
THE FUNDAMENTAL GROUP AND CONNECTIONS TO

COVERING SPACES

CHRISTOPHER STITH

Abstract. The fundamental group of a space is one of the central topological

invariants we can define. We begin with necessary background material on the
subject, building to the definition of the fundamental group. For a hands-on

calculation, we compute π1(S1). This, by design, introduces the idea of cov-

ering spaces. The theory of covering spaces is introduced and developed in
the latter half of this paper, in particular their intimate relationship to funda-

mental groups. We conclude with a beautiful synthesis of the two structures,

demonstrating the one-to-one correspondence between isomorphism classes of
covering spaces of (X,x0) and the fundamental group π1(X,x0).
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1. Introduction to Algebraic Topology

Intuitively, a topological space is the most general type of space in which we
have a notion of nearness of points, and thus of continuity. It is just a set for which
we prescribe a certain collection of subsets to be open, in such a way as to agree
with our understanding of the concept that comes from, say, metric spaces.1 That
is, finite intersections of open sets should be open, as should arbitrary unions of
open sets. A topological space is thus the next level of generalization from a metric
space.

Definition 1.1. A topological space (X, T ) is a set X equipped with a collection
T of subsets of X, called a topology on X, that satisfies the following properties:

(1) ∅, X ∈ T .
(2) The intersection of finitely many sets in T is again in T .
(3) The union of any collection of sets in T is again in T .

Date: September 6, 2016.
1A notion of openness is all you need to define the key concepts of continuity and convergence.
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Elements of T are said to be open sets in X. The topology T , then, is just the
collection of open sets of X. If a set is in T , it is open; otherwise, it is not open.
We will denote the topological space (X, T ) simply by X for convenience. Thus
“X and Y are topological spaces” means that we have defined topologies TX and
TY on X and Y , respectively. We will frequently drop the modifier “topological”
and instead refer to the space X, or even just to an unqualified X. In both cases,
it should be understood that we are talking about a topological space X.

Definition 1.2. Let X be a topological space. A set of points in X is said to be
closed if its complement is open in X.

Definition 1.3. A space X is connected if it cannot be written as the disjoint
union of open sets which are both nonempty. This is equivalent to the condition
that the only sets in X which are both closed and open are the empty set and X
itself.

We mentioned that a topological space is the most general space in which we
can define a notion of continuity. The study of continuous functions, of course,
plays a central role in all of mathematics, particularly analysis and topology. The
first formal introduction to continuity is usually encountered in R. From there, one
may see it in Rn and then generalize to any metric space. Finally, one comes to
the topological definition in all its generalized glory. If we are to do anything that
makes any sort of sense, this definition must coincide with the more familiar ε− δ
definition when the topological space in question can be viewed as a metric space.
Such a topological space is called metrizable, and it is a good exercise to prove that
the ε− δ definition and the topological definition agree on a metrizable topological
space.

Definition 1.4. Let X and Y be topological spaces. A function f : X → Y is
continuous if whenever U is open in Y , f−1(U) is open in X.

Definition 1.5. A path in a space X is a continuous function f : I → X. (We use
I to denote the unit interval in R.)

We say that f starts at f(0) and ends at f(1). It is useful to think of the domain
I as time. At time t = 0 we are at the point f(0) ∈ X. As times moves on, our
position f(t) varies continuously in X, until at time t = 1, we reach the endpoint
f(1) ∈ X. This naturally leads to a stronger version of connectedness.

Definition 1.6. A space X is path-connected if for all x, y ∈ X, there is a path f
starting at x and ending at y.

An important concept in topology is the idea of local properties, which are
properties of a space that hold only when “zoomed in”. That is, this property
should hold on arbitrarily “small” areas around every point. To formalize this, we
introduce the notion of a neighborhood.

Definition 1.7. Let X be a space, and let x ∈ X. A subset N of X is a neighbor-
hood of x if it contains an open set that contains x.

Definition 1.8. A space X is locally path-connected if for all x ∈ X and each
neighborhood V of x, there is an open neighborhood U ⊆ V of x such that U is
path-connected.



THE FUNDAMENTAL GROUP AND CONNECTIONS TO COVERING SPACES 3

Two useful notions, especially concerning fundamental groups, are path-connected
components of a space X: two points in X belong to the same path-connected com-
ponent if there is a path between them. A path-connected space thus has exactly
one path-connected component. An analogous definition exists for connectedness.

Topology is concerned with determining if two spaces are structurally the same,
in the sense that we can continuously deform one into the other in a reversible way.
Intuitively, this means that we can squish or stretch a space, as long as we do not
make any cuts in it. For example, a circle is “the same as” a square in this sense; it
can be continuously smushed into a square in a reversible manner. As far as notions
of nearness go, these two spaces are more or less the same. The formal machinery
for this is a special type of map called a homeomorphism, which intuitively is such
a continuous and reversible deformation from one space to another.

Definition 1.9. A continuous function f : X → Y between topological spaces is a
homeomorphism if there exists a continuous inverse function g : Y → X of f , i.e.

f ◦ g = idY and g ◦ f = idX .

Definition 1.10. Two spaces X and Y are homeomorphic if there is a homeomor-
phism between them.

Since the concept of a homeomorphism is so strong, it is correspondingly difficult
to prove or disprove the existence of one between two spaces. We therefore turn to
classifying spaces up to another type of equivalence: homotopy equivalence. This is
one of the fundamental concepts of algebraic topology. It is this type of equivalence,
rather than homeomorphism, that is important for the rest of this paper, and indeed
for much of the subject of algebraic topology.

A weaker concept than homeomorphism, homotopy retains the idea that two
spaces should be equivalent if they can be continuously deformed into one another.
Under homotopy, however, we lose some of the exactness of homeomorphisms; the
conditions under which a function is considered to be a “continuous deformation”
in homotopy are more relaxed than homeomorphisms. The consequence of this is
that homotopy equivalence is a weaker classification than homeomorphism. If two
spaces are homeomorphic, then they are also equivalent from the view of homotopy;
but two spaces that are homotopy equivalent are not necessarily homeomorphic.

Definition 1.11. Given functions f, g : X → Y , we say that f is homotopic to g
if there exists a continuous function

H : X × I → Y

such that

H(x, 0) = f(x) and H(x, 1) = g(x)

for all x ∈ X. The function H is called a homotopy from X to Y .

The concept of a homotopy formalizes the notion that a function can be contin-
uously deformed into another. As with paths, the unit interval I can be thought
of as a dimension of time. At time t = 0, we are still the function f ; but as time
moves on, we continuously change into the function g, completing this change at
time t = 1. If f is homotopic to g, we write f ' g.
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It is often useful to think of a homotopy H as a family of functions ht : X → Y
where ht := H|X×{t}. It follows that each “intermediate function” ht is continu-
ous in x and that the family of functions is continuous in t, in the sense defined
rigorously above. We will often speak of a homotopy ht. Tautologically, this is a
homotopy from h0 to h1.

Proposition 1.12. ' is an equivalence relation on the set C(X,Y ) of continuous
functions from X to Y .

Proof. Reflexivity. Clearly f ' f for any continuous function f by definingH(x, t) =
f(x) for all x ∈ X, t ∈ I.

Symmetry. Suppose f ' g, and let H be a homotopy from f to g. Define
H ′ : X × I → Y by H ′(x, t) = H(x, 1− t). Then clearly H ′ is a homotopy from g
to f , so that g ' f .

Transitivity. Suppose f ' g and g ' h, and let F,G be homotopies from f to g
and from g to h, respectively. Define H : X × I → Y by

H(x, t) =

{
F (x, 2t) 0 ≤ t ≤ 1

2
G(x, 2t− 1) 1

2 ≤ t ≤ 1.

Since F (x, 1) = g(x) = G(x, 0), this function is continuous, and clearly H(x, 0) =
f(x) and H(x, 1) = h(x). Thus H is a homotopy from f to h, so that f ' h. �

Remark 1.13. If f ∈ C(X,Y ), we let [f ] denote the homotopy class of f . That is,

[f ] = {g ∈ C(X,Y ) | g ' f}.

Definition 1.14. Two spaces X and Y are homotopy equivalent if there exist
functions f : X → Y and g : Y → X such that

f ◦ g ' idY and g ◦ f ' idX .
We denote homotopy equivalence of spaces by X ' Y or say that X and Y have the
same homotopy type. It is an easy exercise that homotopy equivalence also defines
an equivalence relation.

