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Abstract. We study Banach and Hilbert spaces with an eye to-
wards defining weak solutions to elliptic PDE. Using Lax-Milgram
we prove that weak solutions to Poisson’s equation exist under
certain conditions.
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1. Introduction

We will discuss the following problem in this paper: let Ω be an open
and connected subset in R and f be an L2 function on Ω, is there a
solution to Poisson’s equation

(1) −∆u = f?

From elementary partial differential equations class, we know if Ω =
R, we can solve Poisson’s equation using the fundamental solution to
Laplace’s equation. However, if we just take Ω to be an open and
connected set, the above method is no longer useful. In addition, for
arbitrary Ω and f , a C2 solution does not always exist. Therefore,
instead of finding a strong solution, i.e., a C2 function which satisfies
(1), we integrate (1) against a test function φ (a test function is a
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smooth function compactly supported in Ω), integrate by parts, and
arrive at the equation

(2)

∫
Ω

∇u∇φ =

∫
Ω

fφ, ∀φ ∈ C∞c (Ω).

So intuitively we want to find a function which satisfies (2) for all
test functions and this is the place where Hilbert spaces come into play.
In the first 5 sections of the paper we will set the stage for the Hilbert
spaces and in the last section we will utilize Hilbert spaces to solve the
main problem. A solid background in real analysis is required for the
full understanding of this paper.

2. Banach spaces

In this section we shall present definition and examples of Banach
spaces as well as prove the famous Hahn-Banach theorems which enable
us to extend linear functionals and separate sets in Banach spaces.

Definition 2.1. A Banach space is a complete normed vector space.

The motivation behind Banach spaces is that we want to generalize
Rn to spaces of infinite dimensions. There are several characteristics
of Rn which make us love them so much: they are linear spaces, they
are metric spaces, and they are complete. All these 3 properties of Rn

are included in the definition of Banach spaces.

Example 2.2. Rn is a Banach space for any positive integer n, with the
norm of the vector (a1, a2, . . . , an) ∈ Rn defined to be

√
a1

2 + a2
2 + . . .+ an2.

Definition 2.3. Let (X, σ, µ) be a σ-finite measure space. For 1 ≤ p <
+∞, define the Lp norm of a function f by

‖f‖p ≡
(∫

X

|f(x)|pdµ
)1/p

.

For p with p = +∞, define the Lp norm of f by

‖f‖∞ ≡ inf{M | µ({x | |f(x)| > M}) = 0}.

The space Lp is defined to be

Lp ≡ {f : X → R|f measurable and ‖f‖p < +∞}.

Remark 2.4. For any p such that 1 ≤ p ≤ +∞, Lp is a Banach space.

In the following, E denotes a Banach space.
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Definition 2.5. Given a linear function, f : E → R, the norm of f ,
denoted by ‖f‖, is defined to be

‖f‖ ≡ sup
x∈E,‖x‖≤1

|f(x)|.

If ‖f‖ < +∞, we say f is a bounded linear functional on E.

Remark 2.6. It is not hard to check that a bounded linear functional
f is also a continuous linear functional, and vice versa.

Definition 2.7. The dual space of E, denoted by E∗, is defined to
be the collection of all bounded linear functionals on E with the norm
given above.

Example 2.8. Let E = R. It is easy to see for every f ∈ E∗, there is
an rf ∈ E such that f(x) = rfx for all x ∈ E, and the converse is also
true. Thus, we can identify E∗ with E.

Theorem 2.9 (Hahn-Banach analytic form). Let p : E → R be a
function satisfying

(3) p(λx) = λp(x) ∀x ∈ E ∀λ > 0

(4) p(x+ y) ≤ p(x) + p(y) ∀x, y ∈ E

Let G ⊂ E be a linear subspace and let g : G→ R be a linear functional
such that g(x) ≤ p(x) ∀x ∈ G. Then there exists a linear functional
f : E → R which extends g and

f(x) ≤ p(x) ∀x ∈ E.

Proof. Suppose not. Let X be defined as the collection of linear ex-
tensions of g such that f(x) ≤ p(x) on the domain of f . For any two
elements, f1 and f2 in X, we say f1 < f2 if and only if domain(f1) ⊂
domain(f2), and f2 is an extension of f1. Then for any chain f1 < f2 <
f3 < ......, let D1 ⊂ D2 ⊂ ...... be their domains and let D be defined
as ∪iDi. It is clear that D is a linear subspace. We define a function
f : D → R as follows: for any x ∈ D, by our construction there exists
an i such that x ∈ Di. we define f(x) to be fi(x). It is easy to verify
that f is well defined and f ∈ X. Thus, the chain f1 < f2 < ......
has an upper bound in X. By applying Zorn’s lemma, we know there
exists a maximal element h which is an extension of g to some linear
subspace G1 of E.

Suppose G1 6= E. Choose x0 ∈ E −G1, and consider the subspace

G2 ≡ {x+ λx0

∣∣ x ∈ G1, λ ∈ R}.
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It is clear that G2 is a linear subspace of E which is strictly larger than
G1. In addition, for all x, y in G1,

h(x) + h(y) = h(x+ y) ≤ p(x+ y) ≤ p(x+ x0) + p(y − x0).

