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Abstract. In this paper, we study field extensions obtained by polynomial

rings and maximal ideals in order to determine whether solutions exist to three
ancient Greek construction problems: squaring the circle, doubling the cube,

and trisecting an angle.
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1. Introduction

Much of Ancient Greek mathematics was based in geometry. One particular
point of interest was determining which geometric elements could be constructed
using only an unmarked straightedge and a compass. It is a quick classroom ex-
ercise, for example, to construct congruent circles and perpendicular lines. The
constructibility of some other elements, however, is less immediate. Can we con-
struct a square with the same area as any given circle? Given a cube, can we
construct a second cube with twice the volume? Can we trisect any given angle?
To answer these questions, we turn to the study of algebraic structures.

Given the geometric nature of the Greek construction problems, it is under-
standable if the motivation for studying polynomial rings and field extensions is
not entirely apparent. The aim of this paper, however, is to build a fundamental
understanding of polynomial rings, maximal ideals, and algebraic extensions in or-
der to determine the possibility (or impossibility) of certain constructions without
having to explicitly construct the elements themselves.

We begin by proving some relevant results about principal ideal domains and
polynomial division. In the next few sections, we will determine how to construct

1



2 JENNY WANG

and classify field extensions before finally revisiting the geometric construction
problems.

It should be noted that discussion of rings in this paper will be restricted to
commutative rings. Imposing this condition does not detract from the validity of
the results eventually obtained and simplifies notation for the reader.

2. Principal Ideal Domains and Polynomial Division

We begin with some important properties of polynomial rings and integral do-
mains. The reader is assumed to be familiar with the conventional notion of long
division of polynomials. Given any polynomial as our dividend, we know how to
divide it by a non-zero polynomial to get a quotient and remainder. With a restric-
tion only on the degree of the remainder, the Division Algorithm ensures both the
existence and uniqueness of the quotient and remainder. We can thus formalize the
basic polynomial division with the following theorem:

Theorem 2.1 (Division Algorithm). Let F be a field and f and g polynomials in
F [x], where g is non-zero. Then there exist unique q, r also in F [x] such that

(1) f(x) = q(x)g(x) + r(x) and
(2) deg(r) < deg(g)

This theorem will prove to be crucial in proving many useful results about princi-
pal ideal domains and field extensions. Suppose, for example, we are given any two
polynomials f and g in a polynomial ring F [x], where g is non-zero. The Division
Algorithm guarantees the existence of two more polynomials q and r so that f can
be written as the product of q and g, plus a remainder r.

In the special case that the remainder has degree zero, then we say that f is
a multiple of g. This basic idea is the conceptual foundation of our discussion of
principal ideal domains, as principal ideals in F [x] consist of nothing more than
multiples of a given polynomial.

We claim that for any field F , the polynomial ring F [x] is a principal ideal
domain - meaning every ideal in the ring F [x] is a principal ideal. The proof relies
on the existence of a division algorithm in F [x].

Theorem 2.2. Let F be a field. For any ideal I in F [x], I = (a(x)) for some
a(x) ∈ F [x]

Proof. If I = {0}, we have that I = (0) so a(x) is the zero polynomial and I =
(a(x)).

Now consider when I 6= {0}. We claim that I is generated by a polynomial of
minimal degree in the ideal, call it a(x). Note that the existence of a polynomial
with minimal degree is guaranteed by the Well-Ordering Principle. Now, because
I 6= {0}, a(x) is not the zero polynomial. By Theorem 2.1, for any f(x) ∈ I, there
exist unique q(x), r(x) ∈ F [x] such that f(x) = q(x)a(x) + r(x) where deg(r(x)) <
deg(a(x)).

Rearranging, we get

r(x) = f(x)− q(x)a(x)

As f(x) and a(x) are both in the ideal, it follows that r(x) ∈ I as well. However,
by the condition on degree of r by the division algorithm and the minimality of the
degree of a(x), it must be that r(x) is the zero polynomial. Hence for any f ∈ I,
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f(x) = q(x)a(x) for some q(x) ∈ F [x]. Therefore I = (a(x)) for any ideal I in
F [x]. �

Once it is established that every ideal in a given ring is generated by a single
element, there arises an important correspondence between prime and maximal
ideals. Given a prime ideal (p) in a principal ideal domain, we will show there are
no proper ideals that contain (p) except (p) itself - meaning it is by definition a
maximal ideal.

