∈ f .
Given a ∈ A, we write f(a) for the element of B such that (a, f(a)) ∈ f .

If f is a function from A to B, we write f : A→ B. A is said to be the domain
of f , and B is the codomain.

We conclude this section with some useful concepts relating to functions.

Definition 2.11. Let f : A → B. f is said to be injective if f(x) = f(y) implies
x = y for every x, y ∈ A. f is said to be surjective if for every b ∈ B, there exists
an a ∈ A such that f(a) = b. f is said to be bijective if f is injective and surjective.

Definition 2.12. Let f : A → B, and A′ ⊂ A. The restriction of f to A′ is the
function f |A′ , which maps from A′ to B, and is defined by setting f |A′(x) = f(x)
for all x ∈ A′.

Definition 2.13. A family of sets is a function A with domain I. When A is a
family over the set I, we write {Ai}i∈I , and Ai for A(i).

3. The Natural Numbers

3.1. Peano Axioms, The Axiom of Infinity. At this point, we have discussed
most of the axioms of ZF set theory. There are two other axioms traditionally
included, the axiom of foundation, and the axiom of schema replacement. While
these axioms are interesting and have useful consequences when developing set
theory in general, they are not used for any future results in this paper, and thus
omitted.

This section is dedicated to discussing the final axiom of ZF set theory, the axiom
of infinity, and a basic development of its consequences. For the purpose of this
paper, the main consequence axiom of infinity is to allow for us to describe the set
of natural numbers in terms of sets.3 However, this is not the only way we might
go about describing the natural numbers. One may be familiar with the with the
Peano Axioms for the natural numbers, which are as follows.

Peano Axioms. The natural numbers are the set ω associated with a successor
function S : ω → ω, with the following five properties:

(I) There exists an element 0 in ω.
(II) If n ∈ ω, then S(n) ∈ ω.

(III) For all n ∈ ω, S(n) 6= 0.

3As the name suggests, this axiom will also allow for the construction of infinite sets. Beyond

this, the axiom of infinity also enables the construction of infinte ordinals and cardinals, which is

discussed further in [1]. Much of the work to follow for the natural numbers can be extended to
ordinals and cardinals in general.
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(IV) If S(n) = S(m), then n = m (S is injective).
(V) Suppose A ⊂ ω with the following two properties:

(i) 0 ∈ A;
(ii) n ∈ A implies S(n) ∈ A.

Then A = ω.

Axiom V is commonly referred to as the principle of mathematical induction.

We could, at this point, take all of the Peano Axioms as axioms, and proceed
with whatever mathematics we wished. However, in this case, each natural number
would not be a set, but an atomic object given by the axioms. The axiom of infinity
will allow us to create a particular set which satisfies the Peano Axioms, and whose
elements are indeed sets which are compatible with our previous axioms.

With these as axioms as a guide, we wish to construct a set which satisfies the
above properties, as well as a suitable function S. Our first guiding principle is that
a given natural number should contain the number of elements it is describing. In
other words, if n is a natural number, there should be n elements in the set n.
This immediately forces us to define 0 = ∅. From here, we should ask supposing
n is defined as we wish, how should we define S(n). We want S(n) to have n + 1
elements, and n has n elements, so a reasonable candidate is S(n) = n∪{n}. If we
use the construction, we obtain the following results:

0 = ∅
1 = S(0) = {∅} = {0}.

2 = S(1) = {∅, {∅}} = {0, 1}.
3 = S(2) = {∅, {∅}, {∅, {∅}}} = {0, 1, 2}.

And so on. In general,
S(n) = {0, 1, . . . , n}.

While it’s clear the process could be repeated an arbitrary finite number of times,
there is no way to collect all of our numbers into a set via a finite number of
operations under our current axioms. A further problem is that the S described is
not actually a function. This will not prove to be a problem, but to highlight this
difference, we switch notation.

Definition 3.1. If x is any set, the successor of x is the set x+ = x ∪ {x}.

The + operator is nothing deeper than a notational convenience, we could write
x ∪ {x} in every place we will write x+.

We are now nearly ready to formalize the above process with a new axiom,
though to simplify its statement, we precede it with a short definition.

Definition 3.2. A set A is said to be a inductive (or a successor set) if:

(i) 0 ∈ A (where 0 = ∅ as before).
(ii) n ∈ A implies n+ ∈ A.

Axiom of Infinity. There exists an inductive set.

Note the inductive set given by this axiom may not be the set of natural numbers.
However, this axiom does guarantee the existence of the natural numbers, in the
following sense.

Theorem 3.3. There exists a minimal inductive set. That is, there is an inductive
set ω such that for every inductive set B, ω ⊂ B.
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Proof. Suppose A is a non-empty collection of inductive sets. Then
⋂
A∈AA is

inductive, as:

(i) Each set in A is inductive. Thus, 0 is in every set in A, which implies 0 is in
their intersection.

(ii) If n ∈
⋂
A∈AA, then n ∈ A for each A ∈ A. This implies S(n) in A for each

A ∈ A, and thus S(n) ∈
⋂
A∈AA.

