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Abstract. We define Lie groups and Lie algebras and show how invariant

vector fields on a Lie group form a Lie algebra. We prove that this corre-

spondence respects natural maps and discuss conditions under which it is a
bijection. Finally, we introduce the exponential map and use it to write the

Lie group operation as a function on its Lie algebra.
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1. Introduction

Lie groups provide a mathematical description of many naturally-occuring sym-
metries. Though they take a variety of shapes, Lie groups are closely linked to linear
objects called Lie algebras. In fact, there is a direct correspondence between these
two concepts: simply-connected Lie groups are isomorphic exactly when their Lie
algebras are isomorphic, and every finite-dimensional real or complex Lie algebra
occurs as the Lie algebra of a simply-connected Lie group. To put it another way,
a simply-connected Lie group is completely characterized by the small collection

of scalars that determine its Lie bracket, no more than n2(n−1)
2 numbers for an

n-dimensional Lie group.
In this paper, we introduce the basic Lie group-Lie algebra correspondence. We

first define the concepts of a Lie group and a Lie algebra and demonstrate how a
certain set of functions on a Lie group has a natural Lie algebra structure. We then
construct the exponential map, a local diffeomorphism between a Lie group and
its Lie algebra, by following certain flows on the Lie group. Finally, we explain a
sense in which the exponential map and the Lie algebra together encode the group
operation.

Date: August 2016.
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2. Lie Groups and Lie Algebras

Intuitively, Lie groups are smoothly-varying collections of symmetries. For in-
stance, while the transformations of the plane that map a regular polygon to itself
are discrete, the rotations of a circle can be smoothly parameterized by angle.

Definition 2.1. A Lie group is an algebraic group (G, ?) that is also a smooth
manifold, such that:

(1) the inverse map g 7→ g−1 is a smooth map G→ G.
(2) the group operation (g, h) 7→ g ? h is a smooth map G×G→ G.

Definition 2.2. A Lie group homomorphism is a smooth map between Lie
groups that is a homomorphism of groups. A Lie group isomorphism is a Lie
group homomorphism that is a diffeomorphism.

Perhaps the most familiar Lie groups are the general linear group GLn(R) of
invertible real n×n matrices, and its close relative GL(V ), the set of automorphisms
of a vector space V . Many interesting Lie groups arise as their subgroups.

Proposition 2.3. GLn(R) is a Lie group.

Proof. The collection Mn(R) of n × n real matrices is a vector space isomorphic

to Rn2

, so any linear isomorphism f : Mn(R) → Rn2

gives a smooth structure on
Mn(R) with the global chart (Mn(R), f). We consider GLn(R) as a subset of Mn(R).

The determinant function det : Mn(R) → R is a polynomial in the entries of
a matrix. Under a certain choice of f , these entries correspond to the standard

basis vectors of Rn2

, so the coordinate representation of det is a polynomial on Rn2

.
Therefore, det is continuous. Since GLn(R) = det−1(R\{0}), it follows that GLn(R)
is an open subset of Mn(R), so GLn(R) is an embedded submanifold, inheriting the
smooth structure generated by restricting f to GLn(R).

GLn(R) is an algebraic group under the operation of matrix multiplication.
Cramer’s formula in the given coordinates shows that matrix inversion is a smooth
map GLn(R) → GLn(R). The coordinates on GLn(R) also induce natural coor-
dinates on GLn(R) × GLn(R), with respect to which matrix multiplication is a

polynomial function R2n2 → Rn2

. �

The abstract definition of a Lie algebra, a vector space with an additional
multiplication-like operation, seems unrelated to the concept of a Lie group. For
instance, we can speak of Lie algebras over fields of finite characteristic, over which
there can be no smooth structure.

Definition 2.4. A Lie algebra is a vector space L over a field F with a bilinear
operation L× L→ L, denoted by brackets: (x, y) 7→ [x, y]. The bracket operation
must satisfy:

(1) [x, x] = 0 for all x ∈ L.
(2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L.