Theorem 2.3. In a principal ideal domain, every prime ideal is maximal.

Proof. Consider a prime ideal I of a ring R. If R is a principal ideal domain, then
I = (p) for some p ∈ R. In order to show that (p) is maximal, it is sufficient to
show that any ideal containing (p) is either (p) itself or the entire ring R.

So let (m) be an ideal containing (p). Then p = m · r for some r ∈ R. As (p) is
prime, either m ∈ (p) or r ∈ (p). In the case that m ∈ (p), we have that (m) ⊂ (p)
and (m) ⊃ (p), so (m) = (p).

In the case that r ∈ (p), then we have r = s · p for some element s in the ring R.
Substituting, we can see that r = s · (m · r) so 1 = s ·m. Then 1 is in the ideal (m),
so (m) is necessarily the entire ring. We have thus shown that there do not exist
any proper ideals of R containing (p) a prime ideal, and hence it is maximal. �

3. Field Extensions

This discussion of polynomial rings, maximal ideals, and fields is motivated by
the existence of polynomials with no roots in a given field. In general, given a
polynomial p(x) in the ring F [x] for any given field F , does there exist a solution
to p(x) = 0 that lies in F? If not, does there exist a field extension of F in which
p(x) = 0 has a solution?

Consider the classic example: the polynomial x2 + 1 = 0 has no solutions over
R. It is easy to see that there are no numbers in R that satisfy this equation - but
over the complex numbers, both i and −i are solutions. It is also crucial to notice
that the complex numbers, conventionally of the form a + bi, contain a “copy” of
the real number line - namely, when b = 0.

These concepts are generalized and formalized in this section. Given any poly-
nomial with no roots over a given field, we would like to be able to construct a field
extension that both contains solutions to the equation and preserves the structure
of the original field.

Definition 3.1. Let K be a field. A subfield of K is a subset F of K that is
closed under the field operations of K. The larger field K is said to be a (field)
extension of F .

We would like now to use the fact that a polynomial ring F [x] is a principal ideal
domain in order to discuss the construction of field extensions.

Theorem 3.2. Let R be a ring and I an ideal of R. Then I is maximal if and
only if R/I is a field.

The proof for this theorem follows from two important results: one is a charac-
terization of fields of having only trivial ideals and the other is a correspondence
that exists between ideals of a ring R containing an ideal I and ideals of the quotient
group R/I. The first result is simply a consequence of the fact that every nonzero
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element in a field is a unit. The second result is precisely the Lattice Isomorphism
Theorem for rings.

Proposition 3.3. A ring R is a field if and only if the only ideals of R are {0}
and R.

Proof. Suppose that R is a field. Note that {0} is always an ideal of any ring, so
{0} is an ideal of R. By definition of a field, every nonzero element of R is a unit,
so every non-zero ideal contains a unit. 1 generates the entire ring, so the only
nonzero ideal is the entire ring R.

Now suppose that the only ideals of R are {0} and R. Let an element a ∈ R be
nonzero. Then the ideal generated by a is R by assumption: (a) = R. An ideal is
the whole ring if and only if the unit is in the ideal, so 1 ∈ (a), which means there
exists an element b ∈ R such that ab = 1. Then it follows that a is a unit. As every
nonzero element in R is a unit, it must be that R is a field. �

Proposition 3.4 (Lattice Isomorphism Theorem). Let I be an ideal of a ring R.
There exists an inclusion-preserving bijection between ideals of R containing I and
the ideals of the quotient group R/I.

With these two results, the proof of Theorem 3.2 follows with straightforward
application of definitions and these propositions.