Let C be the inductive set given by the axiom of infinity. We consider the
collection

I = {A ⊂ C | A is inductive}.
Note this collection is non-empty, as C ∈ I. Let

ω =
⋂
A∈I

A.

Then ω is inductive. Suppose B is any inductive set. Then C ∩B ⊂ C is inductive,
so C ∩ B ∈ I. Thus, ω ⊂ C ∩ B. But C ∩ B ⊂ B, so ω ⊂ B. This completes the
proof. �

Definition 3.4. The set of natural numbers is the minimal inductive set produced
by 3.3. This set is denoted by ω. A natural number is an element of ω.

Theorem 3.5. ω satisfies the Peano Axioms (I), (II), (III), and (V)

Proof. (I) and (II) follow from the fact that ω is inductive. (III) is the case as for
all n ∈ ω, n ∈ S(n), so S(n) 6= ∅ = 0. (V) follows by noting A is an inductive set,
and ω is minimally inductive, so ω ⊂ A. �

The proof that ω satisfies (IV) is the most complex, and will require some pre-
liminary results.

Definition 3.6. A set X is said to be transitive if each element is a subset, i.e.,
a ∈ X implies a ⊂ X.

Lemma 3.7. Let n be a natural number (n ∈ ω). Then

(a) If x ∈ n, then n 6⊂ x.
(b) n is transitive.

Proof. (a) By induction. Let S = {n ∈ ω | for all x ∈ n, n 6⊂ x}. It’s easy to see
0 ∈ S. Assume n ∈ S, and consider n+. Suppose there is some set x such that
n+ ⊂ x. n ⊂ n+, so n ⊂ x, and thus x /∈ n. Further, n ⊂ n, and thus n /∈ n,
which shows that x 6= n. Therefore, x /∈ n+, completing the induction.

(b) Also induction. Let S = {n ∈ ω | n is transitive}. 0 ∈ S. Suppose n ∈ S,
and let x ∈ n+. Then either x ∈ n or x = n. In the former case, we can
conclude x ⊂ n, and thus x ⊂ n+. In the latter case, n ⊂ n+ by the definition
of successor. From this, we conclude n+ ∈ S, completing the induction.

�

Theorem 3.8. ω satisfies Peano Axiom (IV). That is, for all n,m ∈ ω, if n+ =
m+, then n = m.

Proof. If n+ = m+, then n ∈ m+, so either n = m or n ∈ m. We can similarly
conclude either m = n or m ∈ n. If n 6= m, then by 3.7 (b), n ∈ m implies n ⊂ m.
However, by 3.7 (a), m ∈ n implies n 6⊂ m, a contradiction. �
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3.2. The Recursion Theorem. The previous section demonstrated how induc-
tion can be used to prove statements about ω. Induction is also useful for defining
functions on ω, as the next theorem demonstrates.

Theorem 3.9 (Recursion Theorem). Let X be a set, a ∈ X, and f : X → X.
Then there exists a function u : ω → X such that u(0) = a and u(n+) = f(u(n))
for all n ∈ ω.

Proof. Let

C = {A ⊂ ω ×X | (0, a) ∈ A and (∀(n, x) ∈ A)
(
(n, x) ∈ A =⇒ (n+, f(x)) ∈ A

)
}.

Note ω ×X ∈ C , so this collection is not empty. Let

u =
⋂
A∈C

A.

It’s clear u ∈ C , and in fact u is the smallest set in C (that is, if A ∈ C , then
u ⊂ A). We wish to show u is a function. Let

S = {n ∈ ω | there exists a unique x ∈ X such that (n, x) ∈ u}.
We now wish to show 0 ∈ S. Suppose not. Then there exists b ∈ X such that b 6= a
and (0, b) ∈ u. But then u \ {(0, b)} would still be a member of C , as:

(i) a 6= b, and (0, a) ∈ u, so (0, a) ∈ u \ {(0, b)}.
(ii) If (n, x) ∈ u \ {(0, b)}, then (n, x) ∈ u. This implies (n+, f(x)) ∈ u. But

n+ 6= 0, so (n+, f(x)) ∈ u \ {(0, b))}.
Then u \ {(0, b)} ∈ C . This implies u ⊂ u \ {(0, b)}, which is a contradiction.
Therefore, 0 ∈ S.

Suppose now n ∈ S. Then there exists a unique x ∈ X such that (n, x) ∈ u.
This implies (n+, f(x)) ∈ u. Assume there is a y ∈ X such that y 6= f(x) and
(n+, y) ∈ u. Then u \ {(n+, y)} ∈ C , as:

(i) n+ 6= 0, so (0, a) ∈ u \ {(n+, y)}
(ii) Suppose (m, t) ∈ u \ {(n+, y)}. If n = m, then t = x, and thus

(m+, f(t)) = (n+, f(x)) ∈ u \ {(n+, y)}.
If n 6= m, then n+ 6= m+, so (m+, f(t)) ∈ u \ {(n+, y)}.