Definition 2.5. A Lie algebra homomorphism (isomorphism) is a linear ho-
momorphism (isomorphism) between Lie algebras f : L1 → L2 such that f([x, y]) =
[f(x), f(y)] for all x, y ∈ L1.

When char F 6= 2, bilinearity can be used to show that the condition (1) in
Definition 2.4 is equivalent to antisymmetry, the condition that [x, y] = −[y, x].
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Condition (2) is called the Jacobi identity, and it replaces associativity as a
constraint on triple products.

Example 2.6. The real vector space Mn(R) with the bracket operation given by
the commutator [A,B] = AB−BA is a Lie algebra, denoted gln(R). We will prove
in Section 3 that this is the Lie algebra of GLn(R).

Example 2.7. [2, Section 1.3] Let U be a vector space with a binary operation
(u, v) 7→ u∗v that is bilinear but not necessarily associative. Let D(U) be the set of
linear derivations on U, linear operations π : U → U satisfying the product rule
π(a ∗ b) = a ∗ π(b) + π(a) ∗ b. Then D(U) is a Lie algebra under the commutator
[π, ψ] = π◦ψ−ψ◦π, where ◦ denotes function composition. The verification amounts
to checking that the bracket of two derivations is a derivation. By contrast, the
composition of two derivations is not necessarily a derivation.

Example 2.8. If V is a Lie algebra and f : V →W is a vector space isomorphism,
thenW is a Lie algebra under the bracket operation [w1, w2] = f([f−1(w1), f−1(w2)]).
In this paper, we call the resulting operation on W the induced bracket of f .

3. Invariant Vector Fields

The cooperation of Lie algebras with linear derivations suggests a possible rela-
tionship to the tangent bundle. To define a Lie algebra on a Lie group, we look
at a special class of its vector fields. The proofs in this section follow John Lee [5,
Chapter 8].

In what follows, we take “vector field” to mean “smooth vector field.” For a
vector field V on a smooth manifoldM , we use subscripts for the point of evaluation:
loosely, Vp ∈ TpM , the tangent space to M at p. When V acts on f ∈ C∞(M), we
write the resulting smooth function simply as V f , so V f(g) = [Vg](f).

For a smooth map F : M → N and p ∈ M , let D(F )p : TpM → TF (p)N be the
differential of F at p. Given a vector field X on M , if there exists a vector field
Y on N such that YF (p) = D(F )pXp for all p ∈ M , we write Y = (F )∗X. Such
a Y exists for every X if F is a diffeomorphism [5, Proposition 8.19]. The crucial
vector fields on a Lie group are those for which this operation gives a symmetry.

Definition 3.1. Let (G, ?) be a Lie group and let Lg : G → G be the left mul-
tiplication diffeomorphism h 7→ g ? h. A vector field X is called left-invariant if
(Lg)∗X = X for all g ∈ G.

This condition is very restrictive, so much so that a left-invariant vector field is
uniquely determined by its value at any point in G. Let Lie(G) be the set of all
left-invariant vector fields on a Lie group G and define π to be the evaluation map
V 7→ Ve, where e is the identity of G.

Proposition 3.2. The evaluation map π: Lie(G)→ TeG is a linear isomorphism.

Proof. [5, Proposition 8.37] By definition vector fields add and scale pointwise, so
evaluation at e is linear.

To show that π is surjective, take v ∈ TeG and define the map V that sends g
to D(Lg)ev. We claim that V is a smooth vector field. This is equivalent to the
statement that V f is smooth for all f ∈ C∞(G) [5, Proposition 8.14]. Let γ be a
curve such that γ(0) = e and γ′(0) = v. Then

v(f) = γ′(0)f =

(
D(γ)0

d

dt

∣∣∣∣
t=0

)
f =

d

dt

∣∣∣∣
t=0

f ◦ γ(t).
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For all f ∈ C∞(G) and g ∈ G,

V f(g) = Vg(f) = D(Lg)ev(f) =
d

dt

∣∣∣∣
t=0

f ◦ Lg ◦ γ(t).