Proof. Let I be a non-zero maximal ideal of R. Suppose, for contradiction, that
there exists a proper ideal J/I of R/I, so J/I ⊂ R/I. Then by the Lattice Iso-
morphism Theorem, there exists corresponding ideal J of R containing I. By
assumption, J/I 6= R/I so J 6= R. Then J is a proper ideal of R containing I.
This contradicts the fact that I is maximal. It must be that there are no proper
ideals of R/I. Hence if I is maximal, the only ideals of R/I are {0} and the entire
quotient ring R/I, so R/I is a field.

Now suppose R/I is a field, where I is an ideal of R. Then its only ideals are
{0} and the whole quotient ring R/I. Again, by Lattice Isomorphism Theorem,
there exists a single corresponding non-zero ideal J such that I ⊂ J ⊂ R. The
correspondence from the Isomorphism Theorem, however, implies that J must be
the entire ring R, so there are no proper ideals of R that contain I except I itself.
Hence I is a maximal ideal. �

The quotient ring corresponding to a maximal ideal of a ring, therefore, is a field.
We now return to the original motivation of the section in order to examine what
the maximal ideals of a polynomial ring look like. The example we considered was
a question about whether a polynomial had roots in a given field - namely, whether
we could factor p(x) into linear factors. More generally, however, we can consider
irreducible polynomials to be polynomials in F [x] that cannot be written as the
product of two non-constant polynomials with coefficients also in F . Irreducible
polynomials over a polynomial ring F [x] necessarily do not have roots in F , as that
would require the polynomial to be able to be decomposed into at least one linear
factor.

Consider now the ideal generated by an irreducible polynomial p(x). This ideal
consists of all the multiples of p(x), which factor uniquely into p(x)q(x) for q(x) in
the ring. Note that the uniqueness of the factorization comes from the irreducibility
of p(x). Then by definition, the ideal (p(x)) is prime. From this observation and
Theorem 2.3, the following theorem is immediate:
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Theorem 3.5. For p(x) an irreducible polynomial in F [x], (p(x)) is a prime ideal.
As F [x] is a principal ideal domain, it follows that (p(x)) is a maximal ideal.

Corollary 3.6. For an irreducible polynomial p(x) ∈ F [x], the quotient ring
F [x]/(p(x)) is a field.

To find a root to the polynomial p(x) in K, let θ := x mod p(x). It is clear that
θ is an element of K. We see that θ is always going to be a root of p(x) in K:

p(θ) = p(x) mod p(x)

≡ 0 (mod p(x))

Corollary 3.7. Let p(x) be an irreducible polynomial in F [x] for any field F . Then
K := F [x]/(p(x)) is a field extension of F containing a root of p(x)

We have thus shown the existence of a field in which the multiples of p(x) are
sent to 0 ∈ K. It is true, then, that p(x) has a root in this new field. However, the
objective set forth in the beginning of this section was two-fold: the field we are
looking for must also preserve the original structure of F . In order to verify that
K is indeed a field extension that satisfies both conditions, it is necessary to check
that K contains an isomorphic copy of F . To do this, we need only the following
theorem:

Proposition 3.8. Let F,K be fields. A field homomorphism ϕ : F → K is either
injective or identically zero.

To see the validity of this statement, consider the kernel of a homomorphism.
From the first isomorphism theorem, we know that ker(ϕ) is an ideal of F . By
Proposition 3.3 the only ideals of a field are {0} and the entire field, which corre-
spond to the image being injective and identically zero, respectively.

The homomorphism ϕ is not identically zero, as it must map the identity of F
to the identity of K, thus it is an injective map. K contains an isomorphic copy of
F . Again, in the example of the complex numbers C, the reals are all the complex
numbers a+ bi with b = 0.

Thus the field constructed with the ideal generated by an irreducible polynomial
satisfies both criteria originally set forth: the new field now contains (1) a root
polynomial p(x) and (2) an isomorphic copy of the original field F .

It is useful to view the field extension as a vector space over the original field.
Because F is a subfield of K and K is a field itself, we have that K is closed under
both addition and multiplication by scalars from base field F . From this, we can
quantify the “size” of a field extension:

Definition 3.9. Let K be a field extension of base field F . Then the degree of a
field extension, denoted [K : F ], is the dimension of the vector space K over F .