Then u \ {(n+, y)} ∈ C . This implies u ⊂ u \ {(n+, y)}, which is a contradiction.
Therefore, n+ ∈ S. This completes the induction, so S = ω, and thus we can
conclude u is a function. Further, u ∈ C , so u satisfies the necessary requirements.

�

3.3. Arithmetic of the Natural Numbers. With Recursion Theorem in hand,
we are now prepared to define arithmetic on the natural numbers.

Definition 3.10. Fix m ∈ ω. Define sm : ω → ω by setting sm(0) = m and
sm(n+) = (sm(n))+.

We define the sum of m and n to be

m+ n = sm(n).

Addition is the binary operation given by +.

We now prove the expected properties are true.

Theorem 3.11. Addition is associative and commutative. That is, for all k,m, n ∈
ω,
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(a) (k +m) + n = k + (m+ n),
(b) m+ n = n+m.

Proof. (a) We induct on n. First note,

(k +m) + 0 = k +m = k + (m+ 0).

This shows the base case. Then if associativity holds at n,

(k+m) + n+ = ((k+m) + n)+ = (k+ (m+ n))+ = k+ (m+ n)+ = k+ (m+ n+).

This shows that if associativity holds at n, then it holds at n+, completing the
inductive step.

(b) We begin by showing 0 + n = n for all n ∈ ω by inducting on n. We have

0 + 0 = 0,

and if 0 + n = n then

0 + n+ = (0 + n)+ = n+.

Next, we wish to show m+ + n = (m+ n)+ for all n,m ∈ ω. We induct on
n. We have,

m+ + 0 = m+ = (m+ 0)+.

And if m+ + n = (m+ n)+, then

m+ + n+ = (m+ + n)+ = ((m+ n)+)+ = (m+ n+)+.

We are now prepared to show n+m = m+ n, again by induction on n. For
the base case,

0 +m = m = m+ 0.

And for the induction step,

n+ +m = (n+m)+ = (m+ n)+ = m+ n+.

�

We can think of addition as having been defined inductively by adding 1 to the
sum of the previous sum, i.e., m + 0 := m and m + (n + 1) := (m + n) + 1. In a
similar way, we can define a product m · n inductively by setting m · 0 := 0 and
m · (n+ 1) := m · n+m. A more formal formulation follows.

Definition 3.12. Fix m ∈ ω. Define pm : ω → ω inductively by setting pm(0) = 0
and pm(n+) = pm(n) +m.

The product of m and n is defined to be

m · n = pm(n).

Multiplication is the binary operation given by · .

Theorem 3.13. Multiplication distributes over addition. That is, for all k,m, n ∈
ω,

k(m+ n) = km+ kn.

and

(k +m)n = kn+mn.



10 CHRISTOPHER WILSON

Proof. Induct on n. The equality

k(m+ 0) = km = km+ k0

satisfies the base case. For the inductive step, suppose k(m+ n) = km+ kn. Then

k(m+ n+) = k(m+ n)+ = k(m+ n) + k = km+ kn+ k = km+ kn+.

The second equality is an equally simple induction. �

Corollary 3.14. Multiplication is associative and commutative. That is, for all
k,m, n ∈ ω,

(a) (k ·m) · n = k · (m · n),
(b) m · n = n ·m.

Proof. (a) Induct on n. For the base case,

(k ·m) · 0 = 0 = k · (m · 0).

Now suppose (km)n = k(mn). Then

(km)n+ = (km)n+ km = k(mn) + km = k(mn+m) = k(mn+).

(b) We need three preliminary results. The first is that for all n ∈ ω, n+ 1 = n+.
This follows directly from our definition of addition. The second is that for all
n ∈ ω, n = 1 · n. The proof of this is a straightforward induction. The final
result is that for all n ∈ ω, 0 · n = 0. This is also a straightforward induction.
With these three results in hand, we can show commutativity by induction on
n. For the base case, we have

m · 0 = 0 = 0 ·m.

And for the induction step,

m · n+ = m(n+ 1) = mn+m = nm+ 1m = (n+ 1)m = n+m.

�

The last concept of arithmetic we will discuss is exponentiation.

Definition 3.15. Fix m ∈ ω. Define em : ω → ω inductively by

em(0) = 1, em(n+) = em(n) ·m.

Then m to the power n, written mn, is defined to be em(n).

Theorem 3.16. For all k,m, n ∈ ω:

(a) km+n = kmkn.
(b) knmn = (km)n

(c) (km)n = kmn

Proof. (a) Induct on n. For the base case

km+0 = km = km · k0.

And for the induction step,

km+n+

= k(m+n)+ = km+n · k = kmknk = kmkn
+

.
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(b) Induct on n. For the base case,

(km)0 = 1 = k0m0.

And for the induction step,

(km)n
+

= (km)n · (km) = knmnkm = kn
+

mn+

.

(c) Induct on n. For the base case,

(km)0 = 1 = km·0.

And for the induction step,

(km)n
+

= (km)n · km = kmn · km.
Then by (a),

kmn · km = kmn+m = kmn
+

.

