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joseph redeker

ABSTRACT. Our goal in this paper is to introduce Lie groups and their corre-
sponding Lie algebras, and to give some examples. We begin by providing some
background definitions and concepts, then we will define matrix groups and their
topologies. Once we have done that we will be able to introduce matrix Lie groups.
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1. Preliminary Discussion

Before we begin our discussion on matrix groups, we must go through some basic
definitions and provide context for the rest of the paper.

Definition 1.1. Let A be an n × n matrix with elements in the field F. From
this point forward we will denote the set of all n × n matrix with elements in the
field F as Mn(F). Let Xr and Xc denote X as a row or column matrix and define
RA : Fn → Fn and LA : Fn → Fn as,

RA(X) = Xr ·A and LA(X) = A ·Xc

It follows that both RA and LA are linear for A ∈Mn(F), and any linear function
f : Fn → Fn is equivalent to RA for some A ∈Mn(F).

Definition 1.2. Let V be a vector space and define a norm as a function f : V → R
such that for all a ∈ F and all u, v ∈ V ,

(1) f(a · v) = |a| · f(v)
(2) f(u+ v) ≤ f(u) + f(v)
(3) If f(v) = 0 then v is the zero vector

A norm that we are most familiar with is the Euclidean norm which takes the
form,

‖v‖ :=
√
〈v, v〉

where 〈v, v〉 =
∑n
i=1 v

2
i if v ∈ Rn and 〈v, v〉 =

∑n
i=1 vi · vi if v ∈ Cn

However, in this paper we will discuss the operator norm as well. It is some-
times called the matrix norm, and for some matrix A ∈Mn(F), the operator norm
of A is defined as,
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‖A‖ := inf{c ≥ 0 : ‖Av‖ ≤ c‖v‖ for all v ∈ Fn}

2. Groups

We are interested in studying Mn(F), where F = R or C. For example, Mn(F)
will denote all n×n matrices with entries in either R or C. Though Mn(F) does not
form a group under multiplication, the subset of invertible matrices does. Below
we will study this group further.

Definition 2.1. The general linear group is the group of invertible matrices
with entries in F. Formally we write this as,

GLn(F) := {A ∈Mn(F) | ∃A−1 ∈Mn(F) such that A ·A−1 = A−1 ·A = I}
The general linear group is typically denoted as GLn(F). This group also has

some interesting subgroups which we call matrix groups.

Definition 2.2. U is called a matrix group if it is a subgroup of GLn(F).

Definition 2.3. The orthogonal group is a matrix group that preserves inner
products on Fn. To be clear,

On(F) := {A ∈ GLn(F) | 〈RA(X), RA(Y )〉 = 〈X,Y 〉 for all X,Y ∈ Fn}

Notation differs depending on the field. The orthogonal groups that will be useful
to us in this paper will be over the real or complex fields, called the orthogonal
group and the unitary group, denoted O(n) and U(n) respectively.

Recall that two vectors X,Y ∈ Fn are said to be orthogonal if 〈X,Y 〉 = 0. It
is a basic result that a matrix A is orthogonal if its columns are orthogonal and
unit length.

Proposition 2.4. If A ∈ O(n), then having A∗ denote the Hermitian transpose,
A ·A∗ = I.

Proof. Let vi ∈ Fn and have

A =
(
v1 · · · vn

)
Then the ijth component of A · A∗ is 〈vi, vj〉. Since the columns and rows are
orthogonal then 〈vi, vj〉 = 0 for all i 6= j. When i = j, then 〈vi, vj〉 = 1 using the
fact that all the columns and rows are unit length. This shows that A ·A∗ = I. �

Keep in mind that in the argument above our definition of the inner product
changes if we are dealing real or complex numbers. However, the argument will
work in both cases.

Matrices that are members of the orthogonal group are important in a number
of ways, but before we discuss these we define an isometry. Given the Euclidean
norm, distance between two vectors is given by the norm of the difference between
those vectors. An isometry is a function f : Rn → Rn that preserves distance. In
other words, if A is the matrix of f , then

‖RA(X)−RA(Y )‖ = ‖X − Y ‖
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Proposition 2.5. If A ∈ On(F), then RA : Fn → Fn is an isometry.