So if we can find a basis for K, then we would be able to better conceptualize
what the elements in K look like, as everything in K could be written as a linear
combination of the elements in the basis.

Theorem 3.10. Let p(x) ∈ F [x] be an irreducible polynomial of degree n over F ,
call it K. Let θ := x mod p(x). Then

1, θ, θ2, ..., θn−1
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form a basis of K as a vector space over F . Then the elements of K can be expressed
as polynomials in θ:

K = {a0 + a1θ + ...+ an−1θ
n−1∣∣a0, a1, ..., an−1 ∈ F}

Proof. To check that 1, θ, θ2, ..., θn−1 span K, consider a(x) ∈ F [x]. The Division
Algorithm ensures the existence of unique q(x), r(x) ∈ F [x] such that

a(x) = q(x)p(x) + r(x)

where deg r(x) < n. By this, a(x) ≡ r(x) (mod p(x)) ∈ K. By the degree restriction
on r, we know that r can be written as a linear combination of 1, x, x2, ..., xn−1 -
whose images are precisely 1, θ, θ2, ..., θn−1. Hence any element in K can be written
as a linear combination of powers of θ less than n.

Now we must check that 1, θ, θ2, ..., θn−1 are linearly independent. Suppose there
exist b0, b1, ..., bn−1 ∈ F such that

b0 + b1θ + ...+ bn−1θ
n−1 = 0

Equivalently,

b0 + b1x+ ...+ bn−1x
n−1 ≡ 0 (mod p(x))

This is equivalent to saying that p(x) divides the polynomial on the left hand side.
This cannot be the case for nontrivial coefficients, however, as the polynomial p(x) is
of degree n and the left hand side polynomial is of lower degree. Thus all coefficients
b0, b1, ..., bn−1 must be 0, and so the powers of θ are linearly independent.

The set {1, θ, θ2, ...θn−1} span K and are linearly independent, so they form a
basis for K. �

The key to the proof of the previous theorem is understanding the relationship
between an element and its image under the field homomorphism that sends an
element x ∈ F to x mod p(x) ∈ K.

Note that when p(x) ∈ F [x] is degree n, then the degree of the extension [K : F ]
is also n.

4. Algebraic Extensions

We would like now to consider field extensions from a slightly different (but
fundamentally related) point of view. In the previous section, we constructed a
field by taking the quotient of a polynomial ring by an irreducible polynomial.
Now we want to extend a field by adjoining F a subfield of K with a single element
α ∈ K. We can think of this action in terms of the intersection of fields, since the
intersection of subfields is still a subfield. Of all the intersections of fields containing
F and fields containing α, we denote F (α) to be the smallest field extension of F
containing both F and α. Given that we can adjoin a subfield F with an element of
K, what is relationship of this field extension to the ones discussed in the previous
section? It would make sense to begin by considering a polynomial p(x) for which
α is a root.

Definition 4.1. Let α be an element in K. We say that α is algebraic over F if
α is the root of some nonzero polynomial p(x) in F [x]. Otherwise, we say that α is
transcendental.
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An extension K/F is said to be algebraic if every element in K is algebraic over
F . Here is precisely the correspondence between field extensions and the smallest
field containing the subfield F and an element α of the larger field K. In fact, the
field F (α) is related to p(x) as described in the following theorem:

Theorem 4.2. Let p(x) be an irreducible polynomial in F [x] and let α ∈ K be a
root of p(x). Then F (α) ∼= F [x]/(p(x)).

This statement requires little more than a surprisingly general condition on poly-
nomials and their roots - it does not specify anything about α beyond the fact that
α satisfies p(x). Therefore, the theorem is a statement about an isomorphism that
exists between the field F/(p(x)) and F (α) for any root of the polynomial p(x).

Also note that if α is a root of a polynomial p(x), it is also a root of all multiples
of p(x). In order to avoid issues with multiplicity, we would like to consider a
polynomial of minimal degree for which α is a root.