We see here how the concept of homotopy equivalence is weaker than that of
homeomorphism, or true topological equivalence. For a function f to be a home-
omorphism, there must exist a function g such that the compositions f ◦ g and
g ◦ f are each equal to the identity map (on the proper domains). In homotopy
equivalence, we relax this to the condition that these compositions need only be
homotopic to the identity map, which is clearly a much weaker restriction than
equality.

Examples 1.15. The real plane R2 is homotopy equivalent to a point, {x}; let
f : R2 → {x} take all points in the plane to the single point x ∈ {x}, and let
g : {x} → R2 map x ∈ {x} to any single point in R2.

The real plane R2 with a point removed is homotopic to the circle, via the map
from R2 \ {x} to the circle which normalizes each vector and the inclusion map
from the circle to R2 \ {x}.

Definition 1.16. A space which is homotopy equivalent to a point is called con-
tractible.

Definition 1.17. A function f is null-homotopic if it is homotopic to a constant
map.
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It is often crucial to consider only homotopies of a more restricted type (this will
be shown in the next section). For instance, if f and g are paths with the same
endpoints, we may want to consider a homotopy whose intermediate functions fix
these endpoints, i.e. are themselves paths with the same endpoints. This amounts
to saying that ht(0) = f(0) = g(0) and ht(1) = f(1) = g(1) for all t ∈ I. Such a
homotopy is called a homotopy from f to g relative to the set ∂I = {0, 1}, since it
fixes the values of f at 0 and 1. This is often called a path homotopy.

Definition 1.18. Let H : X × I → Y be a homotopy from f to g. If there is a
subset A of X such that H|A×I = f |A, then H is called a homotopy relative to A.
In this case, it is a necessary consequence of the definition of a homotopy that also
H|A×I = f |A = g|A.

This definition is introduced only as a measure of formality; we really only need
the concept of a homotopy relative to ∂I to deal with paths and loops, in order to
construct the fundamental group. As a last remark for this section, we will now
speak only of continuous functions between spaces. Any function from here on out,
unless otherwise noted, will be assumed to be continuous. For emphasis, we will
still mention continuity as the occasion warrants.

2. The Fundamental Group

In attempting to classify spaces up to homotopy, we turn our attention to topo-
logical invariants, properties of a space that do not change under homeomorphism.
That is, if two spaces are homeomorphic, then these invariant properties should be
the same. Of course, as classification goes, we would like the converse to be true.
In algebraic topology, however, we usually cannot achieve this. For instance, spaces
with the same fundamental group need not be homeomorphic nor even have the
same homotopy type. However, it is true that spaces of the same homotopy type
have the same fundamental group. It is, in the words of Crowell and Fox, “almost
always a one-way road.”

The fundamental group is one of the most important topological invariants of
a space, and a rather accessible one at that. It is essentially a “group of loops,”
consisting of all possible loops in a space up to homotopy.

Definition 2.1. A loop (sometimes called a closed path) in X is a path f with
f(0) = f(1). The common point f(0) = f(1) is called the basepoint of f . We say
f is based at f(0) = f(1).

Definition 2.2. The constant loop in X based at x0, denoted cx0
(or simply by

c if the context is clear or unimportant) is the loop defined by cx0
(t) = x0 for all

t ∈ I. In constructing the fundamental group, the constant loop (specifically, its
homotopy class) plays the role of the identity element.

Remark 2.3. We will adopt the convention that a homotopy between loops must
fix the basepoint; that is, if two loops are said to be homotopic, it is implicitly
assumed that they are so through a homotopy relative to ∂I. If loop homotopies
were allowed to be completely unrestricted, all loops would be homotopic to the
constant loop, and our theory would be completely trivial. We will often use the
term loop homotopy (or homotopy of loops) to explicitly denote such a homotopy.
This convention will also be adopted for path homotopies.
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We now begin the process of proving that the set of loops based at a given point
can indeed admit a group structure (we will see that it actually cannot - we must
consider homotopy classes of loops instead). The proofs are rather tedious but
straightforward; most of the verifications that such-and-such a structure satisfies
the group axioms will be left to the reader in the interest of brevity. We begin by
defining path multiplication.

Definition 2.4. Let f, g be paths in X with f(1) = g(0). Define the path multi-
plication f · g to be

f · g =

{
f(2t) 0 ≤ t ≤ 1

2
g(2t− 1) 1

2 ≤ t ≤ 1.

Definition 2.5. Let f be a path in a space X. The inverse path of f , denoted
f−1, is the path defined by

f−1(t) = f(1− t).

Path multiplication is really just path concatenation. All we are doing is sequen-
tially following each path; first we follow the path f , then g. A minor technicality
comes up here: since a path as we defined it has as its domain the unit interval,
the paths f and g must be completed in half the time when we multiply them
together. That is, in the path f ·g, f is traversed from time t = 0 to t = 1

2 , and g is

traversed from time t = 1
2 to t = 1, so that f ·g is traversed in unit time. As is done

with multiplicative notation, we also write fg for f · g. The inverse path is just
the original path traversed backwards; we consider this to be an inverse because
ff−1 ' c. This will come up shortly.

Since the end goal is to create a group of loops, we will consider only loop
multiplication from now on (note that we can only multiply loops with identical
basepoint). However, in trying to check that loop multiplication is associative, we
run into a problem - simply, that it is not. All it takes to see this is an argument
about the time intervals during which each factor path is traversed.

Let f, g, and h be loops in a space X with identical basepoint. We want to check
if

(f · g) · h ?
= f · (g · h).

On the left hand side, the factor path h is traversed from time t = 1
2 to t = 1.

However, on the right hand side, h is traversed only from t = 3
4 to t = 1 (the

reasoning behind this is contained two paragraphs above). Thus in general the
above equality does not hold.

In the face of this disappointment, we save our goal from ruin by noting that
while equality does not hold, it is true that

(f · g) · h ' f · (g · h).

We are thus motivated to define a group consisting of homotopy classes of loops,
rather than of individual loops themselves. If [f ] and [g] are homotopy classes of
loops with identical basepoint, we define their product [f ] · [g] to be [f · g]. The
above remarks demonstrate that this operation is associative. Similarly, it is true
that [f ] · [c] = [f ] and [f ] · [f−1] = [c] (so that [f ]−1 = [f−1]). We thus have the
desired group structure.

Definition 2.6. (Fundamental Group) Let X be a space and choose some x0 ∈ X
(called the basepoint of X). We consider the pair (X,x0) consisting of X and
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this distinguished basepoint x0. The fundamental group of X based at x0 is the
set consisting of all homotopy classes of loops in X based at x0 (under the group
operation defined above). We denote this group π1(X,x0).

The fundamental group of a space at some point x0, then, is just the group of all
loops based at x0, modulo homotopy. If we have a function p : X → Y and a loop
f : I → X based at x0, it is clear that p◦f is a loop in Y based at p(x0). This hints
at the following theorem, the result of which will play a crucial role in the material
on covering spaces. We leave the proof to the reader; it is quite straightforward.

Theorem 2.7. Let X and Y be topological spaces with p : X → Y continuous. The
function p∗ : π1(X,x0)→ π1(Y, f(x0)) defined by

p∗([f ]) = [p ◦ f ]

for all [f ] ∈ π1(X,x0) is a homomorphism. It is called the induced homomorphism
of the function p.

Note that the fundamental group is absolutely dependent on the choice of base-
point - it is a necessary part of the definition. You cannot speak of a group of
loops without first choosing a basepoint for these loops. However, at the beginning
of this section we stated that the fundamental group was a topological invariant
of a space. With this in mind, we would really like the fundamental group to be
something intrinsic to the space itself, not dependent on the arbitrary choice of
basepoint. The solution to this is found in the property of path-connectedness.

Theorem 2.8. Let X be a space, and let x0, x1 ∈ X be in the same path-connected
component. Then π1(X,x0) ∼= π1(X,x1).

Proof. In fact, the two groups are conjugate through the homotopy class of the
path connecting the basepoints. Let γ be the homotopy class of a path that starts
at x1 and ends at x0. Define φ : π1(X,x0)→ π1(X,x1) by

φ(α) = γαγ−1

for all α ∈ π1(X,x0). Let β be another homotopy class of loops at x0. Then we
have

φ(αβ) = γαβγ−1 = γαγ−1γβγ−1 = φ(α)φ(β),

so that φ preserves the group operation. If φ(α) = φ(β), then γαγ−1 = γβγ−1,
so that α = β; thus φ is injective. For any ω ∈ π1(X,x1), note that γ−1ωγ is an
element of π1(X,x0), whose image under φ is clearly ω. Thus φ is surjective, which
completes the proof. �

Corollary 2.9. If X is path-connected, then for all x0, x1 ∈ X, π1(X,x0) ∼=
π1(X,x1). We then refer unambiguously to this isomorphism class as “the fun-
damental group of X,” denoted π1(X).