Define m to be the multiplication map m(g, h) = g ?h and take n to be the smooth
map G × (−ε, ε) → G × G given by (g, t) 7→ (g, γ(t)). Then f ◦ Lg ◦ γ(t) =
f ◦ m ◦ n(g, t). This is a composition of smooth maps, so its derivative in t is a
smooth function of g. Therefore, V f is a smooth function on G. To see that V is
left-invariant, we compute for any g, h ∈ G:

((Lh)∗V )hg = D(Lh)gVg = D(Lh)g ◦D(Lg)ev = D(Lhg)ev = Vhg.

This shows that (Lh)∗V and V are equal at hg. But hg ranges over G, so these
vector fields are equal. Therefore V is an element of Lie(G) and π(V ) = v.

To prove that π is injective, we show that V as defined above is the only possible
left-invariant vector field evaluating to v at the identity. For if W is any such vector
field, then left invariance implies that

Wg = ((Lg)∗W )g = D(Lg)ev = Vg

for all g ∈ G. Therefore, W = V . �

Given v ∈ TeG, we write π−1(v) as Lv. That is, Lv is the left-invariant vector
field such that Lve = v. Because every tangent space to an n-dimensional manifold
is an n-dimensional real vector space, Proposition 3.2 determines the vector space
structure of Lie(G).

Corollary 3.3. Let G be a Lie group that is an n-dimensional real manifold. Then
Lie(G) is an n-dimensional real vector space.

It remains to find an appropriate binary operation. We cannot simply compose
vector fields, since the resulting object is not a derivation. However, the commutator
of two vector fields is a vector field, and this operation preserves left-invariance.

Proposition 3.4. Lie(G) is a Lie algebra under the bracket operation [X,Y ] =
X ◦ Y − Y ◦X.

Proof. The vector fields on a manifold M are exactly the derivations of C∞(M) [5,
Proposition 8.15]. Therefore, Example 2.7 shows that the space of vector fields on
G form a Lie algebra with the given bracket.

To see that the subspace Lie(G) is itself a Lie algebra, it suffices to prove that
it is closed under the bracket operation, meaning that [X,Y ] is left-invariant when
X and Y are. We use a more general property of the bracket.

Lemma 3.5. If X ′ = (F )∗X and Y ′ = (F )∗Y , then [X ′, Y ′] = (F )∗[X,Y ].

Proof. [5, Propositions 8.30, 8.33] Applying X ′ and (F )∗X to an arbitrary smooth
function f , we see that X ′ = (F )∗X exactly when (X ′(f))◦F = X(f ◦F ) for every
f ∈ C∞(M). Therefore the hypotheses on X ′ and Y ′ imply that

X ◦ Y (f ◦ F ) = X(Y ′(f) ◦ F ) = (X ′ ◦ Y ′)(f) ◦ F
and Y ◦X(f ◦ F ) = (Y ′ ◦X ′)(f) ◦ F by the same argument. Then

[X,Y ](f ◦ F ) = X ◦ Y (f ◦ F )− Y ◦X(f ◦ F )

= (X ′ ◦ Y ′)(f) ◦ F − (Y ′ ◦X ′)(f) ◦ F = [X ′, Y ′](f) ◦ F
for all f ∈ C∞(M). This proves that [X ′, Y ′] = (F )∗[X,Y ]. �
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The proposition follows because X = (Lg)∗X and Y = (Lg)∗Y for all g ∈ G. �

Using Example 2.8 and the identification of Proposition 3.2, we can induce a Lie
algebra structure on TeG consistent with the bracket on vector fields.

Corollary 3.6. Take π as in Proposition 3.2. TeG is a Lie algebra under the
induced bracket of π, and π is a Lie algebra isomorphism Lie(G)→ TeG.

Definition 3.7. Let G be a Lie group. The Lie algebra of G, denoted g, is TeG
under the induced bracket operation.