Hence,
h(y)− p(y − x0) ≤ p(x+ x0)− h(x).

Thus, we can choose an α ∈ R such that

h(y)− p(y − x0) ≤ α ≤ p(x+ x0)− h(x)

for all x, y ∈ G1. Define a linear function f : G2 → R by f(y + λx0) ≡
h(y) + λα, ∀y ∈ G1, λ ∈ R. It is obvious that f is an extension of
h to G2. In addition, by our construction of α, we have f(x + x0) =
h(x)+α ≤ p(x+x0) and f(x−x0) = h(x)−α ≤ p(x−x0) ∀x ∈ G1. By
(1) and the fact that h is a linear functional defined on a linear subspace
of E, it is clear that f(x+λx0) ≤ p(x+ x0) ∀x ∈ G1 and λ ∈ R, which
contradicts the maximality of h. �

Definition 2.10. a hyperplane H is a subset of E of the form

H = {x ∈ E| f(x) = α},
where f is a nontrivial linear functional and α is a constant in R.

It is not hard to show that H is a closed hyperplane if and only if
its corresponding f is bounded.

Now, we can use the analytic form of Hahn-Banach theorem to sep-
arate sets. Before we start, we look at a few definitions and lemmas
which help us to prove the geometric form of Hahn-Banach theorem.

Definition 2.11. Let A and B be two subsets of E. We say that the
hyperplane, H = [f = α], separates A and B if

f(x) ≤ α ∀ x ∈ A and f(x) ≥ α ∀x ∈ B.
We say that H strictly separates A and B if there exists some ε > 0
such that

f(x) ≤ α− ε ∀x ∈ A and f(x) ≥ α + ε ∀x ∈ B.

Lemma 2.12. Let C ⊂ E be an open convex set with 0 ∈ C. For every
x ∈ E set

p(x) ≡ inf{a > 0
∣∣ a−1x ∈ C}.

We call p the gauge of C. Then p satisfies (3) (4) and the following
properties:

(5) ∃M such that 0 ≤ p(x) ≤M‖x‖, ∀x ∈ E

(6) C = {x ∈ E
∣∣ p(x) < 1}
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Proof. It is clear that p is linear, so it satisfies (3). (4) follows from
convexity of C. (5) is true because C is open and (6) follows from
definition of p. �

Lemma 2.13. Let C ⊂ E be a nonempty open convex set and let x0

be an element in E with x0 /∈ C. Then there exists f ∈ E∗ such that
f(x) < f(x0) ∀x ∈ C. In particular, the hyperplane, H = [f =
f(x0)], separates {x0} and C.

Proof. After a translation we may assume 0 ∈ C. We introduce the
gauge of C, which we denote by p. Consider the linear subspace G =
{λx0

∣∣ λ ∈ R} and the linear functional g : G→ R defined by

g(tx0) = t, t ∈ R.

It is clear that

g(x) ≤ p(x) ∀x ∈ G.
By Theorem 2.9 we know we can extend g to f defined on E such that

f(x) ≤ p(x) ∀x ∈ G.
So we must have

(1) f(x0) = 1 (f is an extension of g and g(x0) = 1).
(2) f(x) ≤ p(x) ≤ 1 ∀x ∈ C (p is the gauge of C and (4) is true).
(3) f is continuous (by (4)).

Thus, we are done. �

Corollary 2.14 (Hahn-Banach, first geometric form). let A ⊂ E and
B ⊂ E be two nonempty convex subsets such that A∩B = ∅ . Assume
that one of them is open. Then there exists a closed hyperplane that
separates A and B.

Proof. Assume A is open. Let C = {x − y; x ∈ A, y ∈ B}. As A
and B are convex, it is clear that C is convex. As C = ∪x∈B(A − x),
the union of open sets, we know C is open. In addition, C does not
contain 0 as A ∩ B = ∅. By Lemma 2.13, there exists an f ∈ E∗ such
that f(x) < 0, ∀x ∈ C, which implies f(x) < f(y) ∀x ∈ A, y ∈ B.
Let α = supx∈Af(x). We know [f = α] is a hyperplane which separates
A and B. �

Corollary 2.15 (Hahn-Banach, second geometric form). let A ⊂ E
and B ⊂ E be two nonempty convex subsets such that A ∩ B = ∅ .
Assume that A is closed and B is compact. Then there exists a closed
hyperplane that strictly separates A and B.

Proof. The proof is similar to that of Corollary 2.14. �
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3. Weak topology, weak star topology and reflexivity

In this section I will introduce definitions of weak and weak star
topology. The motivation behind those topologies is that a topology
with fewer open sets has more compact sets.

In the following, E denotes a Banach space.

Definition 3.1. The weak topology σ(E,E∗) on E is defined to be the
coarsest topology on E such that for all f in E∗, f is continuous.

Remark 3.2. Such a topology exists. Consider A = {all topologies on
E such that for all f in E∗, f is continuous }. We know A is nonempty
as it contains the discrete topology on A. We define σ(E,E∗) to be the
intersection of all elements in A and it is easy to verify we get the
topology we want. In addition, the weak topology is coarser than the
strong topology as for any f ∈ E∗, f is continuous with respect to the
strong topology by Remark 2.6.