The following definition will play an important role in the last section of this
paper.

Definition 2.10. A space X is simply-connected if it is path-connected and has
trivial fundamental group π1(X).
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3. The Fundamental Group of S1

In this section, we prove the classic result that π1(S1) ∼= (Z,+). Implicitly, we
are working with S1 as a subspace of R2 equipped with the subspace topology. The
proof given here is taken straight from Lima [4], and although we have added a fair
amount of explanatory detail to help with the conceptual leaps and connections,
the structure and explanations are fully motivated by Lima’s text.

The main goal is to show that any loop f : I → S1 has associated with it,
and indeed is determined up to homotopy by, something called a winding number,
n(f), which intuitively counts the “net” amount of times f turns counterclockwise
around S1. The number n(f) is positive if f ’s net movement is counterclockwise,
negative if it is clockwise, and zero if it never makes a full loop around the circle.
We then show that two loops in S1 are homotopic if and only if they have the same
winding number.

We do this by what appears at first to be an odd strategy, but it soon becomes
apparent how useful and elegant it is. We consider R projected onto the circle by
the (complex) exponential map, and for each loop in S1 we consider functions f̃
that, when composed with the exponential projection, return the original function
f . Such functions are called lifts, and R (equipped with the exponential projection)
is an example of a covering space. The connection between fundamental groups and
covering spaces is very deep, and will be expanded upon in the last two sections.
Throughout this section, then, it is a good idea to keep in mind that we are building
on our own the concept of a covering space. It is a good, concrete example that
will help with the more abstract material in later sections, and the reader should
keep in mind this larger theory.

Proposition 3.1. Let p : R → S1 be defined by p(x) = eix = (cos(x), sin(x)).
Then p is an open map.

Proof. Let U be an open set in R. We show that T = S1 \ p(U) is closed in S1.
Note that since p has period 2π, p−1(p(U)) = U + 2πn = {u+ 2πn | u ∈ U, n ∈ Z},
which is also an open set in R; so its complement is closed. But the complement of
this set is everything which is not mapped into p(U), which is just p−1(T ).

We want to show that T is compact, and thus closed in S1. Since the interval
[0, 2π] is compact, the set p−1(T ) ∩ [0, 2π] is as well; and since p is continuous,
its image under p is compact in S1. But since p restricted to [0, 2π] is surjective
onto S1, we have p(T ) = p(p−1(T ) ∩ [0, 2π]). So p(T ) is compact, and thus closed.
Therefore its complement p(U) is open, so p is an open map. �

Proposition 3.2. The restriction p|(x,x+2π) of p to an open interval of the form

(x, x+ 2π) is a homeomorphism onto S1 \ {p(x)}. That is, p is a local homeomor-
phism.

Proof. That p is continuous and bijective clearly follows from its definition. It
remains to show that p−1 is also continuous. But since p is an open map, open
subsets in (x, x+2π) are mapped onto open sets in S1. So if U is open in (x, x+2π),
p(U) = (p−1)−1(U) is open in S1, so p−1 is continuous. Therefore p|(x,x+2π) is a
homeomorphism. �

Proposition 3.3. (Unique path lifting property) Let f : I → S1 be a path in S1

such that f(0) = p(s0) for some s0 ∈ R. Then there exists a unique continuous

map f̃ : I → R such that f = p ◦ f̃ and f̃(0) = s0.
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R

I S1

p

��

f
//

∃!f̃

??

A continuous map f̃ such that p ◦ f̃ = f is called a lift of f .

Proof. We first show this holds when f(I) ⊂ S1 \ {y} for some y ∈ S1. If we look
at the preimage p−1(y) of y, we see that it is a discrete set of points R; since p has
period 2π, the smallest distance between any two of these points is 2π. Thus there
is a unique x ∈ p−1(y) with s0 ∈ (x, x+ 2π).

By Proposition 3.2, px := p|(x,x+2π) is a homeomorphism from the interval (x, x+

2π) to S1 \ {y}. We can thus define f̃ = px
−1 ◦ f . Then we have

f̃(0) = px
−1(f(0)) = px

−1(p(s0)) = s0,

since s0 ∈ (x, x+ 2π). Also,

p ◦ f̃ = p ◦ (px
−1 ◦ f) = f ;

so f̃ is indeed the map we need.
Next, suppose that I = I1 ∪ I2, where I1, I2 are compact intervals with common

endpoint t such that the conclusion holds for the restrictions f1 := f |I1 and f2 :=
f |I2 . We show that the conclusion hold for I as well.

0 1
.

I1 I2

Since the conclusion of the theorem holds on the restrictions, we can choose a
lift f̃1 : I1 → R of f1 such that f̃1(0) = s0. Similarly, on the other interval, we can

choose a lift f̃2 : I2 → R such that f̃2(t) = f̃1(t). We can do this last bit because

f2(t) = f1(t) = p(f̃1(t)), so by the conclusion to the theorem, f̃2(t) = f̃1(t). We

then define f̃ : I → R by f̃ |I1 = f̃1 and f̃ |I2 = f̃2. Because of the preceding

remarks, it is clear that f̃ is well-defined and has the desired properties.
The general case of the theorem follows from these two cases. It is a consequence

of the compactness (and connectedness) of I and is a bit needlessly technical, so
just the outline will be given here.

Since f is continuous, each point in I is contained in an open δ-interval whose
image under f is not all of S1. So by the first part of this proof, f̃ exists as needed
on each of these. Since I is compact, this admits a finite open subcover. Because I
is connected, the open intervals that comprise this subcover have nonempty inter-
sections with those immediately to the left and right, viewing I on the number line.
We can thus choose closed subintervals of these which have endpoints (and only
endpoints) in common with their neighbors (see diagram). We have now covered I
by a finite number of closed intervals such that adjacent intervals share endpoints,
and such that the image of each is not all of S1. Thus by parts one and (induction

on) two, f̃ exists on all of I.
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We now show that this f̃ is unique. Let f̂ be a function with p ◦ f̂ = f and

f̂(0) = s0. Consider the function

g(t) =
f̂(t)− f̃(t)

2π
.

Note that

p(g(t)) = eig(t) = eif̂(t)/2π · e−if̃(t)/2π = 1,

so g(t) must be an integer for all values of t. But since g varies continuously with

t, this means that g is constant. Since f̂(0) = f̃(0) = s0, g is the zero function onI.

Thus f̂ = f̃ . �

We say that p has the unique path lifting property. This means that given a path
f in S1 and a number s0 ∈ R with p(s0) = f(0), there is a unique path f̃ : I → R
such that f̃(0) = s0 and f = p ◦ f̃ . We can think of this as “going upstairs to R”

via f̃ and then coming back down via the projection p, achieving the same result
as if we had gone straight to X via f . It is important to note that the uniqueness
of this lift depends on the seed value s0. Without the condition that f̃(0) = s0,

there are an infinite number of lifts of any path f , since we can always shift f̃ by
an integer multiple of 2π. Clearly, doing so preserves the equality p ◦ f̃ = f , but
changes the starting value f̃(0) of the lift.

This property is an important tool for our main goal. We are now in a position
to define the concept of the winding number in the case where f is a loop. We
already have f̃(0) = s0. In the case where f is a loop, we have f(0) = f(1) = p(s0),

so that f̃(1) = s0 + 2πn for some n ∈ Z. It is this n that, intuitively, describes how
many times the loop f winds around the circle.

Definition 3.4. Let f be a loop in S1. Define the winding number of f to be

n(f) =
f̃(1)− f̃(0)

2π
,

where f̃ is a lift of f .

Remark 3.5. We could specify, without any loss of generality, that this f̃ is the
unique lift spoken of in Proposition 3.3. However, the preceding remarks demon-
strate that any lift of f differs from this unique lift (and thus any other) by an
integer multiple of 2π, which is cancelled out by the subtraction. So in any case,
this number is well-defined.

Lemma 3.6. Let f, g : I → S1 be loops in S1 with identical basepoint. Then:

(1) n(fg) = n(f) + n(g).
(2) If f ' g, then n(f) = n(g).
(3) If n(f) = n(g), then f ' g.
(4) Let x ∈ S1. For all integers k, there exists a loop h : I → S1 based at x

such that n(h) = k.