We saw in Proposition 2.3 that GLn(R) is an open subset of Mn(R), so TeGLn(R) '
TeMn(R). By the standard identification of the tangent space to a vector space with
itself (see [5, Proposition 3.13]), we therefore have TeGLn(R) ' Mn(R). This iso-
morphism is easily visualized: if γ(t) = (γij(t)) is a path in GLn(R), we identify
γ′(t) with (γ′ij(t)) ∈ Mn(R). Then, the bracket on GLn(R) takes a simple form.

Proposition 3.8. Let G = GLn(R). The induced Lie bracket on TeG is the com-
mutator under matrix multiplication: [A,B] = AB −BA.

Proof. [4, Proposition 5.62] Let F be the space of linear functionals Mn(R) → R
and define for each X ∈ Mn(R) the linear map PX : F → F such that [PX(f)](A) =
f(AX) for all f ∈ F and all A ∈ Mn(R). The restriction of any f ∈ F to the
open subset G ⊂ Mn(R) is a smooth map on G, so we can apply a vector field
LX ∈ Lie(G) as a derivation of f . Now since G is open, γ(t) = I + tX defines a
curve in G for small t with γ(0) = I and γ′(0) = X. We evaluate

LXf(A) = D(LA)eX(f) = D(LA)eγ
′(0)f.

Computing as we did in the proof of Proposition 3.2, we find

D(LA)eγ
′(0)f =

d

dt

∣∣∣∣
t=0

f ◦ LA ◦ γ(t) =
d

dt

∣∣∣∣
t=0

f(A+ tAX) = f(AX)

where the last equality uses the linearity of f . Therefore

LXf = PX(f) ∀f ∈ F, ∀X ∈ Mn(R).(3.9)

Using Equation 3.9 and keeping track of which bracket operation is in effect, we
compute

(3.10) P[X,Y ](f) = L[X,Y ]f = [LX , LY ]f = LX(LY f)− LY (LXf).

Two applications of Equation 3.9 show that

(3.11) LX(LY f)− LY (LXf) = PX(PY (f))− PY (PX(F )) = PXY−Y X(f),

where the last equality follows from the definition of P . But PX(f)(I) = f(X), so
combining Equations 3.10 and 3.11 gives f([X,Y ]) = f(XY − Y X) for all f ∈ F .
Since two elements of a vector space are equal exactly when their values under all
linear functionals are equal, this implies [X,Y ] = XY − Y X. �

4. Induced Homomorphisms

We now have a way to assign a Lie algebra to a Lie group. To help justify
this choice, we observe that natural maps between Lie groups induce natural maps
between Lie algebras.



6 HOLLY MANDEL

Theorem 4.1. Let G and H be Lie groups with Lie algebras g and h, and let
F : G→ H be a Lie group homomorphism. Then the differential D(F )e : g→ h is
a Lie algebra homomorphism.

Proof. [5, Theorem 8.44] D(F )e is by definition a linear homomorphism g → h.
We need to show that D(F )e[v, w] = [D(F )e v,D(F )e w] for all v, w ∈ g.

By Definition 3.7, D(F )e[v, w] = D(F )e[L
v, Lw]e. If F were assumed to be a

diffeomorphism, we could write these expressions in terms of (F )∗[L
v, Lw]. In fact,

a similar situation holds for Lie group homomorphisms.

Lemma 4.2. Let F : G → H be a Lie group homomorphism. Then for all X ∈
Lie(G), there exists Y ∈ Lie(G) such that Y = (F )∗X.

Proof. Because F is a group homomorphism, we can compute

F (Lg(h)) = F (g) ? F (h) = LF (g)(F (h))

for all h, so F ◦ Lg = LF (g) ◦ F . Therefore we have the following equality for all
h, g:

D(F )Lg(h) ◦D(Lg)h = D(LF (g))F (h) ◦D(F )h.