Proposition 3.3. Let (xn) be a sequence in E. Then

(1) xn ⇀ x weakly in σ(E,E∗) if and only if f(xn)→ f(x), ∀f ∈
E∗.

(2) if (xn) converges strongly, then (xn) converges weakly in σ(E,E∗).

Here is an example that shows the weak topology is strictly coarser
than the strong topology.

Definition 3.4. Let `2 denote the collection of sequences (x1, x2, ........) ∈
R∞ such that

∑∞
i=1 xi

2 < ∞. We define a bilinear form (−,−) on `2

by

∀a = (a1, a2, ....), b = (b1, b2, .....) ∈ `2, (a, b) ≡
∞∑
i=1

aibi.

It is easy to verify that `2 is a Hilbert space (Definition 5.2) under the
scalar product (−,−).

Example 3.5. Consider a sequence (en) ∈ `2, where e1 = (1, 0, 0, 0, ....),
e2 = (0, 1, 0, 0, .....), e3 = (0, 0, 1, 0, ......) etc. It is clear that (en) does
not converge in the strong topology. However, as we will prove later
(Theorem 5.9), for any f ∈ (`2)∗, there exists an element F ∈ `2

such that f(x) = (F, x) ∀x ∈ `2 and then it is easy to show that
f(en)→ f(0) = 0. Thus, (en) converges to 0 in the weak topology.

Here is another example that shows the weak topology is strictly
coarser than the strong topology.

Example 3.6. The unit sphere S = {x ∈ E
∣∣ ‖x‖ = 1}, with E

infinite-dimensional, is not closed in σ(E,E∗). More precisely, the
closure of S with respect to the weak topology σ(E,E∗) is BE.
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Proof. If a set is closed, its closure should be the same as itself. So it
suffices for us to show the second part, namely, S = BE.

We prove BE ⊂ S first. For any x0 ∈ BE, we choose a neighborhood
V of x. We may assume V is of the form

V = {x ∈ E
∣∣fi(x− x0) < ε for i = 1, 2, 3, .....n, fi ∈ E∗and ε > 0}.

Choose a y0 ∈ E such that fi(y0) = 0 ∀ i = 1, 2, 3....., n. We know
such a y0 exists or the function from E to Rn sending x ∈ E to
(f1(x), f2(x), ......, fn(x)) would be an injection from E, a space of infi-
nite dimension, to a space of finite dimension, which is a contradiction.
Define a function g : R→ R by

g(t) = ‖x0 + ty0‖.
It is clear that g is a continuous function such that g(0) ≤ 1 and
limt→+∞ g(x) = +∞. So there exists a t such that ‖x0 + ty0‖ = 1. So
x0 + ty0 is in both V and S. Thus, V ∩S is nonempty and we are done.

To prove the other direction, it suffices to show BE is closed. As

BE = ∩f∈E∗,‖f‖≤1{x ∈ E | |f(x)| ≤ 1},
writing equation we see that BE is an intersection of closed sets and
thus closed. �

Lemma 3.7. let Z be a topological space, E be a Banach space with
weak topology and let φ be a function from Z to E. Then φ is continuous
if and only if f ◦ φ is continuous for all f in E∗.

Proof. The proof follows easily from the definition of weak topology.
�

Theorem 3.8. Let C be a convex subset of E, then C is closed in the
weak topology σ(E,E∗) if and only if it is closed in the strong topology.

Proof. As the weak topology is coarser than the strong topology, it
suffices for us to prove the converse. Let C be a closed and convex set
in the strong topology and let x0 ∈ E be a point in Cc. As C is a closed
and convex set, {x0} is a closed convex and compact set, by Theorem
2.15 we know there exists an α ∈ R and a bounded linear functional
f ∈ E∗ such that

f(x0) < α < f(y) ∀y ∈ C.
V = {x ∈ E

∣∣ f(x) < α} is an open set in the weak topology which
contains x0 and disjoint from C. Thus, Cc is open, or C is closed. �

Remark 3.9. Let J be a function from E to E∗∗ defined as follows:
For any x ∈ E, J(x) ∈ E∗∗ is the element which takes g ∈ E∗ to
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g(x). It is easy to verify that for any x ∈ E, J(x) defined above is a
bounded linear functional on E∗, thus, is an element in E∗∗. Moreover,
J preserves norms, i.e.,

∀x ∈ E, ‖x‖E = ‖J(x)‖E∗∗ .

We call J the canonical injection of E into E∗∗.

Remark 3.10. J is clearly an injection, but not necessarily a surjec-
tion. For example, J defined on the space

`1 = {(xn) ∈ R∞
∣∣ ∞∑
i=1

|xi| <∞}

is not surjective (the proof involves showing (`1)∗ = `∞ and finding
an element in (`∞)∗ which is not in `1). This property of J is the
motivation of another topology coarser than the weak topology: the weak
star topology.

Definition 3.11. The weak star topology σ(E∗, E) is defined to be the
coarsest topology on E∗ such that for all x ∈ E, the function J(x) is
continuous (See Remark 3.9 for definition).

Proposition 3.12. Let (fn) be a sequence in E∗. Then

(1) fn
∗
⇀ f in σ(E∗, E) if and only if fn(x)→ f(x) ∀x ∈ E.