Proof. (1) Let f̃ , g̃ : I → R be lifts of f and g. Note that by setting the seed
value s0 for either loop’s basepoint, we set it for both, since f and g have the same
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basepoint. We can thus choose lifts such that f̃(1) = g̃(0). It is easy to verify that

the multiplication f̃ g̃ is a lift of fg. We thus have

n(fg) =
(f̃ g̃)(1)− (f̃ g̃)(0)

2π
=
g̃(1)− f̃(0)

2π
=
g̃(1)− g̃(0) + g̃(0)− f̃(0)

2π

=
g̃(1)− g̃(0) + f̃(1)− f̃(0)

2π
= n(f) + n(g).

(2) This takes a bit more work. Let f ' g. First consider the case when f(t)
and g(t) are never antipodal, i.e. |f(t) − g(t)| < 2 for all t ∈ I. Let s0, t0 be real
numbers with f(0) = eis0 and g(0) = eit0 , such that |s0 − t0| < π. The reason we
can do this is that f(0) and g(0) are never antipodal. Because of this, |s0− t0| 6= π.

If we have |s0− t0| > π, then there is some t′0 such that |s0− t′0| < π and eit
′
0 = eit0 ,

so we can redefine t0 to be this t′0.

Let f̃ and g̃ be lifts of f and g with seed values s0 and t0, respectively. We claim
that f̃(t)− g̃(t) 6= π for any t ∈ I. Indeed, suppose for contradiction that this was
an equality for some t. Then we would have

|f(t)− g(t)| = |p(f̃(t))− p(g̃(t))| = |eif̃(t) − eig̃(t)| = |ei(g̃(t)+π) − eig̃(t)|

= |eig̃(t)(eiπ − 1)| = 2,

which is a contradiction.
Note also that since the lifts f̃ and g̃ are continuous and |f̃(0) − g̃(0)| < π by

choice of seed value, it must be the case that |f̃(t)− g̃(t)| < π for all t ∈ I (by the

intermediate value theorem, since f̃(t)− g̃(t) 6= π). Thus

2π|n(f)− n(g)| = |f̃(1)− f̃(0) + g̃(0)− g̃(1)|

≤ |f̃(1)− f̃(0)|+ |g̃(0)− g̃(1)| < 2π,

so that |n(f) − n(g)| < 1. But since |n(f) − n(g)| is an integer, it follows that it
must be equal to 0, so that n(f) = n(g).

The general case proceeds as follows. Let H : I × I → S1 be a homotopy of
loops from f to g, so that as per our convention, it fixes the basepoint. Note
that H is uniformly continuous on its domain, so we can choose δ > 0 such that
|H(s, t) − H(s, t′)| < 2 whenever |t − t′| < δ. Now let 0 = t0, . . . , tk = 1 be
a partition of I such that each subinterval has length less than δ. Define loops
f = f0, . . . , fk = g by fi(s) = H(s, ti). Then we have

|fi(s)− fi+1(s)| = |H(s, ti)−H(s, ti+1)| < 2.

From the first part of the proof, this means that we can construct the chain of
equalities n(f) = n(f1) = · · · = n(fk−1) = n(g).

(3) Let f̃ , g̃ : I → R be lifts of f and g. Define a homotopy from H̃ : I × I → R
by

H̃(s, t) = (1− t)f̃(s) + tg̃(s)

(this homotopy is called the linear homotopy). At this point, we have lifts whose

defining properties are p◦ f̃ = f and p◦ g̃ = g, and we are trying to find a homotopy
of loops from f to g. The only natural thing to do here is to define a homotopy H

as the composition p ◦ H̃, which is exactly what we will do.
First, redefine f̃ and g̃ so that f̃(0) = g̃(0) (which we can do thanks to the

remarks preceding the definition of the winding number). Note that by the unique

path lifting property, we also then have (in particular) f̃(1) = g̃(1). Define H as
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above. Let x0 be the basepoint of f and g. We need to show that H is a homotopy
that fixes x0. Clearly H is continuous, as it is the composition of two continuous
functions. Also,

H(s, 0) = p(H̃(s, 0)) = p(f̃(s)) = f(s)

and

H(s, 1) = p(H̃(s, 1)) = p(g̃(s)) = g(s),

so H is a homotopy. To show that each intermediate function ht is a loop based at
x0, note that

ht(0) = p(H(0, t)) = p((1− t)f̃(0) + tg̃(0)) = p((1− t+ t)f̃(0)) = f(0) = x0,

and similarly,

ht(1) = p(H(1, t)) = p((1− t)f̃(1) + tg̃(1)) = p((1− t+ t)f̃(1)) = f(1) = x0.

Thus ht is a loop based at x0 for all values t; so H is a homotopy of loops, and we
have f ' g.

(4) Let s0 ∈ R such that p(s0) = x. We just need to prove existence, so lets pick
an easy loop. Define h : I → S1 by

h(s) = (cos(s0 + 2πks), sin(s0 + 2πks)).

Then h(0) = h(1) = (cos(s0), sin(s0)) = p(s0) = x, so h is a loop based at x. It

has a natural lift h̃ defined by h̃(s) = s0 + 2πks. Thus

n(g) =
h̃(1)− h̃(0)

2π
=

2πk

2π
= k,

which completes the proof of this Lemma. �

Theorem 3.7. π1(S1) ∼= (Z,+).

Proof. We have already done all of the work in the above lemma. Let [f ] ∈ π1(S1).
Item (2) tells us that all paths in [f ] have the same winding number, so that
n([f ]) := n(f) is well-defined. Item (1) tells us that this function [f ] 7→ n([f ]) is
a group homomorphism from π1(S1) to Z, while items (3) and (4) show that it is
bijective. Thus the winding number defines an isomorphism from π1(S1) to Z. �

4. Covering Spaces

The proof that π1(S1) is isomorphic to integers was based on lifts of loops in
S1 to paths in R. Let’s look at some of the key aspects of this strategy. First, the
machinery rests not only on the choice of R, but also on the exponential map p
that projects R onto the circle. Second, every point on the circle is contained in
an open neighborhood whose preimage under p is a set of disjoint open intervals in
R. Furthermore, p is a homeomorphism from any single one of these disjoint open
intervals onto the open neighborhood in the circle. It is these properties, then,
which will be abstracted to form the definition of a covering space. Throughout
this section and the next, proofs of theorems are based on those in Hatcher [1].
While considerable detail has been added to both the proofs and the structure of
the material, we attribute the general flow, content, and proofs of these sections to
Hatcher.
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Definition 4.1. A covering space of a space X is a space X̃ together with a map

p : X̃ → X, called a covering map, such that each x ∈ X is contained in an open

neighborhood V whose preimage p−1(V ) is the union of disjoint open sets in X̃,
each of which is projected homeomorphically by p onto V . That is,

p−1(V ) =
⋃
α∈A

Uα,

where the Uα are disjoint open sets in X̃ such that

p|Uα : Uα → V

is a homeomorphism.

It is important to note that a covering space depends entirely on its covering
map; the two are a package deal, in much the same way as a group is only a group
if you have both a set and a suitable binary operation. Thus, we will commonly

refer to a covering space by writing p : X̃ → X.
Note that the covering map p is a local homeomorphism. For any x ∈ X, the

preimage p−1(x) is called a fiber over x. If every fiber for every point in X has n

elements, then X̃ is said to have degree n. In this case, X̃ is also called an n-fold
covering of X. The subset V ⊂ X is called evenly covered, and the disjoint sets Uα
are called the sheets of X̃ over V . We can think of them as homeomorphic copies
of our neighborhood V lying “above” V ; the map p is a projection which collapses
them back down onto V . For this reason, p is often called a projection map. Note
that since each sheet is a homeomorphic copy of V , a covering space always inherits
all the local properties of the space it is covering.

The space R equipped with the exponential map, as mentioned previously, is a
covering space of S1. Any point eix on the circle is contained in an open interval
ei(x−δ,x+δ) whose preimage is the disjoint open intervals (x−δ+2πn, x+δ+2πn), n ∈
Z. It was shown in Proposition 3.2 that the exponential map is a homeomorphism
when restricted to each of these intervals.