�

3.4. Order on ω.

Definition 3.17. Let m,n ∈ ω. m and n are comparable if m ∈ n, n ∈ m, or
m = n.

Lemma 3.18. All natural numbers are comparable.

Proof. Let n ∈ ω. Define

Sn = {m ∈ ω | m and n are comparable }.
and then define

S = {n ∈ ω | Sn = ω}.
Then we wish to show S = ω, which we will do by induction.

First, we must show S(0) = ω, which we will also show by induction. 0 ∈ S(0)
by definition (0 = 0). Suppose m ∈ S(0). Then either 0 ∈ m or m = 0 (clearly
m ∈ 0 cannot be the case). In either case, this implies 0 ∈ m+, so m+ ∈ S(0).

Now suppose Sn = ω. We wish to show S(n+) = ω by induction on m. Because
S(0) = ω, n+ ∈ S(0) in particular, which implies n+ and 0 are comparable, and
thus 0 ∈ S(n+).

Now suppose m ∈ S(n+). There are three cases:

(i) n+ ∈ m. Then n+ ∈ m+, so m+ ∈ S(n+).
(ii) n+ = m. Then n+ ∈ m+, so m+ ∈ S(n+).

(iii) m ∈ n+. Then either m ∈ n or m = n. In the later case, m+ = n+, so
m+ ∈ S(m+). In the former case, by 3.7 (a), n 6⊂ m. Recall Sn = ω, so
m+ ∈ Sn. Then we have three cases
• m+ = n. Then m+ ∈ n+, so m+ ∈ S(n+).
• m+ ∈ n. Then m+ ∈ n+, so m+ ∈ S(n+).
• n ∈ m+. Then either n ∈ m or n = m. In either case, we can conclude
n ⊂ m (by 3.7 (b)), which is a contradiction.

Therefore, in all cases, m+ ∈ S(n+), so we can conclude S(n+) = ω, completing
the induction. �

Corollary 3.19. For any n,m ∈ ω, exactly one of the following hold:

• n = m
• n ∈ m
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• m ∈ n

Proof. 3.18 shows that for any two natural numbers, one of the above hold. We
can then show by 3.7 that if any one of the above holds, the other two must not
hold. �

Corollary 3.20. For all n,m ∈ ω such that n 6= m, n ∈ m if and only if n ⊂ m.

Proof. The forward direction is given by 3.7 (b). If n /∈ m and n 6= m, by 3.19,
m ∈ n, which implies by 3.7 (a) that n 6⊂ m. �

Definition 3.21. We let < be a relation on ω such that n < m when n ∈ m.

3.20 shows n < m if and only if n ( m.

Definition 3.22. For all n,m ∈ ω, n ≤ m if n < m or n = m.

It follows again from 3.20 that n ≤ m if and only if n ⊂ m. An immediate
corollary of the subset formulation is that this order is transitive. That is, if a < b
and b < c, then a < c (and the same for the non-strict case).

We conclude this section by showing how arithmetic and order interact.

Lemma 3.23. (a) If m,n ∈ ω such that m < n, then m+ ≤ n.
(b) Let m ∈ ω. Then for all n ∈ ω, m ≤ m+ n.
(c) Let q ∈ ω such that q > 0. Then for all n ∈ ω such that n > 0, qn > 0.

Proof. (a) If n < m+, then n ∈ m or m = n, and thus n ≤ m.
(b) Induct on n. For the base case, m = m + 0 ≥ m + 0. For the induction step,

m + n ≤ (m + n)+ = m + n+ by the order definition, and m ≤ m + n by the
induction hypothesis, so m ≤ m+ n+.

(c) Let S = {n ∈ ω | n = 0 or (n > 0 and qn > 0} and induct. 0 ∈ S by definition.
If n ∈ ω, either n = 0, in which case q0+ = q > 0, or n > 0, in which case
qn+ = qn+ q ≥ qn > 0.

�

Theorem 3.24. Let k,m ∈ ω. k < m if and only if there exists n ∈ ω such that
n > 0 and k + n = m.

Proof. First we show if there exists n > 0 such that k + n = m, then k < m. We
do this by contrapositive. Suppose m ≤ k. Then we wish to show for all n ∈ ω
such that n > 0, k + n 6= m. We consider the set

S = {n ∈ ω | n = 0 or (n > 0 and m < k + n}.
0 ∈ S by definition. Suppose n ∈ S. There are two cases:

(i) n = 0. Then either m = k or m < k. It’s clear that in either case m < k+ =
k + 0+, so the induction proceeds.

(ii) n 6= 0. Then m < k + n < k + n+.

This completes the induction, so we can conclude that if n 6= 0, then m 6= k + n.
Suppose now k < m, and assume for contradiction k+n 6= m for all n > 0. This

implies k + n 6= m for all n ∈ ω. We will show this implies k + n < m for all n ∈ ω
by induction. The base case is clear from our assumption. Suppose now k+n < m.
Then by 3.23 (a), k + n+ ≤ m. However, k + n+ 6= m by our assumption, so we
are left with k + n+ < m, completing the induction.