Proposition 4.3. Let F be a subfield of K. Let α ∈ K be algebraic over F . Then
there exists a unique monic irreducible polynomial of minimal degree m(x) ∈ F [x]
such that m(x) divides a(x) if and only if a(α) = 0. That is, the minimal polynomial
of α exists and divides any polynomial with α as a root.

Proof. Let m(x) be a polynomial of minimal degree satisfying m(α) = 0.
Suppose m(x) divides a polynomial a(x) ∈ F [x]. Then a(x) = m(x)q(x) for

some q(x) ∈ F [x]. Evaluation of this equation at α gives us:

a(α) = m(α)q(α) = 0 · q(α) = 0

.
Now suppose that a polynomial a(x) has α as a root. Dividing by f(x), we have

that there exist q(x), r(x) ∈ F [x] such that

a(x) = m(x)q(x) + r(x)

Evaluating at α,

a(α) = m(α)q(α) + r(α)

0 = 0 · q(α) + r(α)

0 = r(α)

The degree of r(x) must be strictly less than the degree of m(x), by the Division
Theorem, so it must be that r(x) is the zero polynomial, else it would contradict
the minimality of the degree of m(x). It follows that a(x) is divisible by m(x). �

By scaling by a constant, we can ensure that the polynomial of minimal degree
satisfying m(α) = 0 is monic, and thus unique. This is precisely the minimal poly-
nomial of α over F , denoted mα,F (x). Now when discussing an algebraic element
of a field extension, we can talk about the corresponding (minimal) polynomial
over the base field. Additionally, the degree of the minimal polynomial of α cor-
responds to the degree of the smallest field extension containing both F and α -
which matches the definition given in the introduction.

Proposition 4.4. Let F be a field and α be algebraic over F . Then F (α) is
isomorphic to F [x]/(mα,F (x)).
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Proof. Consider the map ψ : F [x] → F (α) that takes a polynomial f(x) to its
evaluation f(α). It is easy to check that ψ is a homomorphism and

kerψ = {a(x) ∈ F [x] | a(α) = 0}

From the previous proposition, a(α) = 0 if and only if the minimal polynomial
divides a(x). So the kernel is the set of multiples of mα,F (x). Hence it is the ideal
generated by the minimal polynomial. By the first isomorphism theorem, for any
ring homomorphism σ : R→ S, we have that Imσ ∼= R/ kerσ. Then

Imψ ∼= F [x]/ kerψ = F [x]/(mα,F (x))

Note that every evaluation is just the image of a polynomial f(x) ∈ F [x], so the
homomorphism ψ is surjective - hence the image of ψ is F (α) and thus F (α) is
isomorphic to F [x]/(mα,F (x)). �

From this, it follows directly from Theorem 3.10 that the degree of the minimal
polynomial is the degree of the field extension:

degmα,F (x) = [F [x]/(mα,F (x)) : F ] = [F (α) : F ]

Theorem 4.5. Let F,K,L be fields such that F ⊆ K ⊆ L. Suppose that [L :
K], [K : F ] <∞. Then

[L : F ] = [L : K][K : F ]

Proof. By Definition 3.9, we know that L is a vector space over K. Let [L : K] = m,
where m <∞. So given any element α ∈ L,

α = β0 + β1a1 + ...+ βm−1am−1

for β0, β1, ..., βm−1 ∈ K where the {a0, a1, ..., am−1} is any given basis for L. Each
βi, however, is an element of K, which is a vector space over F . Let [K : F ] = n,
where n <∞. Then for any βi ∈ K,

βi = σi,0 + σi,1bi,1 + ...+ σi,n−1bi,n−1

where σi,j ∈ F . Then α ∈ L can be written as a linear combination with coefficients
in F .

α =
(
σ
0,0

+ ...+ σ
0,n−1

b
0,n−1

)
+
(
σ
1,0

+ ...+ σ
1,n−1

b
1,n−1

)
a1

. . .