As seen in Section 3, passing above to a covering space can prove quite powerful
in computing fundamental groups. The next section will demonstrate an even
deeper and more general connection between these two concepts. A very powerful
construction in the theory of covering spaces concerns how functions into X can

be turned into functions into X̃ which, when projected back down to X, yield the
original function. As seen in the previous section, such functions are called lifts.
We state the general definition here.

Definition 4.2. Let p : X̃ → X be a covering space, and let f : Y → X. A lift of

f is a continuous function f̃ : Y → X̃ such that p ◦ f̃ = f . We say f̃ lifts f .

Of course, we have not yet proven that lifts even exist; all we know is, from
Section 3, that lifts exist for paths in S1, and that if we specify a seed value this
lift is unique. This is actually a specific instance of the following theorem, which
gives us a general class of functions that have lifts.

Theorem 4.3. (Homotopy lifting property) Let p : X̃ → X be a covering space,

and let F : Y × I → X be a homotopy. Suppose we have a lift f̃0 of f0. Then there

exists a unique homotopy F̃ : Y × I → X̃ of f̃0 that lifts F , i.e. such that f̃t lifts ft
for all t ∈ I.
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X̃

Y × I X

p

��

F
//

∃!F̃

??

Proof. Let y0 ∈ Y , and let V be an open neighborhood containing y0. We construct
a lift of F restricted to V × I. Let Vi × (ti, ti+1) be product neighborhoods that
cover {y0} × I. Since F is continuous, we can choose these neighborhoods so that
F (Vi × (ti, ti+1)) is contained in an evenly covered neighborhood in X. Since I is
compact and connected, this gives us a finite subcover V1×[t0, t1], . . . , Vn×[tn−1, tn],
where t0 = 0 and tn = 1, and such that each image F (V × [ti, ti+1]) is contained
in some evenly covered neighborhood of X. We can thus redefine V =

⋂n
i=1 Vi,

so that {y0} × I is covered by V × [ti, ti+1] for i = 0, . . . , n − 1. We proceed to

construct F̃ : V × I → X̃ by induction on the subintervals of I.

Base Case. By hypothesis, the restriction F̃ : V ×{0} → X̃ exists - it is just f̃0.

Thus for i = 0, the lift F̃ : V × [t0, ti]→ X̃ exists.

Induction Step. Suppose that F̃ : V × [t0, ti] → X̃ exists. We show that F̃ :

V × [t0, ti+1]→ X̃ exists. To do this, we construct F̃ on V × [ti, ti+1].
Let Ui be an evenly covered neighborhood containing F (V × [ti, ti+1]), and note

that F (y0, ti) ∈ Ui. Then there exists a sheet Ũi of X̃ over Ui, so that p|Ũi is
a homeomorphism.Let pi denote this restriction. From our induction hypothesis,

F̃ (V × {ti}) already exists. We can thus choose Ũi such that F̃ (y0, ti) ∈ Ũi. The
reason for this is that since F (y0, ti) ∈ Ui, its fiber p−1(F (y0, ti)) is contained in the

preimage p−1(Ui). Since F̃ is a lift, F̃ (y0, ti) must be exactly one point of the fiber
of F (y0, ti), and thus it must lie in exactly one of the sheets in p−1(Ui). We thus

let Ũi be this unique sheet containing F̃ (y0, ti). To ensure that F̃ (V × {ti}) ⊆ Ũi,

we replace V × {ti} with the intersection V × {ti} ∩ F̃ |−1V×{ti}(Ũi). Note that this

amounts to replacing V by a smaller subset of V , which we can still choose to be

an open neighborhood since F̃ is continuous.
The rest is patchwork. Define

F̃ |V×[ti,ti+1] = p−1 ◦ F.

From our induction hypothesis, F̃ is already defined on V × [t0, ti], and by the

choice of Ũi, this agrees with F̃ |V×[ti,ti+1] on the intersection V × {ti}. We thus

obtain F̃ on all of V × [t0, ti+1]. By induction, F̃ exists on all of V × I.

We now prove the uniqueness of F̃ when restricted to a domain {y} × I for

some y ∈ Y . Suppose we have two lifts F̃ , F̂ of F such that F̃ (y, 0) = F̂ (y, 0).
Let 0 = t0, t1, . . . , tn = 1 be a partition of I such that F ({y} × [ti, ti+1]) is in

some evenly covered neighborhood Ui (as before). Note that the base case F̃ ({y}×
[t0, ti]) = F̂ ({y} × [t0, ti]) is again true for i = 0; this becomes our new working

induction hypothesis. Since [ti, ti+1] is connected and F̃ is continuous, the image

F̃ ({y}× [ti, ti+1]) is connected. It thus lies in a single sheet Ũi of X̃ over Ui. By the

same token, the same is true for F̂ ({y} × [ti, ti+1]). By induction hypothesis, they

agree at the point (y, ti), so that they must actually lie on the same sheet Ũi. Since
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p|Ũi is a homeomorphism, it is injective, and since F̃ and F̂ are lifts, p ◦ F̃ = p ◦ F̂ .

Thus F̃ = F̂ on {y} × [ti, ti+1]. By induction, the two are equal on all of {y} × I.

To finish the proof, recall that we constructed F̃ on sets of the form V × I for

open neighborhoods V of each point y0 ∈ Y . Since F̃ is unique on each line segment

of the form {y} × I, it follows that F̃ as defined in one neighborhood agrees with

F̃ as defined in any neighborhood wherever they intersect. Thus it is well-defined
on all of Y × I, and we are done. �

If the set Y contains only a single point, this gives us the unique path lifting
property. In particular, suppose that f : I → X is the constant path at x0 ∈ X.
Then for each x̃0 ∈ p−1(x0), the unique lift at x̃0 is exactly the constant path at
x̃0. So all lifts of a constant path are constant, which can also be deduced from the
fact that lifts are continuous and p−1(x0) is discrete.

This lets us lift a loop homotopy (that is, a homotopy relative to ∂I) in X to a

loop homotopy in X̃. Let F : I × I → X be a homotopy relative to ∂I between
loops f0 and f1 based at x0, and let f̃0 be a lift of f0. The path defined by t 7→ ft(0)
is constant, as is that defined by t 7→ ft(1), since the homotopy fixes the endpoints.

Therefore the lifts of these paths, f̃t(0) and f̃t(1), must also be constant by the

preceding paragraph. Therefore, the lifted homotopy F̃ is also a homotopy relative
to ∂I. This property - that homotopies of loops can be lifted to homotopies of lifted
loops - will be used extensively in theorems to come.

We will be shifting our focus to pointed spaces, which are spaces where we have
designated a basepoint. We denote such a space as (X,x0), where it is understood
that X is the space and x0 ∈ X is its basepoint. Along with this is the concept of
a based map, which is a function between pointed spaces that takes the basepoint
of one to the basepoint of the other.

Definition 4.4. Let (X,x0) and (Y, y0) be pointed spaces, and let f : X → Y . We
say that f is a based map if f(x0) = y0, and in this case we write

f : (X,x0)→ (Y, y0).

The reason we are introducing these concepts is that we are going to start tying
covering spaces to fundamental groups, which rely on the choice of basepoint. It
thus becomes natural to talk about pointed spaces, where we have already chosen
a basepoint. When dealing with maps between pointed spaces, it is based maps
which turn out to have “nice” properties.

Lastly, when picking a basepoint x̃0 of a covering space X̃, we require it to be

in the fiber of the basepoint x0 of X, so that p : (X̃, x̃0)→ (X,x0) is a based map.
Again, it is a natural choice to have the basepoint of a covering space projected
onto the basepoint of the covered space - if only because such a restriction makes
things work the way we want.

Theorem 4.5. Let p : (X̃, x̃0) → (X,x0) be a covering space of X. Then the

induced map p∗ : π1(X̃, x̃0) → π1(X,x0) is injective. Furthermore, the image

p∗(π1(X̃, x̃0)) in π1(X,x0) consists of all homotopy classes of loops whose lifts to

X̃ starting at x̃0 are loops.

Proof. We show that the kernel of p∗ is trivial. Any element of this kernel is a
homotopy class [ã] of loops such that p◦ ã ' cx0

. By the homotopy lifting property
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and ensuing remarks, this homotopy lifts to a loop homotopy between ã and cx̃0
.

Thus [a] = [cx̃0
] is the identity in π1(X̃, x̃0), so p∗ is injective.