Then in particular, m ≤ k +m < m by 3.23 (b), which is a contradiction. �
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Corollary 3.25. Let k,m, n ∈ ω such that k < m. Then

(a) k + n < m+ n.
(b) kn < mn when n > 0.

Proof. (a) If k < m, by 3.24, there exists q ∈ ω such that q > 0 and k + q = m.
Then (k + n) + q = m+ n, so by 3.24, k + n < m+ n.

(b) Again, by 3.24, there exists q > 0 such that k + q = m. Then kn + qn = mn.
Further, if n > 0, then qn > 0 by 3.23 (c), so we can conclude by 3.24 kn < mn.

�

4. Finite and Infinite Sets, Partial Order, and Choice

At this point, we have successfully completed much (though certainly not all) of
the development ZF set theory necessary for further mathematics outside set theory.
However, most mathematicians today use Zermelo-Fraenkel as well as an additional
axiom, the axiom of choice, as their underlying axiom system (abbreviated ZFC).
The goal of this section is to state this axiom, and show it is equivalent to two other
statements: Zorn’s lemma, and well ordering principle.4

4.1. Finite and Infinite Sets. Before discussing axiom of choice, we digress
briefly to discuss finite and infinite sets.

Definition 4.1. Let R be a relation on a set X.
We say R is reflexive if for all x ∈ R,

xRx.

We say R is symmetric if for all x, y ∈ R,

xRy implies yRx.

We say R is asymmetric if for all x, y ∈ R,

xRy and yRx implies x = y.

We say R is transitive if for all x, y, z ∈ R,

xRy and yRz implies xRz.

Definition 4.2. A relation R on a set X is an equivalence relation if R is reflexive,
symmetric, and transitive.

Equality is perhaps the most obvious equivalence relation. The following defini-
tion is in fact another example of an equivalence relation (the proof of this is left
as an exercise).

Definition 4.3. Two sets E and F are said to be equivalent (written E ∼ F ) if
there exists a bijection between E and F .

Definition 4.4. Let E be a set. If E is equivalent to some natural number, then
E is finite. If E is equivalent to no natural number, E is infinite.

We now set out to show finite sets are equivalent to a unique natural number.

4One important fact which we will not prove in this paper is that the axiom of choice is

independent from the axioms of ZF. That is, the axioms of ZF do not imply the axiom of choice,
nor do they imply not axiom of choice.
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Lemma 4.5 (Pigeonhole Principle). If n ∈ ω, then n is not equivalent to any of
its proper subsets.

Proof. We will show by induction that if f : n→ n is injective, then f is surjective.
Let

S = {n ∈ ω | Every injective funciton f : n→ n is surjective}.
The empty function is the only function from 0 to 0, and this function is bijective,
so 0 ∈ S. Suppose n ∈ S, and f : n+ → n+ is injective.

(i) Suppose ran(f |n) ⊂ n. Because f |n is injective, by our inductive hypothesis,
ran(fn) = n. Then because f is injective, we can conclude f(n) = n, and thus
that f is surjective.

(ii) Now suppose ran(f |n) 6⊂ n. Then there exists k ∈ n such that f(k) = n. We
define g : n+ → n+ to be (f \{(k, f(k)), (n, f(n)})∪{(k, f(n)), (n, f(k))}. It’s
easy to see g is injective, and has the same range as f . In fact, g|n ⊂ n, so by
(i), we can conclude g is surjective, and thus f is surjective.

Therefore, n+ ∈ S, completing the induction. �

Corollary 4.6. If E is a set, and n ∈ ω such that E ∼ n, then n is the unique
natural number equivalent to E.

Proof. If m 6= n, either m ( n or n ( m. 4.5 shows that n 6∼ m, so from this we
can conclude E 6∼ m. �

This allows for the following definition.

Definition 4.7. If E is finite, the cardinality of E is the natural number which is
equivalent to E, denoted |E|.

We include one more interesting result.

Corollary 4.8. ω is infinite.

Proof. By 4.5, we can conclude if a set is finite, then it is not equivalent to any
of its proper subsets. Thus, if a set is equivalent to one of its proper subsets, it is
infinite. In particular, ω ∼ ω \ {0} under the mapping n 7→ n+. �

4.2. Axiom of Choice. A first observation is if we are given a non-empty set,
then we may choose an element of that set. Specifically, there exists x ∈ X, and if
we needed a specific element of X for any reason, we can denote that element by
x and proceed. The next natural question to ask is what if, rather than one set,
we had a collection of sets? The forthcoming theorem considers the finite case, but
first some terminology.

Definition 4.9. Let X be a collection of sets. A choice function on X is a function
f : X →

⋃
A∈X A such that f(A) ∈ A for all A ∈ X.

Proposition 4.10. Let X be a collection of sets. If ∅ ∈ X, then there does not
exist a choice function on X.