(2) If fn → f strongly, then fn ⇀ f weakly. If fn ⇀ f weakly, then

fn
∗
⇀ f .

Proof. The proof is similar to that of Proposition 3.3, except that the
second part uses the canonical injection J . �

Remark 3.13. From above we can define 3 different topologies on E∗:
the strong topology, the weak topology and the weak star topology. The
following theorem will show that the closed unit ball on E∗ is compact
with the weak star topology (which is not always the case with the weak
topology and never the case with the strong topology for space E with
infinite dimensions). In fact, for any Banach space E such that E is
not reflexive (See Definition 3.15), the unit ball is not compact in the
weak topology (See Theorem 3.18).

Theorem 3.14 (Banach-Alaoglu-Bourbaki). The closed unit ball,

BE∗ = {f ∈ E∗
∣∣ ‖f‖ ≤ 1},

is compact in σ(E∗, E).

Proof. Y = RE (the collection of all functions from E to R) equipped
with the product topology. We denote an element ω in Y by a sequence
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(ωx)x∈E. Define a function φ : E∗ → Y such that, ∀f ∈ E∗, φ(f) =
(f(x))x∈E. It is clear that φ is a surjection from E∗ to φ(E∗). Moreover,
for any two elements f, g ∈ E∗, if φ(f) = φ(g), then by definition of φ,
for any x ∈ E, we have f(x) = g(x), which means f = g. Therefore, φ
is also an injection. We claim φ is a homeomorphism. It suffices to show
that φ and φ−1 are continuous. Referring to Lemma 3.7 and noticing
that ∀x ∈ E, the function E∗ → R sending f to f(x) is continuous,
we know φ is continuous. The continuity of φ−1 can also be proven by
using similar means. Thus, φ is a homeomorphism from E∗ to φ(E∗).
Let A be a subset of Y defined as follows:

A = {ω ∈ Y | |ωx| ≤ ‖x‖, ωx+y = ωx+ωy, ωλx = λωx,∀x, y ∈ E and ∀λ ∈ R.}
It is clear that φ(BE∗) = A, so it suffices to show that A is compact.
Define B,C as follows:

B = {ω ∈ Y ||ωx| ≤ ‖x‖,∀x ∈ E},
C = {ω ∈ Y |ωx+y = ωx + ωy, ωλx = λωx,∀x, y ∈ E and ∀λ ∈ R.}

Then by Tychonoff’s theorem (See [4, chapter 5]), B is compact. As C
is intersection of closed sets, C is closed, and A = B∩C is compact. �

Definition 3.15. Let E be a Banach space and let J : E → E∗∗ be the
canonical injection from E into E∗∗. The space E is said to be reflexive
if J is surjective, i.e., J(E) = E∗∗. An example of a non-reflexive space
is given in Remark 3.10.

In the last part of section 3 I will present several results which will
contribute to the proof of Corollary 4.6.

Lemma 3.16. Let E be a Banach space. Let f1, f2, ......, fk be given in
E∗ and let γ1, γ2, ......, γk be given in R. The following properties are
equivalent:

(1) ∀ε > 0, ∃xε ∈ E such that ‖xε‖ ≤ 1 and

|fi(xε)− γi| < ε, ∀i = 1, 2, ......, k.

(2) |
∑k

i=1 βiγi| ≤ ‖
∑k

i=1 βifi‖ ∀β1, β2, ......, βk ∈ R.

Proof. (1) → (2): Fix β1, β2, ......, βk ∈ R, let

S =
k∑
i=1

|βi|,

from (1) we have

|
k∑
i=1

βifi(xε)−
k∑
i=1

βiγi| ≤ εS,
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which implies

|
k∑
i=1

βiγi| ≤ ‖
k∑
i=1

βifi‖‖xε‖+ εS ≤ ‖
k∑
i=1

βifi‖+ εS.

Let ε goes to 0 and we obtain (2).
(2)→ (1): Let γ = (γ1, γ2, ......, γk) and consider φ : E → Rk defined

by

φ(x) = (f1(x), f2(x), ......, fk(x)).

(1) is equivalent to γ ∈ closure of φ(BE). Suppose by contradiction
that this is false, then the closure of φ(BE) is a closed convex set and
{γ} is a compact convex set which is disjoint from the closure. Thus
by Theorem 2.15 we can separate them strictly by a closed hyperplane
[f = α] for some f ∈ E∗ and α ∈ R, which means there exists a
β = (β1, β2, ......, βk) ∈ Rk such that

k∑
i=1

βifi(x) < α <
k∑
i=1

βiγi, ∀x ∈ BE,

and therefore

‖
k∑
i=1

βifi‖ ≤ α <
k∑
i=1

βiγi,

a contradiction. �

Lemma 3.17. J(BE) is dense in BE∗∗ with respect to the σ(E∗∗, E∗)
topology.

Proof. Let θ ∈ BE∗∗ , and let V be a neighborhood of θ. We might
assume

V = {g ∈ BE∗∗||g(fi)− θ(fi)| < ε, ∀i = 1, 2, ......, k}.

We want to show that V intersects J(BE) non-trivially, i.e., we want
to find x ∈ E such that

|fi(x)− θ(fi)| < ε ∀i = 1, 2, ....., k.