An element in the image p∗(π1(X̃, x̃0)) is a homotopy class [a] with a = p ◦ ã for

some ã ∈ [ã] ∈ π1(X̃, x̃0). By the unique path lifting property, the unique lift of a
starting at x̃0 is ã, which is a loop at x̃0. Going the other way, if a ∈ π1(X,x0) lifts
to a loop ã at x̃0, then by definition a = p ◦ ã, and so the homotopy class of a is
clearly the image of the homotopy class of ã under p∗. �

We now return to the question of when a lift of a given function exists. Theorem
4.3 tells us that lifts of homotopies exist, but that is a rather restricted class of
functions. The next theorem expands our collection, giving us a criterion for any
arbitrary function to have a lift that depends on the fundamental groups of the
relevant spaces.

Theorem 4.6. (Lifting criterion) Let p : (X̃, x̃0) → (X,x0) be a covering space.
Let f : (Y, y0) → (X,x0) be a continuous map, with Y path-connected and locally
path-connected. Then a lift of f exists if and only if

f∗(π1(Y, y0)) ≤ p∗(π1(X̃, x̃0)).

Proof. First, suppose a lift f̃ of f exists. Then by definition, we have f = p ◦ f̃ ,
so that f∗ = (p ◦ f̃)∗. Note that we can choose f̃ so that f̃(y0) = x̃0. Then for
α = [a] ∈ π1(Y, y0), we have

f∗(α) = (p ◦ f̃)∗(α) = [p ◦ f̃ ◦ a] = p∗([f̃ ◦ a]) ∈ p∗(π1(X̃, x̃0)),

since f̃ ◦ a is a loop at x̃0. We thus obtain the desired inclusion.

Conversely, suppose that f∗(π1(Y, y0)) ≤ p∗(π1(X̃, x̃0)). For y ∈ Y , let γ be a
path in Y from y0 to y. Then f ◦ γ is a path from x0 to f(y), and by the unique

path lifting property, there exists a lift f̃ ◦ γ : I → X̃ of f ◦ γ starting at x̃0. By

definition, then, we have p((̃f ◦ γ)(1)) = f(y). Since we want a lift f̃ such that

p(f̃(y)) = f(y), we will define f̃(y) = (f̃ ◦ γ)(1).

Since the choice of γ was arbitrary, we need to show that f̃ does not depend
on this choice. To do this, let γ′ be another path in Y from y0 to y. We need

to show that (f̃ ◦ γ′)(1) = (f̃ ◦ γ)(1). Note that γγ′−1 is a loop at y0. By our

assumption, then, f∗(γγ
′−1) is in the image of π1(X̃, x̃0) under p. Thus there is

some α = [a] ∈ π1(X̃, x̃0) such that

p∗([a]) = f∗([γγ
′−1]),

which means that

p ◦ a ' f ◦ (γγ′−1)

through some loop homotopy ht. We apply the homotopy lifting property to ht
to obtain a homotopy h̃t between the lifts of these loops. Note that since a is a
lift of p ◦ a, we can choose this homotopy so that h̃0 = a is a loop at x̃0. By
the remarks following Theorem 4.3, it follows that ht is a loop homotopy. Thus
h̃1, which is a lift of f ◦ (γγ′−1), is a loop at x̃0. But by the unique path lifting

property, h̃1 = f̃ ◦ γ · (f̃ ◦ γ′)−1, since this is also a lift of h1. So the first half of

the loop h̃1 is the path f̃ ◦ γ, and the second half is (f̃ ◦ γ′)−1. This means that

(f̃ ◦ γ)(1) = (f̃ ◦ γ′)(1),
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so that f̃ is well-defined.
It remains to show that f̃ is continuous. Let U be an evenly covered neigh-

borhood of f(y), and let Ũ be a sheet in X̃ over U containing f̃(y). Then p|Ũ is
a homeomorphism onto U . Choose a path-connected open neighborhood V of y
such that f(V ) ⊆ U , which we can do since Y is locally path-connected and f is
continuous. Fix a path γ from y0 to y, and for y′ ∈ Y let µ be a path in V from
y to y′. We then have a product path Γ = γµ from y0 to y′. This yields a path
f ◦Γ in X, which first goes through f ◦γ and then f ◦µ. By the unique path lifting

property, this has a lift f̃ ◦ Γ = f̃ ◦ γ · f̃ ◦ µ. Note that since the image of f ◦ µ is
contained in U , we have

f̃ ◦ µ = p|−1
Ũ
◦ (f ◦ µ),

so that the image of f̃ ◦ µ is contained in Ũ . By construction of f̃ , it follows that

f̃(y′) = (f̃ ◦ Γ)(1) = (f̃ ◦ µ)(1) ∈ Ũ .

Since this holds for all y′ ∈ V , it follows that f̃ |V is contained in Ũ . We therefore

have f̃ |V = p|−1
Ũ
◦f , so that f̃ is continuous at y. Since this y was chosen arbitrarily,

it follows that f̃ is continuous on all of Y , and we are done. �

Having answered the question of the existence of lifts, we now turn to the question
of uniqueness. Recall from Section 3 that every path f in S1 had a unique lift when
we fixed the seed value f̃(0). This is an instance of the unique path lifting property,
which as noted above is a special case of the homotopy lifting property.

Recall that the proof given in Section 3 used the connectedness of the unit
interval. It turns out that as long as the domain of a function into X is connected,

any two lifts to a covering space X̃ are either identical or have disjoint images. This
is called the unique lifting property, and is the content of the following theorem.

Theorem 4.7. (Unique lifting property) Suppose p : X̃ → X is a covering space

of X, and let f : Y → X with Y connected. If two lifts f̃1 and f̃2 agree at one
point, then they agree on all of Y .

Proof. We show that the set of points in Y on which f̃1 = f̃2 is both closed and
open in Y . For a point y ∈ Y , let U be an evenly covered neighborhood of f(y).

Then p−1(U) consists of disjoint sheets Ũi of X̃ over U . Let Ũ1 and Ũ2 be sheets

containing f̃1(y) and f̃2(y), respectively. Since lifts are continuous, there exist open

neighborhoods V1 and V2 mapped into Ũ1 and Ũ2 by f̃1 and f̃2, respectively. Let V

be the intersection of these two neighborhoods, so that f̃1(V ) ⊆ Ũ1 and f̃2(V ) ⊆ Ũ2.

If f̃1(y) 6= f̃2(y), then Ũ1 6= Ũ2, which means that these two sheets must actually

be disjoint. Therefore f̃1 6= f̃2 on all of the open neighborhood V ; so the set of
points on which these lifts disagree is open in Y (since it is the union of these open
neighborhoods V ).

If f̃1(y) = f̃2(y), then we must have Ũ1 = Ũ2. Since p is injective on this sheet

and p ◦ f̃1 = p ◦ f̃2, it must be the case that f̃1 = f̃2 on all of V . Thus the set of
points on which these lifts agree must also be open in Y , being the union of these
open neighborhoods V .

To finish the proof, note that the set of points in Y on which f̃1 6= f̃2 is the
complement of the set of points on which f̃1 = f̃2. Therefore the set of points on
which f̃1 = f̃2 is both closed and open in Y . Since Y is connected, the only such
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sets are the empty set and Y itself. Thus, if f̃1 and f̃2 agree at one point, they
must agree on all of Y . �

To conclude the section, we introduce the definition of an isomorphism between
covering spaces, which is a homeomorphism which preserves covering space struc-
ture. This important concept plays a central role in the last section of this pa-
per, which constructs a one-to-one correspondence between isomorphism classes of
(pointed) path-connected covering spaces and subgroups of the fundamental group.

Definition 4.8. Let X be a space, and let p1 : X̃1 → X and p2 : X̃2 → X

be covering spaces of X. A homeomorphism φ : X̃1 → X̃2 is an isomorphism if
p1 = p2 ◦ φ. Since φ is necessarily invertible, this means that also p2 = p1 ◦ φ−1.
Thus the following diagram commutes.

X̃2X̃1

X

p2

��

p1

��

φ //

An isomorphism between covering spaces, then, takes fibers to fibers, sheets
to sheets, and so on. It is straightforward to show that isomorphism defines an
equivalence relation on the set of all covering spaces of a given space. A based
isomorphism is an isomorphism that is also a based map between covering spaces.
This concept will come up in the next section.