Proof. Suppose not, and let f be a choice function. Then f(∅) ∈ ∅. �

Theorem 4.11. Let X be a finite collection of sets. Then there exists a choice
function on X if and only if no set in X is empty.
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Proof. 4.10 gives the forward direction. Suppose now X is a finite collection of
non-empty sets. We induct on the cardinality of X. If |X| = 0, then the empty
function is a choice function on X. Suppose a choice function exists for any set
with cardinality n, and |X| = n + 1. Let A ∈ X. Then |X \ {A}| = n, so there
is some choice function f on X \ {A}. Let a ∈ A. Then f ∪ {(A, a)} is a choice
function on X. �

We now consider the infinite case. 4.10 shows that if a choice function exists on
any collection of sets (even an infinite one), each set in the collection must not be
empty. The other direction of this statement (if a collection of sets does not contain
empty set, then there is a choice function on that set), seems obvious.

In some cases it’s easy to name an example of a choice function.

Example 4.12. For a, b ∈ R, let (a, b) = {x ∈ R | a < x < b} be the interval from
a to b. Let X be the collection of all non-empty intervals. Note then an interval is
non-empty if and only if a < b.

To define a choice function on X, let f map (a, b) 7→ a+b
2 .

In other cases however, there is no obvious choice function.

Example 4.13. Let X be the collection of non-empty subsets of R. In order to
define a choice function, we need a “rule” to assign elements of X to an element of⋃
A∈X A. Specifically, in 4.12, we applied the axiom of specification to X×

⋃
A∈X A.

Here, we have no way to specify what element to assign to each subset. Further,
we can not define X inductively like in 4.11 because X is infinite.

In fact, if we wish for a choice function to exist in general in the infinite case,
we must take it as an axiom.

Axiom of Choice. Let X be an infinite collection of non-empty sets. Then there
exists a choice function on X.

4.3. Partial Order. A useful application of Axiom of Choice is to the theory of
partial orders. We begin with a variety of basic definitions.

Definition 4.14. Let � be a relation on X. If � is reflexive, asymmetric, and
transitive, � is said to be a partial order on X.

If x, y ∈ X such that x � y or y � x, then x and y are comparable.

Of particular note is that in a partially ordered set, there may exist a pair of
elements which is not comparable. The following definition introduces terminology
for the case where all elements are comparable.

Definition 4.15. Let � be a partial order on X. � is a total order if every x, y ∈ X
are comparable.

Example 4.16. • ≤ on the natural numbers is a total order.
• Let X be any collection of sets. Then ⊆ is a partial order on X.
• Let F be a collection of functions such that for all f ∈ F , dom(f) ⊂ X and

ran(f) ⊂ Y . For f, g ∈ F , say f � g if dom(f) ⊂ dom(g) and for all x ∈ dom(f),
f(x) = g(x). Then � is a partial order on F .

Definition 4.17. Let � be a partial order on X. For all x, y ∈ X, we write x ≺ y
when x � y and x 6= y.

≺ is a relation in X, which is transitive, and the property x ≺ y implies y 6� x.
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Definition 4.18. Let X be a partially ordered set, and a ∈ X. The (strict) initial
segment of a is the set

s(a) = {x ∈ X | x ≺ a}.
The weak initial segment is the set

s(a) = {x ∈ X | x � a}.

Definition 4.19. Let X be partially ordered, and a ∈ X.
a is least, smallest, or first if for all x ∈ X, a � x.
a is greatest, largest, or last if for all x ∈ X, x � a.
a is minimal if for all x ∈ X, x � a implies a = x.
a is maximal if for all x ∈ X, a � x implies a = x.

An easy equivalence is a ∈ X is minimal if x 6≺ a for all x ∈ X. Similarly, a ∈ X
is maximal if a 6≺ x for all x ∈ X.

4.4. Zorn’s Lemma. The first major consequence (in fact, equivalent statement
to) axiom of choice is Zorn’s lemma. The goal of this section is to prove that axiom
of choice implies Zorn’s Lemma.

From this point forward, when a set is partially ordered, we will notate the
ordering as ≤ (which is not necessarily the ordering for the natural numbers). We
begin with some relevant definitions.

Definition 4.20. Let X be partially ordered. A chain in X is a totally ordered
subset of X.

That is, A ⊂ X is a chain if for all a, b ∈ A, a ≤ b or b ≤ a.

Definition 4.21. Let A be a chain in X. u ∈ X is an upper bound of A if a ≤ u
for all a ∈ A.

Of particular note is that a chain’s upper bound may not be a member of the
chain.

We are now prepared to state Zorn’s lemma.

Theorem 4.22 (Zorn’s lemma). Suppose X is a non-empty partially ordered set
such that every chain in X has an upper bound. Then X contains a maximal
element.

We now fix X to be the set given in the hypothesis of Zorn’s lemma. In order to
begin with this proof, we will want to transform X into a specific partially ordered
set for which we know the ordering. We let

X = {A ⊂ X | A is a chain in X}.

We let X be partially ordered by inclusion. That is, for x, y ∈ X , x ≤ y when
x ⊂ y.

Lemma 4.23. (a) X 6= ∅.
(b) If C is a chain in X , then

⋃
C∈C C is an upper bound of C.