Define γi = θ(fi) for i = 1, 2, ......, k. By the previous lemma we know
it suffices to show

|
k∑
i=1

βiγi| ≤ ‖
k∑
i=1

βifi‖ ∀βi ∈ R,

which is clear since
∑k

i=1 βiγi = θ(
∑k

i=1 βifi) and ‖θ‖ ≤ 1. �
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Theorem 3.18. Let E be a Banach space. Then E is reflexive if and
only if

BE = {x ∈ E
∣∣ ‖x‖ ≤ 1}

is compact with the weak topology σ(E,E∗).

Proof. Suppose E is reflexive. As J preserves norm, by Theorem 3.14,
it suffices to show J is a homeomorphism from E equipped with weak
topology σ(E,E∗) to E∗∗ equipped with weak star topology σ(E∗∗, E∗),
which is easy if we use Lemma 3.7 and reflexivity of E.

Now suppose the unit ball is compact with the weak topology. If we
can show J(BE) = BE∗∗ , then we are done. From the forward direction
proven above, we know J(BE) is compact, thus closed in the weak star
topology. So it suffices to show it is also dense in BE∗∗ , which we have
already proven in Lemma 3.17. �

Corollary 3.19. Let E be a reflexive Banach space. Let K ⊂ E be
a bounded, closed, and convex subset of E. Then K is compact in
σ(E,E∗).

Proof. By Theorem 3.8 we know K is closed for the topology σ(E,E∗).
As K is bounded, there exists an m such that K ⊂ mBE, and mBE is
compact by Theorem 3.14. �

4. Lower semicontinuity

In this section the definition of lower semicontinuity will be intro-
duced. We will see that on a reflexive Banach space, lower semicontinu-
ity of a functional guarantees the existence of minimizer under certain
conditions.

Definition 4.1. A function, f : E → R, is lower semicontinuous
(l.s.c) if for every x ∈ E and for every ε > 0 there is some neighborhood
V of x such that

f(y) ≥ f(x)− ε ∀y ∈ V
In particular, if f is l.s.c, then for every sequence (xn) ∈ E such that
xn → x, we have

lim inf
n→∞

f(xn) ≥ f(x).

Lemma 4.2. Given a function φ : E → (−∞,+∞], the following
property is equivalent to the definition we gave for a function to be
lower semicontinuous:

(7) ∀λ ∈ R, the set Aλ = {x ∈ E | φ(x) ≤ λ} is closed.

Proof. The proof is a standard analysis argument. �
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Example 4.3. Define a function f : R→ R by

f(x) =

{
1, x > 0

−1, x ≤ 0
(8)

It is easy to verify that f is lower semicontinuous.

Corollary 4.4. Assume that φ : E → (−∞,+∞] is convex and l.s.c.
with respect to the strong topology, Then φ is l.s.c with respect to the
weak topology.

Proof. ∀λ ∈ R, the set

A = {x ∈ E | φ(x) ≤ λ}

is convex (by convexity of φ) and closed (by l.s.c in the strong topology)
in the strong topology. Thus, it is also closed in the weak topology by
Theorem 3.8. As the choice of λ is arbitrary, by Lemma 4.2, φ is l.s.c
in the weak topology. �

Lemma 4.5. If E is compact and f is l.s.c, then inf
E
f is achieved.

Proof. The proof is a standard analysis argument. �

What follows is a big theorem which guarantees the existence of
minimizer under certain conditions. We will use it to prove Corollary
5.14.

Theorem 4.6. Let E be a reflexive Banach space. Let A ⊂ E be a
nonempty, closed, and convex subset of E. Let φ : A→ (−∞,+∞] be
a convex l.s.c. function such that φ 6≡ ∞ and

(9) lim
x∈A
‖x‖→∞

φ(x) = +∞.

Then φ achieves its minimum on A, i.e. there exists some x0 in A such
that

φ(x0) = inf
x∈A

φ(x).

Proof. Choose an a ∈ A such that φ(a) < +∞ and define the set

B = {x ∈ A | φ(x) < φ(a)}.

We know B is closed (by semicontinuity of φ), convex (by convexity
of φ), and bounded (by 9). Thus, by Corollary 3.19 it is compact in
the weak topology. And by Corollary 4.4, φ is also l.s.c. in the weak
topology. We apply Lemma 4.5 and know φ achieves minimum on B,
which clearly implies that it achieves minimum on A. �
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5. Hilbert spaces

Definition 5.1. Let H be a vector space. A scalar product, (u, v), is
a bilinear form on H ×H with values in R such that

(u, v) = (v, u) ∀u, v ∈ H
(u, u) ≥ 0 ∀u ∈ H
(u, u) 6= 0 ∀u 6= 0.

(10)

It is not hard to see that the quantity,

‖u‖ =
√

(u, u),

is a norm.

Definition 5.2. A Hilbert space is a vector space H equipped with a
scalar product such that H is complete under the norm ‖ ‖.

Example 5.3. For any positive integer n, the space Rn is a Hilbert
space with scalar product defined as the inner product.

Example 5.4. L2(R) is a Hilbert space with scalar product defined as

(f, g) =

∫
R

fg, ∀f, g ∈ L2(R).

In the following, H denotes a Hilbert space.