Proof. Note,

‖RA(X)−RA(Y )‖ = ‖RA(X − Y )‖ =
√
〈RA(X − Y ), RA(X − Y )〉

Since A ∈ On(F),

√
〈RA(X − Y ), RA(X − Y )〉 =

√
〈(X − Y ), (X − Y )〉 = ‖X − Y ‖

�

Proposition 2.6. If A ∈ O(n) then |det(A)| = 1.

Proof. To begin, first note that

det(A) = det(A)

since the determinant is a polynomial of the entries in A. Then this implies

det(A∗) = det(A
T

) = det(A) = det(A)

using the fact that AT is the determinant of A. From this, we can conclude that

1 = det(I) = det(A ·A∗) = det(A) · det(A∗) = det(A) · det(A) = |det(A)|

�

Definition 2.7. The special orthogonal group is denoted SO(n) and defined
as,

SO(n) := {A ∈ O(n) |det(A) = 1}

Definition 2.8. The special unitary group is denoted SU(n) and defined as,

SU(n) := {A ∈ U(n) |det(A) = 1}

We mention isometries earlier because one common group of isometries that
will be seen throughout this paper is O(n). This group is typically thought of
as the group of distance preserving transformations in a Euclidean space and its
subgroup SO(n) has incredible applicability in physics. SO(n) is generally called
the rotational group as its elements correspond to a rotation around a point or line
(in 2 or 3 dimensions respectively).

3. Topology of Matrix Lie Groups

To begin the discussion of matrix Lie groups, we must build a background for
uncovering the topology of the groups mentioned above. We are interested in the
topology of these groups because we will arrive at a convenient way to define a
matrix Lie group which relies on subgroups of GLn(F) to be closed. This provides
a simple test whether a group is a matrix Lie group. In order to begin our discussion
on the topology of these groups we must first define a bijection between Mn(R) and

Rn
2

. We create this bijection by a simple mapping of the elements in the matrix

to a component an n2− tuple vector in Rn
2

, and we will denote this bijection as σ.
For example, if we have a matrix
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A =

(
a b
c d

)
then σ(A) = (a, b, c, d). For the real case, the first n elements of our n-tuple is the
first row of our matrix. The next n elements being the second row and so on for
all n rows giving us our n2-tuple. Now we can define a similar bijection between

Mn(C) and R2n2

. If we look at a complex matrix A ∈M2(C),

A =

(
a+ bi c+ di
e+ fi g + hi

)
then the bijection will be σ(A) = (a, b, c, d, e, f, g, h). In the complex case, the
first 2n elements of the 2n-tuple are the real parts and the real coefficients of the
elements in the first row of our matrix, and so on for all of the rows giving us the
components of our 2n2-tuple.

From there we can finally discuss what it means for Mn(R) to have topology by
considering each element of the n × n matrix as an element in an n2-tuple which
defines a point in the Euclidean space of n2 dimensions (similarly for Mn(C). By
looking at this set of points in Euclidean space, we can determine what it means for
a subset of Mn(F) to be open or closed. However, we must first define what it means
to be open and closed, and how that applies to continuity and path connectedness.
By considering our bijection σ, all of this discussion corresponds nicely to matrices.
At that point, we can define what it means for a group to be a matrix Lie group.

Definition 3.1. For some x ∈ Rn and r > 0, let B(x, r) be defined as,

B(x, r) := {y ∈ Rn | |x− y| < r}

This “ball” around x is useful to understand the topology of sets containing x,
as you will see in the next definition.

Definition 3.2. Let U ⊂ Rn. U is called open if for every x ∈ U , there is an
r > 0 such that for all y ∈ B(x, r) then y ∈ U . Conversely, a set U is called closed
if R\U , which is commonly called the complement of U , is open (denoted UC).

In fact, it is actually possible for a set to be both open and closed. These types
of sets are called clopen. Some examples of clopen sets would be the empty set
and the entire space. The fundamental property of open and closed sets is that the
finite intersection of closed sets is closed, and the union of arbitrarily many open
sets is open.

Definition 3.3. Let U ⊂ Rn and V ⊂ Rm. A function f : U → V is said to be
continuous if for any open set O ⊂ V then the preimage of O, f−1(O), is also
open.

This definition is equivalent to the ε−δ definition that we see in Euclidean space.

Definition 3.4. Let U ⊂ Rn. U is said to be path connected if for ever pair
of elements x, y ∈ U there exists a continuous function f : [0, 1] → U such that
f(0) = x and f(1) = y.