(c) If A ∈ X is maximal, then X has a maximal element.

Proof. (a) ∅ is a chain in X.
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(b) Let C be a chain in X . We first need to show
⋃
C∈C C ∈ X . Suppose x, y ∈⋃

C∈C C. Then there exist Cx, Cy ∈ C containing x and y respectively. C is
a chain, so Cx ⊂ Cy or Cy ⊂ Cx. If Cx ⊂ Cy, then x, y ∈ Cy, and Cy is a
chain in X, so x and y are comparable. The argument is the same if Cy ⊂ Cx.
Therefore,

⋃
C∈C C is indeed a chain in X, and thus an element of X .

From this, it immediately follows
⋃
C∈C C is an upper bound of C, because

X is ordered by inclusion.
(c) Let A ∈ X be maximal. A is a chain in X, so let u ∈ X be an upper bound of

A. We wish to show u is maximal in X.
Suppose z ∈ X such that u ≤ z. For all x ∈ A, x ≤ u, and thus x ≤ z.

Therefore, A∪{z} is a chain, and thus an element of X . Further, A ⊂ A∪{z},
and A is maximal, so A = A ∪ {z}. This implies z ∈ A, and thus z ≤ u. We
can therefore conclude z = u, proving that u is maximal.

�

With this lemma, we now need to show X has a maximal element to prove Zorn’s
lemma. We are now prepared to begin proving the main result.

Let f be a choice function on P(X) \ {∅} (this is where we invoke axiom of

choice). For each A ∈ X , let Â = {x ∈ X | A ∪ {x} ∈ X}. We define g : X → X as
follows:

g(A) =

{
A ∪ f(Â \A) Â \A 6= ∅
A Â \A = ∅

.

In other words, Â contains every x ∈ X such that if x is added to A, then the new
set is still a chain. Thus, A∪f(Â\A) is always in X , so our definition makes sense.

It also follows A is maximal if and only if Â \ A = ∅, so we wish to find an A ∈ X
such that g(A) = A.

We now will introduce some temporary terminology.

Definition 4.24. τ ⊂ X is a tower if:

• ∅ ∈ τ .
• If A ∈ τ , then g(A) ∈ τ .
• If C is a chain in τ , then

⋃
C∈C C ∈ τ .

Note in particular X is a tower, so we may consider the set

τ0 =
⋂

τ is a tower

τ.

It’s easy to see τ0 is itself a tower.

Definition 4.25. C ∈ τ0 is comparable if for every A ∈ τ0, either A ⊂ C or C ⊂ A.

Lemma 4.26. Let C ∈ τ0 be comparable. If A ∈ τ0 such that A ( C, then
g(A) ⊂ C.

Proof. g(A) ∈ τ0, so either g(A) ⊂ C or C ( g(A). In the latter case, we have

A ( C ( g(A),

which contradicts the definition of g. �

Lemma 4.27. Let C ∈ τ0 be comparable, and U = {A ∈ τ0 | A ⊂ C or g(C) ⊂ A}.
Then U is a tower.
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Proof. ∅ ⊂ C, so ∅ ∈ U .
Suppose A ∈ U . If g(C) ⊂ A, then g(C) ⊂ g(A) as well, so g(A) ∈ U . If A ⊂ C,

then A ( C implies g(A) ⊂ C by 4.26, whereas A = C implies g(A) = g(C), so in
either case g(A) ∈ U .

Suppose C is a chain in U . We consider two cases:

(i) For all A ∈ C, A ⊂ C. Then
⋃
A∈C A ⊂ C, and is thus an element of U .

(ii) There exists an A ∈ C such that A 6⊂ C. Then g(C) ⊂ A, so g(C) ⊂
⋃
A∈C A,

and is thus an element of U .

�

Corollary 4.28. If C ∈ τ0 is comparable, then g(C) is comparable.

Proof. U is a tower, so τ0 ⊂ U , and U ⊂ τ0 by definition. Then each A ∈ τ0 is in
U , so either A ⊂ C, which implies A ⊂ g(C), or g(C) ⊂ A. �

Lemma 4.29. Let V = {A ∈ τ0 | A is comparable }. V is a tower.

Proof. ∅ ∈ V.
By 4.28 if A ∈ V, then g(A) ∈ V.
Suppose C is a chain in V, and A ∈ τ0. There are two cases:

(i) There exists C ∈ C such that A ⊂ C. Then A ⊂
⋃
C∈C C.

(ii) For all C ∈ C, C ⊂ A. Then
⋃
C∈C C ⊂ A.

Therefore,
⋃
C∈C C is comparable, and thus an element of V. �

From this, we can conclude τ0 = V, and thus τ0 is a chain. Let A =
⋃
T∈τ0 T .

Then A ∈ τ0, and A is an upper bound of τ0 (by 4.23 (b)). Then g(A) ∈ τ0, so
g(A) ⊂ A. However, A ⊂ g(A) by definition, so we can conclude A = g(A). This
suffices to prove Zorn’s Lemma.