Remark 5.5. All Hilbert spaces are Banach spaces. In addition to the
properties of a Banach space, a Hilbert space also has ”angles”. For
example, if f, g ∈ H satisfies (f, g) = 0, we say f is orthogonal to g.
Using this newly acquired property, we can deduce more characteristics
of Hilbert spaces. The following theorem shows that the projection we
see in Rn also exists in a Hilbert space.

Theorem 5.6. Let K ⊂ H be a nonempty closed convex set. Then for
every f ∈ H there exists a unique element u ∈ K such that

(11) |f − u| = min
v∈K
|f − v|.

Moreover, u is characterized by the property

(12) u ∈ K and (f − u, v − u) ≤ 0, ∀v ∈ K.

Notation. The above element u is denoted by

u = PKf.
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Proof. (1) Fix f ∈ H, define φ : H → R by φ(x) = |f − x|. It
is clear that φ is convex (by the triangle inequality of norm),
continuous (thus l.s.c) and

lim
|x|→+∞

φ(x) = +∞.

By Corollary 4.6, we know φ achieves a minimum.
(2) We want to show (11) and (12) are equivalent.

Suppose u minimizes φ. Then for any v in K and for any
t ∈ [0, 1], by convexity of K, we know that

w = tu+ (1− t)v ∈ K.

As u is the minimizer of φ on K, we know

|f − u| ≤ |f − w| = |(f − u)− (1− t)(v − u)|,

which implies

|f − u|2 ≤ |f − u|2 + (1− t)2|v − u|2 − 2(1− t)(f − u, v − u),

or equivalently

2(f − u, v − u) ≤ (1− t)|v − u|2

for all t in [0, 1]. Let t go to 0, the claim is true.
Suppose there exists an u in K satisfying (12). Then we have
|f −u|2− |f − v|2 = 2(f −u, v−u)− |u− v|2 ≤ 0 for all v ∈ K.

(3) We claim that such an u is unique.
Suppose we have two minimizers u and v. Then by (2) we

have

(f − u,w − u) ≤ 0 ∀w ∈ K
and

(f − v, w − v) ≤ 0 ∀w ∈ K.
Putting v = w in the first inequality and u = w in the second
inequality and add them we get |v − u|2 ≤ 0, which implies
v = u.

�

The next lemma shows that the projection map does not increase
distance.

Lemma 5.7. Let K ⊂ H be a nonempty closed convex set. Then

|PKf1 − PKf2| ≤ |f1 − f2|, ∀f1, f2 ∈ H

.
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Proof. Define u1 = PKf1 and u2 = PKf2. By Theorem 5.6, we have

(13) (f1 − u1, w − u1) ≤ 0, ∀w ∈ K,

(14) (f2 − u2, w − u2) ≤ 0, ∀w ∈ K.
Select w = u2 in (13) and w = u1 in (14) and add the two inequalities
together, we have

(f1 − f2 + u2 − u1, u2 − u2) ≤ 0,

or equivalently

|u2 − u1|2 ≤ (f1 − f2, u1 − u2),

which implies

|u1 − u2| ≤ |f1 − f2|.
�

Corollary 5.8. Assume that M ⊂ H is a closed linear subspace. Let
f ∈ H. Then u = PMf is characterized by

u ∈M and (f − u, v) = 0, ∀v ∈M

Proof. A linear subspace is also a convex set, thus we can apply The-
orem 5.6 and get

(f − u, v − u) ≤ 0 ∀v ∈M.

For any t ∈ R, tv is also in M . So

(f − u, tv − u) ≤ 0 ∀v ∈M, ∀t ∈ R.
So we must have

(f − u, v) = 0, ∀v ∈M.

The converse is also easy to show. �

Theorem 5.9. Given any φ ∈ H∗, there exists a unique f ∈ H such
that

φ(u) = (f, u) ∀u ∈ H.
Moreover,

|f | = ‖φ‖H∗ .

Proof. Choose a φ ∈ H∗ If

φ(x) = 0, ∀x ∈ H,
we can choose f = 0 and we are done. If not, let M , a subset of H, be
defined as follows:

M = {x ∈ H;φ(x) = 0}.
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As M = φ−1(0), we know M is closed. It is clear that M is also a
subspace. By assumption, there exists an x ∈ H but not in M . Let y
= PMx and z = x− y (z /∈M so φ(z) 6= 0). By Corollary 5.8 we have

(z, v) = 0 ∀v ∈M.

Besides, it is clear that z 6= 0. So (z, z) 6= 0. Define α = φ(z)
(z,z)

. Let

x0 = αz. It is clear that

φ(x0) = (x0, x0) 6= 0.

Claim:

∀x ∈ H,α(x) = (x0, x).

proof: for any x ∈ H, write it in the form

(x− φ(x)

(x0, x0)
x0) +

φ(x)

(x0, x0)
x0.

As

φ(x− φ(x)

(x0, x0)
x0) = φ(x)− φ(x)

(x0, x0)
φ(x0) = 0,

we have

x− φ(x)

(x0, x0)
x0 ∈M.

Thus,

(x0, x) = (x0, (x−
φ(x)

(x0, x0)
x0)+

φ(x)

(x0, x0)
x0) = (x0, x−

φ(x)

(x0, x0)
x0)+(x0,

φ(x)

(x0, x0)
x0)

= (x0,
φ(x)

(x0, x0)
x0) = φ(x)

and we are done. �

Remark 5.10. We can identify H and H∗ by Theorem 5.9.