5. Covering Spaces and the Fundamental Group

In this section, we will be dealing exclusively with path-connected and locally-
path connected spaces (and covering spaces). The correspondence between iso-

morphism classes of covering spaces (X̃, x̃0) and subgroups of the fundamental
group π1(X,x0) is achieved by constructing a map associating the covering space

p : (X̃, x̃0)→ (X,x0) with the subgroup p∗(π1(X̃, x̃0)) ≤ π1(X,x0). We then prove
that this map is one-to-one (up to isomorphism) and surjective. For now, we turn
to the question of surjectivity. A first step in this direction is to ask when there is a

path-connected covering space p : X̃ → X whose fundamental group is mapped to
the trivial subgroup 0 by p∗. Since p∗ is injective by Theorem 4.5, this amounts to

finding a covering space with trivial fundamental group. Since X̃ is by assumption
path-connected, this means we are looking for a simply-connected covering space.
In order for X to have such a covering space, it must have the following property.

Definition 5.1. A space X is semilocally simply-connected if each point x ∈ X is
contained in a neighborhood U such that the inclusion map π1(U, x) ↪→ π1(X,x) is
trivial.

Before we show that this property is sufficient to ensureX has a simply-connected
cover, some discussion on this (somewhat subtle) definition is in order. For the
above inclusion to be trivial means that each loop in U based at x is homotopic
to the constant loop at x through a homotopy in X. It is crucial to note that
π1(U, x) need not itself be trivial. For this to occur, each loop in π1(U, x) must be
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null-homotopic through a homotopy in U . That is, for π1(U, x) to be trivial, we
must deform our loop while remaining within U . But for the inclusion π1(U, x) ↪→
π1(X,x) to be trivial, we allow the homotopy to go outside of U ; each loop must be
null-homotopic in X, rather than in U . Semilocally simply-connected, as the name
would suggest, is thus a weaker notion than locally simply-connected. For such a
technical detail, it is also rather well-named.

We now turn to the construction of a simply-connected cover of a space having
this condition. The proof of it will be the main machinery behind much of the rest
of this section, and is correspondingly rather difficult and long.

Theorem 5.2. Let (X,x0) be path-connected, locally path-connected, and semilo-
cally simply-connected. Then X has a simply-connected covering space.

Proof. We first construct a covering space p : (X̃, x̃0) → (X,x0) whose “points”
are homotopy classes of paths in X starting at x0. Define

X̃ = {[a] | a is a path in X starting at x0},

where we are speaking of homotopy relative to ∂I. Define p : X̃ → X by

p([a]) = a(1).

Since the homotopy classes are relative to ∂I, this is well-defined, since all paths in
the homotopy class [a] have the same endpoints. Also, since X is path-connected, p
is surjective. From here, we have a lot of work to do: we need to define a topology

on X̃ such that p is a covering map, and then we have to show that it is simply-
connected. Our first step will be finding a basis for the (already-existing) topology
on X.

Let U be the set of all path-connected open sets U in X such that the inclusion
π1(U) ↪→ π1(X) is trivial. Since X and U are path-connected, we can neglect to
specify the basepoint of each group, but we do have to assume that they are identical
(otherwise the inclusion map wouldn’t make sense). Clearly, if V ⊆ U is open, the
inclusion π1(V ) ↪→ π1(X) is also trivial. Since X is locally path-connected and
semilocally simply-connected, it follows that for all x ∈ X, there is some U ∈ U
with x ∈ U . Suppose x ∈ U1 ∩ U2, for U1, U2 ∈ U . Clearly, U1 ∩ U2 is an open
neighborhood of x, so that (since X is semilocally simply-connected) there is an
open set V ⊆ U1 ∩ U2 containing x with π1(V ) ↪→ π1(X) is trivial; thus V ∈ U .
Since X is locally path-connected and semilocally simply-connected, any open set
in X can be written as the union of sets in U , so that U is a basis for the topology
on X.

For a set U ∈ U and a path a in X from x0 to a point in U , define

U[a] = {[a · b] | b is a path in U with b(0) = a(1)}
where we are speaking of a homotopy in X relative to ∂I. That is, we pick a path
a from x0 to some point in U , and then we take the product of this path with every

path b in U that starts at a(1). Recalling that X̃ consists of homotopy classes of

paths in X starting at x0, we see that U[a] is a subset of X̃. We show the collection

of all such U[a] is a basis for a topology on X̃.
We first show that if [a′] ∈ U[a], then U[a] = U[a′]. If [a′] ∈ U[a], then [a′] = [a · b]

for some path b in U with b(0) = a(1). Then elements of U[a′] are of the form
[a · b · b′] for some path b′ in U with b′(0) = (a · b)(1). But then b · b′ is a path in
U with (b · b′)(0) = a(1), so that [a · b · b′] ∈ U[a]. Thus U[a′] ⊆ U[a]. Conversely,
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elements of U[a] are of the form [a · b′] = [a · b · b−1 · b′] for some path b′ in U with
b′(0) = a(1), and where b is as defined earlier in this paragraph. But this element
is thus equal to [a′ · b−1 · b′] and is therefore contained in U[a′], so U[a] ⊆ U[a′]. Thus
U[a] = U[a′].

Now, every element of X̃ is contained in some U[a], since X is path-connected
and locally path-connected. Next, suppose some [b] is contained in the intersection
U[a] ∩ V[a′] for some U, V ∈ U . Then by the preceding paragraphs, U[b] = U[a] and
V[b] = V[a′]. Since U is a basis for the topology on X, we can choose W ∈ U with
W ⊆ U ∩ V . Clearly W[b] ⊆ U[b] ∩ V[b]; thus we have W[b] ⊆ U[a] ∩ V[a′]. Since

[b] ∈ W[b], it follows that the set of all such U[a] is a basis for a topology on X̃,
namely the collection of all possible unions of the basis elements.

Having successfully defined a topology on X̃, we now prove that it is a covering
space. Note that p : U[a] → U is surjective, since U is path-connected; for x ∈ U ,
we can choose a path b in U from a(1) to x, so that ab is mapped to x by p. Now
suppose we have paths b, b′ from a(1) to some point x ∈ U , with p([a·b]) = p([a·b′]).
Since the inclusion π1(U, a(1)) ↪→ π1(X, a(1)) is trivial, all paths that connect a(1)
to the fixed point x ∈ U are homotopic in X; thus [b] = [b′], so [a · b] = [a · b′] and
therefore p is injective on this basis element.

To prove that p is a covering map, note that the image under p of any basis

element U[a] for X̃ is U ∈ U , and that the preimage p−1(U) is the union U[a] for
all paths a from x0 to a point in U . Thus, the image and the inverse image of
open sets are again open, in the respective topologies, so p is continuous and thus
a local homeomorphism. Note also that the preimage p−1(U) is the disjoint union
∪aU[a]; if for some a, a′, the sets U[a]∩U[a′] contained some [b], then we would have

U[a] = U[b] = U[a′] by earlier reasoning. Thus X̃ is indeed a covering space of X.

It remains to show that X̃ is simply-connected. To show that it is path-connected,
let a be any path in X starting at x0, and define at : I → X by

at(s) =

{
a(s) 0 ≤ s ≤ t
a(t) t ≤ s ≤ 1.

That is, at traces out a on the interval [0, t] and is constant at a(t) on [t, 1]. Consider
the function fa defined by t 7→ [at]. We claim this is a path from [cx0

] to [a]; we need
only show that it is continuous. For t ∈ I, let U[at] be a basis element containing
fa(t) = [at]. Note that the composition p ◦ fa maps t to at(1), which says exactly
that p◦fa = a. If we restrict the domain of p to U[a], then we have the well-defined

inverse p|−1U[a]
: U → U[a] and can then write fa = p|−1U[a]

◦ a, so that fa is continuous

at t ∈ I for all such t. Therefore the function fa is a path in X̃ starting at [cx0 ]
and ending at [a]. Since a was an arbitrary path in X beginning at x0, [a] is an

arbitrary point in X̃. We can thus construct a path in X̃ beginning at [cx0
] and

ending at any point, so X̃ is path-connected.

We define the basepoint x̃0 of X̃ to be [cx0 ], which is clearly mapped into x0
under p, and now show that π1(X̃, x̃0) is trivial. Since p∗ is injective, it is enough

to show that p∗(π1(X̃, x̃0)) = 0. Recall from Theorem 4.5 that the image of a

homotopy class of loops in X̃ at x̃0 is a homotopy class [a] of loops a in X at x0
that lift to loops in X̃ at x̃0. By the unique path lifting property, a lifts uniquely
to the path defined by t 7→ [at]. For this path to be a loop at x̃0 = [cx0

] means that
[a1] = [a0] = [cx0

]. But by construction, a1 = a, so we have [a] = [cx0
]. Thus [a],
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which is the image under p∗ of an arbitrary element of π1(X̃, x̃0), is the constant

homotopy class. Therefore p∗(π1(X̃, x̃0)) is trivial and X̃ is simply-connected, and
we are done. �

So if X has the necessary properties, it has a simply-connected covering space. In
practice, most spaces dealt with by algebraic topologists have these properties, and
so they are not all that restrictive. This construction will be used in the following
theorem to prove that our candidate for a one-to-one correspondence is surjective.