4.5. Well Ordering. The next major equivalent statement to axiom of choice and
Zorn’s lemma is the well ordering principle. The goal of this section is to show that
Zorn’s lemma implies the well ordering principle and then that the well ordering
principle implies axiom of choice. We begin with a definition.

Definition 4.30. Let X be partially ordered. X is well ordered if each nonempty
subset of X has a least element.

We can immediately strengthen this without losing generality.

Theorem 4.31. Every well ordered set is totally ordered.

Proof. Suppose X is well ordered, and x, y ∈ X. The {x, y} is a subset of X, so
it must have a least element. If x is the least element, x ≤ y, and if y is the least
element, y ≤ x. Therefore, in either case, x and y are comparable. �

We even have a concrete example of a well ordered set.

Theorem 4.32. The natural numbers are well ordered.

Proof. Suppose A ⊂ ω has no least element. Let

S = {n ∈ ω | m < n implies m /∈ A}.
We have 0 ∈ S, as there are no numbers less than 0 in ω. Suppose now n ∈ S, and
m < n+. There are two cases:
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(i) m < n. Then m /∈ A directly by the inductive hypothesis.
(ii) m = n. If n ∈ A, then the inductive hypothesis would imply n is the least

element of A, which cannot be. Therefore, m /∈ A.

From this, we can conclude n+ ∈ S, completing the induction. This shows that
A = ∅, which suffices to prove the theorem. �

In fact, well ordered sets share a property similar to Peano Axiom V.

Theorem 4.33 (Transfinite Induction). Suppose X is well ordered, and S ⊂ X
such that for all x ∈ X, if s(x) ⊂ S, then x ∈ S. Then S = X.

Proof. Suppose not. Then X \ S is a nonempty subset of X, so let x be its least
element. Then each element of s(x) must be an element of S, which implies x ∈ S,
a contradiction. �

Definition 4.34. A well ordered set A is a continuation of a well ordered set B if:

• B ⊂ A.
• B is an initial segment of A.
• The ordering in B is preserved in A.

Note then that we can partially order any collection of initial segments of a well
ordered set by continuation. We may say a collection is a chain with respect to
continuation if for any pair of distinct sets in the collection, one is a continuation
of the other.

There is a converse of this statement, that given a chain with respect to contin-
uation, we can use it to build a well ordered set.

Lemma 4.35. Let C be a chain with respect to continuation, and

U =
⋃
C∈C

C.

Then there exists a unique well ordering of U such that U is a continuation of each
element of C which is distinct from U .

Proof. Let a, b ∈ U . Then there are initial segments A and B which contain a and
b respectively. Then either A = B, or one is a continuation of the other. Therefore,
we can conclude there is a set in C which contains both a and b. We can thus order
a and b by copying the order from any set which contains both a and b. C is a
chain, so this order must be the same for each set which contains a and b, so our
definition is unambiguous.

This relation inherits reflexivity, anti-symmetry, and transitivity from the sets
in C, so this relation is indeed a partial order. Further, the choice of ordering is
forced on us if we wish to ensure each set in C distinct from U is continued by U .
Thus, this ordering is uniquely determined. We now need to show this ordering is
a well ordering.

Suppose A ⊂ U and A 6= ∅. Then there is some C ∈ C such that A ∩ C 6= ∅.
Further, A ∩ C ⊂ C, and C is well ordered, so A ∩ C has a least element u. We
will show u is in fact a least element of A. Suppose not. Then there exists x ∈ A
such that x < u. A ⊂ U , so let x ∈ B ∈ C. Then B 6= C, as in particular x /∈ C.
However, C is a chain with respect to continuation, and B 6⊂ C, so B must be a
continuation of C. But then C is an initial segment in B, and u ∈ C, and x < u,
so x ∈ C, which is a contradiction. �
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With this, we are now prepared to prove the main result of this section.

Theorem 4.36 (Well Ordering Principle). If we assume the axioms of ZF and
Zorn’s lemma, then every set can be well ordered.

Proof. Let X be a given set. Consider the collection

W = {Y ⊂ X | Y can be well ordered}.
Partially order W by continuation. ∅ ∈ W, so W 6= ∅. By 4.35, each chain in W
is bounded above by its union. Therefore, by Zorn’s lemma, there exists M ∈ W
which is maximal.

We now wish to show M = X. Suppose not. Let x ∈ X \ M . Then let
M ′ = M ∪ {x}. Order M ′ by copying the order from M , and adding y < x for all
y ∈M . Then M ′ is a continuation of M , contradicting the maximality of M . �

In summary, assuming the axioms of ZF, we have now proven axiom of choice
implies Zorn’s lemma, and Zorn’s lemma implies well ordering principle. The fol-
lowing theorem completes the equivalence of these three statements.

Theorem 4.37. If we assume the axioms of ZF and well ordering principle, then
axiom of choice holds.

Proof. Let X be an infinite collection of non-empty sets. For each A ∈ X, let
min(A) be the smallest element of A in its well ordering. Define a choice function
f by mapping A 7→ min(A). �
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