Definition 5.11. A bilinear form α : H × H → R is said to be con-
tinuous if there is a constant C such that

|α(u, v)| ≤ C|u||v| ∀u, v ∈ H;

coercive if there is a constant a > 0 such that

α(v, v) ≥ a|v|2 ∀v ∈ H.

Remark 5.12. It is obvious that for any Hilbert space H, the scalar
product (−,−) on H is a continuous and coercive bilinear form. It is
also true that for any positive definite n× n matrix, the inner product
α(~u,~v) ≡ (A · ~u) · ~v⊥ is coercive and continuous on Rn



USING FUNCTIONAL ANALYSIS AND SOBOLEV SPACES TO SOLVE POISSON’S EQUATION17

Theorem 5.13 (Contraction Mapping Theorem). Let X be a nonempty
complete metric space and let f : X → X be a strict mapping, i.e. there
exists k ∈ (0, 1) such that

d(f(x), f(y)) ≤ kd(x, y) ∀x, y ∈ X.
Then there exists a unique x ∈ X such that f(x) = x.

Proof. See [3, chapter 9]. �

We are now ready to prove the Lax-Milgram theorem. We will use
it in Section 6 to prove the existence of weak solution to the Laplace
equation.

Corollary 5.14 (Lax-Milgram). Assume that α(u, v) is a continuous
coercive bilinear form on H. Then, given any φ ∈ H∗, there exists a
unique element u ∈ H such that

α(u, v) = φ(v) ∀v ∈ H.
Moreover, if α is symmetric, then u is characterized by the property

u ∈ K and
1

2
α(u, u)− φ(u) = min

v∈K
{1

2
α(v, v)− φ(v).}

Proof. For any φ ∈ H∗, by Theorem 5.9, we know there exists a g in
H such that

φ(x) = (g, x) ∀x ∈ H.
In addition, if we fix u, α(u,−) is a continuous linear functional on

H. Thus, there exists a unique element in H denoted by Au such that

α(u, v) = (Au, v) ∀v ∈ H.
There are some properties of Au which we will use later. First, as α

is continuous, there exists C greater than 0 such that

|α(u, v)| ≤ C‖u‖H‖v‖H ∀u, v ∈ H.
Then ∀u ∈ H, we choose v = Au so we have

α(u, v) = α(u,Au) = (Au, Au) = (‖Au‖H)2 ≤ C‖u‖H‖Au‖H ,
which means

(15) ‖Au‖H ≤ C‖u‖H ∀u ∈ H.
Moreover, by coercivity of α it is easy to see there exists a > 0 such

that

(16) (Au, u) ≥ a‖u‖H2 ∀u ∈ H.
Now, what we want to prove is equivalent to finding some u ∈ K

such that
(Au, v) = (g, v) ∀v ∈ K.
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Select a constant ζ > 0 to be determined later. It suffices to show
that

(17) (ζg − ζAu + u− u, v) = 0 ∀v ∈ K.
Let θ be a linear operator on K defined by θ(x) = PK(ζg−ζAx+x).

We need to find an x ∈ K such that θ(x) = x. By Theorem 5.13, it
suffices to find a ζ which makes θ a strict contraction, or equivalently,
find a ζ such that

d(θ(u1), θ(u2)) ≤ kd(u1, u2), ∀u1, u2 ∈ K and k < 1.

As PK does not increase distance (by Theorem 5.7). We have

|θ(x)− θ(y)| ≤ |θ(Ay − Ax) + (x− y)|,
and

|θ(x)−θ(y)|2 ≤ |x−y|2+ζ2|Ax−Ay|2−2ζ(Ax−Ay, x−y) ≤ |x−y|2(C2ζ2−2aζ+1).

As C > 0 and a > 0, we know we can select a ζ0 > 0 such that
(C2ζ2

0 − 2aζ0 + 1) < 1 and the corresponding function θ is a strict
contraction. Setting ζ = ζ0, we find that (17) holds.

Now, assume α is symmetric, then it is easy to check α satisfies all
the axioms of a scalar product. By coercivity and continuity of α, we
know the new norm acquired using the new scalar product is equivalent
to the old norm, i.e. there exists a constant C > 0 such that

1

C
‖u‖a(,) ≤ ‖u‖(,) ≤ C‖u‖a(,) ∀u ∈ H.

Choose any φ ∈ H∗, using Theorem 5.9, we know there exists a
g ∈ H such that φ(v) = α(g, v) ∀v ∈ H. So what we want to show is
equivalent to finding a u ∈ K such that

α(g − u, v) = 0 ∀v ∈ K.
By Corollary 5.8 we know this amounts to finding the projection of

g onto K under the scalar product given by α. We know such a u ∈ K
should minimize

α(g − u, g − u)1/2,

which is equivalent to minimizing

α(g − u, g − u) = α(g, g) + α(u, u)− 2α(g, u).

As α(g, g) is a constant, such a u ∈ K should be the minimizer of

1

2
α(x, x)− α(g, x) =

1

2
α(x, x)− φ(x) ∀x ∈ K.