+
(
σm−1,0 + ...+ σm−1,n−1bm−1,n−1

)
am−1

From this, we see that L is a vector space over F for which there are mn elements
in the basis. Hence [L : F ] = m · n = [L : K][K : F ]. �

5. Impossibility of Geometric Constructions

We now return to the original motivation of the paper, the Greek compass and
straightedge construction problems. The goal of this section is to find the cor-
respondences between geometric constructions and algebraic concepts in order to
prove the possibility (or impossibility) of certain constructions.

The premise of the compass and straightedge problems is quite simple. Given
two points {0, 1}, unit length is defined to be the shortest distance between the two
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points. From this, there are then three operations that can be performed to obtain
new points:

(1) Connecting two existing points with a straight line
(2) Tracing out a circle with given radius and center
(3) Connecting points where any line(s) or circle(s) intersect

It should be noted that the straightedge is unmarked, but the compass can be used
to transfer one length at a time (the compass does not collapse once removed from
the surface).

• Given length 1, the length 2 is constructible. It is immediate, by inductive
process, that any natural number is also constructible.

• Given that two lengths α, β are constructible, we can also construct α+ β
and α− β.

• Once we construct parallel lines, we can use similar triangles to construct
αβ and α/β.

• By inscribing a right triangle in a semi-circle, we can also construct square
roots of any given length

By these facts, the constructible lengths up until this point are a field, as the
set of constructible lengths is closed under addition and multiplication, and every
non-zero element is a unit.

In particular, we can think of the construction space as the Cartesian plane -
a length, therefore, can be thought of as a correspondence between distance in R2

and the real numbers. Hence the constructible elements compose some subfield of
R that at least contains Q.

Definition 5.1. A length r is constructible if, given two initial points {0, 1}, it
can be constructed through a finite sequence of operations

0, 1, r1, r2, ..., rn−1, rn = r

where ri is the length constructed with the ith operation.

The sequence of constructions can be thought of as a sequence of field extensions
whose base field is at least Q, as we showed in the examples above that Q is
constructible. The tower of field extensions would then be:

Q ⊆ Q ⊆ Q(r1) ⊆ Q(r1, r2) ⊆ ... ⊆ Q(r1, r2, ..., rn)

To simplify notation, let Q(r1, ..., rn) =: Fn.
At the kth step in the sequence rk, we would like to determine whether the

construction of a new point extends the field of constructible elements - and if so,
by how much? In other words, what is the degree of the field extension Fk+1 over
Fk? We can approach this from a case-by-case basis:
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• Intersection of two lines

ax+ by − c = 0

dx+ ey − f = 0

Let F be a field. For a, b, c, d, e, f ∈ F ,
the solution set (x, y) will also be in F , as
it is a system of linear equations.

• Intersection of a line and a circle

(x− a)2 + (y − b)2 − c2 = 0

dx+ ey − f = 0

Solving for x and y will give either
a quadratic expression or a linear ex-
pression, depending on the coefficients
a, b, c, d, e, f ∈ F .

• Intersection of two circles

(x− a)2 + (y − b)2 − c2 = 0

(x− d)2 + (y − e)2 − f2 = 0

Here we can subtract one equation from
the other so that the quadratic factors
cancel in one of the two equations. Hence
it is reduced to the previous case (inter-
section of a line and a circle).

In the first case, the solution set (x, y) remains in F , so the degree of the extension
is 1: [Fk+1 : Fk] = 1. In the second and third cases, if one variable is written in
terms of the other, we are left with a quadratic polynomial in the second variable.
Adding a point by taking the intersection of a line and a circle, therefore, could be
at most a quadratic extension, meaning [Fk+1 : Fk] is either 1 or 2.

Lemma 5.2. Let Fi denote the field at the ith iteration of adding points to the base
field (as described in Definition 5.1). Then [Fi+1 : Fi] ≤ 2.

This lemma, along with Theorem 4.5, which relates the degrees of intermediate
field extensions, gives us the following proposition immediately:

Proposition 5.3. If rn is constructible, then [Q(r1, r2, ..., rn) : Q] = 2k for some
k ≤ n ∈ N

Corollary 5.4. If rn is constructible, then [Q(rn) : Q] = 2m for some m ≤ n ∈ N.