To put it simply, if U is path connected, then it is not made up of separate parts.
Now that we have discussed the preliminaries, we are able to prove that some of
our previous examples are matrix groups.
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Proposition 3.5. SLn(F),O(n), SO(n), and SU(n) are all examples of matrix
groups.

Proof. To show SLn(F) is a matrix group we must prove that it contains the identity
element, is closed under multiplication, and that the inverse of every element is also
in the group.

det(I) = 1

So the identity is contained in SLn(F). Now assume A,B ∈ SLn(F) and consider
the determinant of their product,

det(AB) = det(A)det(B) = 1 · 1 = 1

Hence SLn(F) is closed under multiplication. Finally,

1 = det(I) = det(AA−1) = det(A)det(A−1) = 1 · det(A−1)

Therefore, det(A−1) = 1 and so A−1 ∈ SLn(F) as required.

Now we will show O(n) is a matrix group. Clearly, the identity is in O(n). So
consider the complex conjugate of the product of two elements A,B ∈ O(n),

(AB)∗ = B∗A∗

which means,

AB(AB)∗ = ABB∗A∗ = AIA∗ = AA∗ = I

Hence AB ∈ O(n). By definition of orthogonal matrices, if A ∈ O(n) then so must
A−1 = A∗. Both SO(n) and SU(n) follow directly from these first two cases. �

In fact, these matrix groups are actually what are called matrix Lie groups.
Before we fully understand what that means, we will define a Lie group, albeit
roughly.

Definition 3.6. A Lie group G is a group that is a smooth manifold with the
criterion that the group operation G × G → G and the inverse map g → g−1 are
differentiable.

Intuitively, a smooth manifold is a space M that locally resembles Euclidean
space and is regular enough for us to be able to define the concept of smooth
functions on M . We will not describe them rigorously here. They require thorough
consideration which will take away from the purpose and aim of this paper. We
state this definition for completion because we cannot define a matrix Lie group
without first providing the formal definition of a Lie group. However, we will not
go into that discussion further. What matters is that the following definition of
a matrix Lie group rests on a criterion, specifically closedness, to define what a
matrix Lie group is. We will assume this criterion is sufficient to show the stated
matrix groups are Lie groups.

Definition 3.7. A matrix Lie group is any subgroup G of GLn(C) such that

the corresponding subset of Rn
2

or R2n2

is closed.

Proposition 3.8. SLn(F),O(n), SO(n), and SU(n) are all examples of matrix Lie
groups.
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Proof. We have already shown that these are all subgroups. What remains to be
shown is that they are closed. First we will show that O(n) is a matrix Lie group.
Let A ∈Mn(F) and construct a function f : Mn(F)→ F such that,

f(A) := A ·A∗

It is clear to see that this function will be continuous since each f(A)ij is just a
polynomial in terms of the entries of A, all of which are members of F. Now if we
consider the identity element, {I} which is a closed subset of Mn(F), then we know
that f−1(A) must also be closed. Here we used the basic fact that if a function is
continuous, then for any closed subset of the codomain, the preimage of the subset
is also closed. However, note that

f−1(I) = O(n)

Therefore O(n) is a matrix Lie group.

Now we must show that SLn(F) is a matrix Lie group and the other two will
follow directly. Consider the determinant function, det : Mn(F) → R. Again,
this function is continuous since the determinant function is merely the sums and
products of entries in A. Now note that the set {1} ⊂ R is closed, implying that
det−1(1) is also closed, but

det−1(1) = SLn(F)

and so SLn(F) is a matrix group.

We conclude the proof by noting

SU(n) = U(n) ∩ SLn(F)

and

SO(n) = O(n) ∩ SLn(F)

Since the intersection of closed sets is closed, then both SU(n) and SO(n) are
closed. �

4. Lie Algebras and The Matrix Exponential

Definition 4.1. If G ⊂ Rn and x ∈ G, then the tangent space of G at the point
x is

TxG := {f ′(0) | f : I → G is differentiable with f(0) = x}

Now that we have defined the tangent space, understanding a Lie Algebra is
straight forward.

Definition 4.2. The Lie algebra of a matrix Lie group G is the tangent space at
I and is commonly written as g = TIG.

It is important to note here that our matrix group is being viewed as a subset

of Rn
2

or R2n2

and this is why we can apply this definition to discuss matrix Lie
groups in regard to this definition.