Theorem 5.3. Let (X,x0) be path-connected, locally path-connected, and semilo-
cally simply-connected. Then for every subgroup H ≤ π1(X,x0), there exists a path-

connected covering space pH : (X̃H , x̃0)→ (X,x0) such that p∗(π1(X̃H , x̃0)) = H.

Proof. Let X̃ be the simply-connected covering space constructed in Theorem 5.2.

For [a], [a′] ∈ X̃, define a relation ∼ on X̃ by

[a] ∼ [a′] if and only if a(1) = a′(1) and [a · a′−1] ∈ H.

So we are identifying elements [a] and [a′] if and only if 1) a path (thus all paths) in
one of these classes has the same endpoint as a path (thus all paths) in the second,
so that a · a′−1 is a loop, and 2) this loop is contained in a homotopy class of the
subgroup H. We claim that this is an equivalence relation.

Reflexive. Clearly [a] ∼ [a], since [a ·a−1] = [cx0
] is in H because H is a subgroup

(and hence must contain identity).
Symmetric. If [a] ∼ [a′], then we already have a′(1) = a(1) and [a · a′−1] ∈ H.

Since H is closed under inverses, [a′ · a−1] = [a · a′−1]−1 ∈ H, and so [a′] ∼ [a].
Transitive. Suppose [a] ∼ [a′] and [a′] ∼ [a′′]. Then a(1) = a′(1) = a′′(1).

Also, we have [a · a′−1] ∈ H and [a′ · a′′−1] ∈ H. Thus, since H is closed under
multiplication, [a · a′′−1] = [a · (a′−1 · a′) · a′′−1] = [a · a′−1] · [a′ · a′′−1] ∈ H. Thus
∼ is an equivalence relation.

Define X̃H to be the quotient space of X̃ obtained by identifying [a], [a′] ∈ X̃ if
[a] ∼ [a′]. If for paths a, a′ in X we have a(1) = a′(1), then [a] ∼ [a′] if and only
if [a · b] ∼ [a′ · b] for any path b in X with b(0) = a(1) = a′(1). This is because
[a · b · (a′ · b)−1] = [a · b · b−1 ·a′−1] = [a ·a′−1]. Recall the basis neighborhoods U[a] of

X̃ from Theorem 5.2. From this reasoning, it follows that if a point in one of these
basis neighborhoods is identified with a point in another basis neighborhood, then
these entire neighborhoods are actually identified, by construction. In this manner,
the quotient map sending [a] to its equivalence class under ∼ gives us the quotient

topology on X̃H .
The covering map pH is just the extension of the covering map p of the simply-

connected cover p : X̃ → X, defined by p([a]) = a(1), to equivalence classes under

∼. This is well-defined on X̃H since [a] ∼ [a′] only if a(1) = a′(1), so it sends
members of the same equivalence class under ∼ to the same point in X. Because
of the properties of the quotient topology discussed above, it follows that p−1H (U)

is the disjoint union of open sets in X̃H . Thus X̃H is a covering space of X with
covering map pH .

To show that it is path-connected, recall from Theorem 5.2 the path fa in X̃

defined by t 7→ [at], which defines a path in X̃H by sending t to the equivalence
class of [at] under ∼. It is continuous by the prior remarks on the quotient topology,



22 CHRISTOPHER STITH

and clearly starts at the equivalence class of [cx0
] and ends at the equivalence class

of [a]. Thus X̃H is path-connected.

Define x̃0 ∈ X̃H to be the equivalence class of [cx0
] under ∼, and let a ∈

pH∗(π1(X̃H , x̃0)). By Theorem 4.5, a is a loop at x0 whose lift to X̃H starting

at x̃0 is a loop at x̃0. A path in X̃H (defined by t 7→ [at]) is a loop at x̃0 if and only
if [a] ∼ [cx0 ], which is the case exactly when a(1) = cx0(1) = x0 and a·c−1x0

= a ∈ H.

Therefore a ∈ pH∗(π1(X̃H , x̃0)) if and only if a ∈ H, so that pH∗(π1(X̃H , x̃0)) = H
and we are done. �

Having completed the surjectivity argument, we now turn to the question of
injectivity up to isomorphism.

Theorem 5.4. Let X be path-connected and locally path-connected, with path-

connected covering spaces p1 : (X̃1, x̃1) → (X,x0) and p2 : (X̃2, x̃2) → (X,x0).
Then these covering spaces are isomorphic through a based isomorphism if and only

if p1∗(π1(X̃1, x̃1)) = p2∗(π1(X̃2, x̃2)).

Proof. First suppose φ : (X̃1, x̃1)→ (X̃2, x̃2) is a based covering space isomorphism.
Then we have

p1 = p2 ◦ φ, p2 = p1 ◦ φ−1, φ(x̃1) = x̃2, and φ−1(x̃2) = x̃1.

Let a ∈ p1∗(π1(X̃1, x̃1)), so that a = p1 ◦ α = p2 ◦ φ ◦ α for some loop α in

X̃1 based at x̃1. But φ ◦ α is a loop based at x̃2, so a ∈ p2∗(π1(X̃2, x̃2)). Thus

p1∗(π1(X̃1, x̃1)) ≤ p2∗(π1(X̃2, x̃2)). By an analogous argument, we can derive the

reverse inclusion as well, so that p1∗(π1(X̃1, x̃1)) = p2∗(π1(X̃2, x̃2)).

Conversely, suppose p1∗(π1(X̃1, x̃1)) = p2∗(π1(X̃2, x̃2)). By the lifting criterion,

there exists a lift p̃1 : X̃1 → X̃2 of p1, and by the unique lifting property we can
choose this lift so that it is a based map, i.e. p̃1(x̃1) = x̃2. Similarly, there is a

based lift p̃2 : X̃2 → X̃1 of p2. In summary, then, we have

p1 = p2 ◦ p̃1, p2 = p1 ◦ p̃2, p̃1(x̃1) = x̃2, and p̃2(x̃2) = x̃1.

We thus have p1 = p1 ◦ (p̃2 ◦ p̃1). In a somewhat odd covering scenario (X̃1 is
both the “independent” space mapping into X, and a covering space), we see then
that (p̃2 ◦ p̃1) is a lift of p1 with respect to the covering map p1. Clearly, however,
the identity map idX̃1

is a lift of p1 with respect to p1. Since (p̃2 ◦ p̃1) fixes the
basepoint x̃1, by the unique lifting property this lift must be the identity map. By
an analogous argument, we also have (p̃1 ◦ p̃2) = idX̃2

. Since lifts are continuous
by definition, it follows that p̃1, p̃2 are inverse homeomorphisms which preserve
covering space structure; they are therefore based covering space isomorphisms.
This completes the proof. �

By now, the main result is all but proven. We have already done all the work;
the previous two theorems more or less complete the proof on their own. We will,
however, write an explicit proof here to tie up all loose ends and give a rigorous
completion to this paper.

Theorem 5.5. Let (X,x0) be a path-connected, locally path-connected, and semilo-
cally simply-connected space. Then there is a one-to-one correspondence between the

set of all based isomorphism classes of path-connected covering spaces p : (X̃, x̃0)→
(X,x0) and the set of all subgroups of π1(X,x0).
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Proof. We start with an agonizing amount of notational bookkeeping. Let C denote
the set of all based isomorphism classes of (pointed) path-connected covering spaces
of X (we assume that the basepoint of each covering space under consideration
is in the fiber of x0, the basepoint of X). For a path-connected covering space

p : (X̃, x̃0) → (X,x0), let [X̃] denote its based isomorphism class. Thus elements

in C are of the form [X̃]. Let H denote the set of all subgroups of π1(X,x0).
Define a map ψ : C →H by

ψ([X̃]) = p∗(π1(X̃, x̃0))

for some (X̃, x̃0) ∈ [X̃]. By Theorem 5.4, this map is both well-defined and injective.
By Theorem 5.3, it is surjective. The map ψ is therefore a bijection, and thus gives
a one-to-one correspondence between C and H . �
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