This follows almost immediately from Proposition 5.3 and Theorem 4.5, as

[Q(r1, ..., rn) : Q] = 2k = [Q(r1, ..., rn) : Q(rn)][Q(rn) : Q]

With algebraic field extensions and minimal polynomials in mind, we consider
the tasks of doubling the cube, trisecting an angle, and squaring the circle.

5.1. Squaring the Circle. Given a circle of fixed radius r, is it possible to con-
struct a square with the same area as the circle? Equivalently, is it possible to
construct a square with area 2πr for any r > 0? As the base field Q closed under
multiplication, we need only consider whether π is constructible. Notice, however,
that π is transcendental over Q, meaning there does not exist a polynomial in Q[x]
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for which π is a root. It follows, then, that there does not exist a minimal polyno-
mial for π over Q, so [Q(π) : Q] = ∞. By Proposition 5.3, π is not constructible
- hence the task of squaring the circle is impossible with just a straightedge and
compass.

5.2. Doubling the Cube. Given a cube of fixed edge length a ∈ Q, is it possible
to construct a cube with twice the volume? That is, given a length a > 0, can a
cube be constructed so that each edge is of length a 3

√
2? To determine the answer

to this, consider [Q( 3
√

2) : Q].

Note that 3
√

2 is algebraic over Q, as it is the solution to the polynomial p(x) =

x3 − 2. It can be checked that the minimal polynomial of 3
√

2 is precisely p(x), as

it is the unique monic polynomial of minimal degree for which p( 3
√

2) = 0. Then

the degree of 3
√

2 is 3, so it follows that

[Q(
3
√

2) : Q] = 3

This is not a power of 2, so by Proposition 5.3, then 3
√

2 is not constructible with
a straightedge and compass. Hence the task of doubling the cube is impossible.

5.3. Trisecting an Angle. Given an angle θ between two lines, is it possible to
trisect the angle? In other words, given a non-negative angle θ, is it possible to
construct the angle θ

3?
If such a construction were possible, we should be able to trisect any angle, given

the original angle. Consider θ = 60◦. Suppose now that we are given the task of
constructing θ′ = 20◦. In our all the previous discussion, we were concerned only
with constructing lengths, not angles. An angle x is constructible, however, if and
only if sinx and cosx are both constructible. Determining the constructibility of
lengths sin θ′ and cos θ′, therefore, will determine whether we can construct θ′.

With trigonometric identities relating sums of angles, we can derive the following
relation for any angle x:

cos 3x = 4(cosx)3 − 3 cosx

For x = 20, we have:

1

2
= cos 60 = 4(cos 20)3 − 3 cos 20

If we let α = cos 20, this identity gives a monic polynomial with rational coefficients
for which p(α) = 0:

p(x) := x3 − 3

4
x− 1

8
Thus the angle θ′ can be constructed if and only if the field extension Q(α) has
degree 2k for some nonnegative k over Q

Recall that Q(α) ∼= Q(x)/(p(x)) for α a root of p(x), and the degree of α is the
degree of the minimal polynomial of α over Q[x]. If p(x) is irreducible, then it is
necessarily the minimal polynomial for α = cos θ′ over Q. The details are omitted
from this paper, but with some basic results about degree three polynomials in
Q[x], it is straightforward to show that p(x) is indeed irreducible over Q.

We have shown, then, that α is of degree 3 over Q, so [Q(α) : Q] = 3, which
clearly is not a power of 2. By Theorem 5.3, the angle θ′ = 20◦ in particular is not
constructible from θ = 60◦, so it is not possible to trisect any given angle θ given
only a straightedge and compass.
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We conclude, therefore, that all three of the aforementioned construction prob-
lems are impossible given only a straightedge and compass. The results from our
study of field extensions allow for an elegant approach to these ancient Greek con-
struction problems. By viewing the constructible elements as a field extension
over the rationals, we can consider just the degree of a field extension in order to
determine whether an element is not constructible.
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