Proposition 4.3. The Lie algebra g of the matrix Lie group G is a real subspace
of Mn(F).
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Proof. To prove the Lie algebra g of the matrix Lie group G to be a real subspace
of Mn(F), we must show that g is closed under addition and scalar multiplication.
Begin by defining λ ∈ R and A ∈ g. There is a path f : (−ε, ε)→ G defined as f(t)
such that f(0) = I and f ′(0) = A. Now we can consider an alternative path

h(t) = f(λt)

In this case, h(0) = I and h′(0) = λ · A which shows that λ · A ∈ g. Now let
A,B ∈Mn(F) then there are paths f(t) and h(t) such that f(0) = I and h(0) = I
with f ′(0) = A and h′(0) = B. Now consider a path

p(t) = f(t) · h(t)

This means that p(0) = I and by the product rule,

p′(0) = f ′(0) + h′(0)

Therefore, p′(0) = A + B, implying A + B ∈ g and this shows that g is a real
subspace of Mn(F).

Proposition 4.4. gln(F) = Mn(F), where gln(F) is the Lie algebra of Gln(F)

Proof. Let A ∈Mn(F) and consider the path f : (−ε, ε)→ Gln(F) such that

f = I + tA

This satisfies f(0) = I and f ′(0) = A. Note that the det(f(0)) = 1, which is non-
zero. Using the fact that the determinant function is continuous, we can choose ε
small enough so we can be certain that our determinant on our path is sufficiently
close to one, i.e. non-zero, over the whole domain. This implies that A ∈ gln(F)
and since A was an arbitrary matrix in Mn(F) then gln(F) = Mn(F). �

Proposition 4.5. The Lie algebra of On(F) is,

on(F) := {A ∈Mn(F) |A+A∗ = 0}

We do not quite have the definitions and background to tackle this proposition
since it requires a different technique than the one used in the last proof. However,
we will come back to this proposition later in this section.

Definition 4.6. Let A ∈Mn(F). Then the exponential of A is given by the power
series,

eA := I +A+ (1/2!)A2 + (1/3!)A3 + . . . (1)

Proposition 4.7. For any A ∈ Mn(F), equation (1) converges to some matrix
B ∈Mn(F).

Proof. In this proof we will use the basic fact that for matrices A,B ∈Mn(F),

‖AB‖ ≤ ‖A‖‖B‖
It is important to notice that we are using the operator norm that is defined above.
From this we conclude that

‖An‖ ≤ ‖A‖n

Now,
∞∑
n=1

‖A
m

m!
‖ ≤

∞∑
n=1

‖A‖n

n!
= e‖A‖
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Since the norm of any n×n matrix is bounded, then we can conclude that the sum
will converge absolutely for all A ∈Mn(F) which implies it will converge. �

The exponential map proves useful in a number of ways, it defines a map f :
Mn(F) → GLn(F) with f(0) = I and f ′(0) = A. We can use this mapping to
determine the properties of Lie algebras of a group, and it has important algebraic
properties that we can take advantage of when solving problems. Here are some
examples.

Proposition 4.8. (Proposition 2.3) [1] If A,B ∈Mn(F) then,
(1) eA has an inverse, (eA)−1 = e−A

(2) for α, β ∈ F then e(α+β)A = eαAeβA

(3) If A and B commute, then eA+B = eAeB = eBeA

(4) ‖eA‖ ≤ e‖A‖

(5) If B is an invertible matrix, then eBAB
−1

= BeAB−1

(6) (eX)∗ = eX
∗

The exponential map has even more use than having important algebraic prop-
erties. In fact, we can provide an alternative but equivalent definition for a Lie
algebra which involves the exponential. The definition provided at the beginning
of the section is more intuitive in regards to the topology of the Lie algebra, while
this equivalent definition will show the connection that the Lie algebra has with its
corresponding matrix Lie group.

Proposition 4.9. If G is a matrix Lie group, then the Lie algebra of G, denoted
g, is the set of all matrices A such that etA is in G for all real numbers t.

Note: Even if G is a group on C, we do not require that t be complex, only real.
In fact, we can define an exponential mapping,

exp : g→ G

However, this mapping is generally neither injective nor surjective. Nonetheless it
is incredibly useful for passing information between the Lie algebra and the matrix
Lie group. This is an equivalent definition as the one provided earlier for the
Lie algebra, but the equivalence will not be proven here in this paper. However,
for those interested in the proof, it can be found in Tapp’s Matrix Groups for
Undergraduates [2] under theorem 7.1.