�
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6. Sobolev spaces

Definition 6.1. Let I = (a, b) be an open interval, possibly unbounded.
For a function u ∈ Lp(I), if there exists a g ∈ Lp(I) such that∫

I

uφ′ = −
∫
I

gφ, ∀φ ∈ C1
c (I),

we say u has a weak derivative, g.

Example 6.2. Consider I = (−1, 1), and a function f : I → R defined
by

f(x) =

{
−x, x > 0

x, x ≤ 0
.(18)

f does not have a classical derivative at 0. However, it is easy to verify
that g : I → R defined by

g(x) =

{
−1, x > 0

1, x ≤ 0
(19)

is the weak derivative of f .

Remark 6.3. It is easy to see that if u given above has two weak
derivatives, they differ only by a set of measure 0. In this sense, the
weak derivative is unique.

Definition 6.4. Let I = (a, b) be an open interval, possibly unbounded
and let p lie in the interval [1,+∞]. The Sobolev space W 1,p(I) is de-
fined to be

W 1,p(I) = {u ∈ Lp; ∃g ∈ Lp such that

∫
I

uφ′ = −
∫
I

gφ ∀φ ∈ C1
c (I)}.

We set
H1(I) = W 1,2(I).

For u ∈ W 1,p(I), we denote u′ = g.

Sometimes we are unable to find a strong solution (See introduction
for more information) to some partial differential equations. Instead,
we seek a weak solution (See Definition 6.7). In order to do so, Sobolev
spaces are introduced.

Remark 6.5. The space W 1,p is a Banach space equipped with the
norm

‖u‖W 1,p = ‖u‖Lp + ‖u′‖Lp .

Or for 1 < p < +∞, the equivalent norm

‖u‖W 1,p = (‖u‖Lp + ‖u′‖Lp)
1
p .



20 YI WANG

The space H1 is a Hilbert space equipped with the scalar product

(u, v)H1 = (u, v)L2 + (u′, v′)L2 .

Definition 6.6. For any simply connected and open set Ω ⊂ R, the
space W 1,p

0 (Ω) is defined to be the collection of functions in W 1,p(Ω)
which have zero boundary values.

Definition 6.7. Given a differential equation of the form:

(20) −∆u = f, in Ω

(21) u = 0, on ∂Ω

for simply connected and open set Ω ⊂ R and f ∈ L2(Ω), we define the
weak solution u of the system to be a function u ∈ H1

0 (Ω) such that∫
Ω

∇u∇φ =

∫
Ω

fφ, ∀φ ∈ C∞c (Ω).

Theorem 6.8 (Poincaré inequality). Suppose that 1 ≤ p < +∞, and
Ω is a bounded open set. There exists a constant C such that

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω) ∀u ∈ W 1,p
0 (Ω).

Proof. The Poincaré inequality is really important. See [1, chapter 9.4]
for more information of the proof. �

The assumption that u ∈ W 1,p
0 is crucial. The inequality is not true

for general u in W 1,p.
The last theorem in this paper shows the existence of weak solution

of Poisson’s equation using all the machinery we have built up so far.

Theorem 6.9. For any simply connected open set Ω in R and for any
f in L2(Ω), there exists a weak solution to the system (20)(21).

Proof. Define a bilinear form a : H1
0 (Ω)×H1

0 (Ω)→ R by

a(u, v) =

∫
Ω

∇u∇v.

It is clear that a is a symmetric bilinear form. Moreover,

|a(u, v)| =
∣∣ ∫

Ω

∇u∇v
∣∣ ≤ (∫

Ω

(∇u)2

)1/2(∫
Ω

(∇u)2

)1/2

= ‖∇u‖L2‖∇v‖L2 ≤ ‖u‖H1
0
‖v‖H1

0
,

so a is continuous.
In addition, by Theorem 6.8, we know there exists a constant C such

that

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω) ∀u ∈ H1
0 (Ω).
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We choose a proper constant C0 ∈ R, C0 > 0 such that

C0 + C0C
2 ≤ 1.

Then for any v ∈ H1
0 (Ω), we have

C0(‖v‖H1
0 (Ω))

2 = C0

(
(‖v‖L2(Ω))

2 + (‖∇v‖L2(Ω))
2) ≤ C0C

2(‖∇v‖L2(Ω))
2+C0(‖∇v‖L2(Ω))

2

= (C0+C0C
2)(‖∇v‖L2(Ω))

2 ≤ (‖∇v‖L2(Ω))
2 =

∫
Ω

(∇v)2 = |a(v, v)|.

So a is coercive. Given the function f ∈ L2(Ω), we define a linear map
φ : H1

0 → R by

φ : u→
∫

Ω

fu.

φ is also continuous because∣∣ ∫
Ω

fu
∣∣ ≤ (∫

Ω

f 2

)1/2(∫
Ω

u2

)1/2

= ‖f‖L2‖u‖L2 ≤ ‖f‖L2‖u‖H1
0
,

where ‖f‖L2 is less than infinity. By Theorem 5.14, there exists a
unique element u ∈ H1

0 (Ω) such that

a(u, v) = φ(v) ∀v ∈ H1
0 (Ω),

or equivalently ∫
Ω

∇u∇v =

∫
Ω

fv ∀v ∈ H1
0 (Ω).

So we are done. �
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