Proposition 4.10.

det(eA) = eTr(A)

Here we let Tr(A) represent trace(A).

Proof. For this proof, we will assume the following lemma.

If f : (−ε, ε)→Mn(F) is differentiable with f(0) = I, then

d

dt

∣∣∣∣
t=0

det(f(t)) = trace(f ′(t))



9

The proof of the Lemma will be omitted, but the proof of it can be found in [4]
(Lemma 5.10). Let f(t) = det(etA). Then,

f ′(t) = lim
h→0

det(e(t+h)A)− det(etA)

h

= lim
h→0

det(etAehA)− det(etA)

h

= lim
h→0

det(etA)det(ehA)− det(etA)

h

= det(etA) lim
h→0

det(ehA)− 1

h

= f(t)
d

dt

∣∣∣∣
t=0

det(etA)

and since,
d

dt

∣∣∣∣
t=0

(etA) = A

then by the lemma,

f ′(t) = f(t) · Tr

(
d

dt

∣∣∣∣
t=0

etA
)

All that remains to be shown is that d
dt

∣∣∣∣
t=0

etA = A. This can be seen by differen-

tiating each term of the power series and evaluating at t = 0. Therefore,

f ′(t) = f(t) · Tr(A)

and the solution to this differential equation is of the form f(t) = et·Tr(A). Plugging
in t = 1 we see,

det(eA) = eTr(A)

�

Proposition 4.11. The Lie algebra of SLn(F) is,

sln(F) := {A ∈Mn(F) |Tr(A) = 0}

Proof. Using the above fact that,

det(etA) = et·Tr(A)

then Tr(A) = 0 implies det(eA) = 1. Conversely, if the det(etA) = 1 for all t then

det(etA) = 1 = et·Tr(A)

Hence t · Tr(A) = 2πi · k for all t and for some integer k. This can only be true if
Tr(A) = 0. Therefore,

sln(F) := {A ∈Mn(F) |Tr(A) = 0}

�

Proposition 4.12. The Lie algebra of U(n) is,

u(n) := {A ∈Mn(C) |A+A∗ = 0}
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Proof. A matrix A is unitary if and only if A∗ = A−1. Therefore etA is unitary if
and only if

(etA)∗ = (etA)−1 = (e−tA)

and by proposition 4.8,

(etA)∗ = (etA
∗
)

Since this must hold for all t, we see by differentiating and evaluating at t = 0 that
−A = A∗ is necessary. So etA is unitary if and only if −A = A∗. This gives the
equality

u(n) := {A ∈Mn(C) |A+A∗ = 0}
�

Proposition 4.13. The Lie algebra of SU(n) is,

su(n) := {A ∈Mn(C) |A+A∗ = 0 and Tr(A) = 0}

Proof. By Proposition 4.9, the Lie algebra of SU(n) is all matrices A such that
etA ∈ SU(n). Now, since SU(n)= SLn(C)∩U(n) then the Lie algebra will be given
by all matrices A such that etA ∈ SLn(C) ∩ U(n). Then clearly, the Lie algebra
must be u(n) ∩ sln(C) which is

{A ∈Mn(C) |A+A∗ = 0 and Tr(A) = 0}

�

Proposition 4.14. The Lie algebra of O(n) is,

o(n) := {A ∈Mn(C) |A+AT = 0}

Proof. A matrix A is orthogonal if and only if AT = A−1. By the same reasoning

as the prior proof, this implies that for etA to be in o(n) then (e−tA
T

) = (etA
−1

).
Therefore,

o(n) := {A ∈Mn(C) |A+AT = 0}
�

Here we actually found the Lie algebra of SO(n) as well since the identity com-
ponent of O(n) is SO(n). Therefore, o(n) = so(n).

Example 4.15. Using the fact that

su(n) := {A ∈Mn(C) |A+A∗ = 0 and trace(A) = 0}

we can see that su(2) is the set of all matrices A such that Tr(A) = 0 and −A = A∗

2× 2 matrices. To be clear,

su(n) :=

{(
ia −b
b −ia

)
: a ∈ R, b ∈ C

}
One can check that it is spanned by the three matrices,

σ1 =

(
0 i
i 0

)
σ2 =

(
0 −1
1 0

)
σ3 =

(
i 0
0 −i

)
These matrices, σ1, σ2, σ3, are generators of the Lie algebra.
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While we have discussed some examples of Lie algebras in some detail, yet we
have not actually shown that it is an algebra. In proposition 4.3, we showed that
the Lie algebra of a matrix Lie group is a real subspace of Mn(F), and therefore
showed that there is a scalar multiplication and an addition operation contained
in the subspace. However, a typical algebra has a multiplication operation as well,
and it turns out matrix multiplication in G will define a certain operation in g. We
call this operation a commutator, and we will formally define it before going into
some of it’s properties. First, we define the conjugation map and the adjoint.

Definition 4.16. Let G be a matrix group. For all g and a ∈ G, the conjugation
map Cg : G→ G is defined as,

Cg(a) = gag−1

Note that since G is a group, then this implies that Cg(a) ∈ G for all g, and a ∈
G. The conjugation map is differentiable and the adjoint is defined as the derivative
of the conjugation map evaluated at the identity. It is typically denoted Adg. To
attain a simpler formula for Adg, recall that any X ∈ g can be written as X = x′(0)
for some differentiable path in G with x(0) = I. Then

Adg(X) = dCg(X)

∣∣∣∣
t=0

=
d

dt

∣∣∣∣
t=0

gx(t)g−1 = gXg−1

You’ll notice that if the elements of G commute with X, then the adjoint map is
the identity map on g. So generally, one can view the adjoint map as a measure of
how much g commutes with elements in G near the identity in the direction of X.

Proposition 4.17. For any g ∈ G and for any X ∈ g, then Adg(X) ∈ g.

Proof. This is clear from the fact that eAdg(X) = egXg
−1

= geXg−1 by proposition
4.8, and since geXg−1 ∈ G then Adg(X) ∈ g. �

Definition 4.18. The Lie Bracket for two vectors X and Y ∈ g is given by,

[X,Y ] =
d

dt

∣∣∣∣
t=0

Adx(t)(Y )

where x(t) is a differentiable path in G such that x(0) = I and x′(0) = X.

It is important to notice that [X,Y ] ∈ g which is seen by the prior proposition.
Since x(t) is a path in G and Y ∈ g then Adx(t)(Y ) ∈ g.

Proposition 4.19. For all X,Y ∈ g,

[X,Y ] = XY − Y X

Before we prove this, we must first prove a simple lemma.

Lemma 4.20. Let x(t) be a differentiable path such that x(0) = I. Then

d

dt

∣∣∣∣
t=0

x−1(t) = −x′(0)

Proof. First note that x(t) · x−1(t) = I. Then by the product rule,

x′(t)x−1(t) + x(t)(x−1)′(t) = 0
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or similarly,

x(t)(x−1)′(t) = −x′(t)x−1(t)

Evaluating at t = 0 gives us the equality,

d

dt

∣∣∣∣
t=0

x−1(t) = −x′(0)

�

Proof (Proposition 4.19). Recall that x(t) is a differentiable path through G such
that x(0) = I and x′(0) = X. Then,

[X,Y ] =
d

dt

∣∣∣∣
t=0

Adx(t)(Y )

=
d

dt

∣∣∣∣
t=0

x(t)Y x−1(t)

by the product rule and the lemma,

d

dt

∣∣∣∣
t=0

x(t)Y x−1(t) = x′(0)Y x−1(0) + x(0)Y (x−1)′(0)

= XY − Y X
�

From this, it is easy to note that [X,Y ] = 0 only when X,Y commute. This
commutativity in the Lie algebra corresponds to how elements in G commute in
the X and Y direction. Using the above fact, we can discuss its properties.

Definition 4.21. Let G be a matrix Lie group, and g be its corresponding Lie
algebra. The Lie bracket of two elements, a, b ∈ g is defined to be their commu-
tator in A. The Lie bracket is a binary operation [·, ·] : g× g→ g and satisfies the
following properties:

(1) For all scalars a, b ∈ F and all x, y, z ∈ g,

[ax+ by, z] = a[x, z] + b[y, z], and [z, ax+ by] = a[z, x] + b[z, y]

(2) For all x ∈ g

[x, x] = 0

(3) For all x, y ∈ g

[x, y] = −[y, x]

(4) For all x, y, z ∈ g the Lie bracket satisfies the Jacobi identity,

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0
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