Given X = Lv for some v ∈ TeG, let Y = LD(F )ev. We then have

YF (g) = D(LF (g))eD(F )ev = D(F )gD(Lg)ev = D(F )gXg

for all g, so Y = (F )∗X. �

This allows us to write D(F )e[L
v, Lw]e as ((F )∗[L

v, Lw])e, which by Lemma 3.5
is equal to [(F )∗L

v, (F )∗L
w]e. Since (F )∗L

v is a left-invariant vector field taking
D(F )ev at the identity, (F )∗L

v = LD(F )ev, and similarly for w. Thus

D(F )e[L
v, Lw]e = [(F )∗L

v, (F )∗L
w]e = [LD(F )ev, LD(F )w ]e

which by Definition 3.7 implies the result. �

Corollary 4.3. If F : G→ H is a Lie group isomorphism, then D(F )e : g→ h is
a Lie algebra isomorphism.

One consequence of Theorem 4.1 is that a representation of a Lie group induces
a corresponding representation of its Lie algebra. Recall that End(V ) is the space
of endomorphisms of a vector space V .

Definition 4.4. Let G be a Lie group and V a finite-dimensional real vector space.
A Lie group representation is a Lie group homomorphism G→ GL(V ).

Definition 4.5. Let g be a Lie algebra with base field F and let V be an F -vector
space. A Lie algebra representation is a Lie algebra homomorphism g→ gl(V ),
where gl(V ) is the Lie algebra End(V ) under the commutator operation.

By analogy with Proposition 3.8, gl(V ) is the Lie algebra of GL(V ). Therefore,
Theorem 4.1 shows that the differential of a Lie group representation F : G →
GL(V ) gives a Lie algebra representation D(F )e : g→ gl(V ).

We introduce a useful representation of a Lie group G in the general linear group
of its Lie algebra, which gives a representation of g in gl(g). This representation is
obtained by repeatedly differentiating the action of conjugation in G. After several
steps, we recover the Lie bracket in the differential of this representation. Our
discussion follows Jeffrey Lee [4, Section 5.5].
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First, define for all g ∈ G the conjugation map Cg : G → G that sends x to
gxg−1. Then Cg is a Lie group isomorphism: it is a classic group automorphism,
and it is diffeomorphic by the smoothness of the group operation. We define Adg
to be D(Cg)e. By Corollary 4.3, Adg is a Lie algebra isomorphism g→ g.

Since Lie algebra isomorphisms are a special type of linear isomorphisms, Adg
is an element of GL(g). Therefore the map Ad : g 7→ Adg maps G into GL(g). To
show that it is smooth, we cite a simple geometric result [4, Lemma 5.85].

Lemma 4.6. Let f : M × N → N be smooth and say there exists y0 ∈ N such
that f(x, y0) = y0 for all x ∈ M . Define fx(y) = f(x, y). Then x 7→ D(fx)y0 is a
smooth function M → GL(Ty0N).

Proposition 4.7. Ad : G→ GL(g) is a Lie group homomorphism.

Proof. Ad is an algebraic homomorphism:

Ad(gh) = D(Cgh)e = D(Cg ◦ Ch)e = D(Cg)e ◦D(Ch)e = Ad(g) ◦Ad(h).

Let C(g, x) = gxg−1. Then C is a smooth map G×G→ G and C(g, e) = e for all
g. Therefore Lemma 4.6 implies that Ad : g 7→ D(Cg)e is smooth. �

We call Ad the adjoint representation. By Theorem 4.1 and Proposition 4.7,
D(Ad)e is a Lie algebra homomorphism g → gl(g). Let ad be this differential.
Then ad(x) is an element of gl(g), the Lie algebra of linear transformations of g.
In fact, it is a linear transformation we have already seen.

Proposition 4.8. ad(x)y = [x, y].

Proof. [4, Proposition 5.89] First, let Rg be the right multiplication map in G:
h 7→ h ? g. For w ∈ TeG, we define the vector field Rw = D(Rg)ew. The proof that
w 7→ Rw is linear and that Rw is a smooth right-invariant vector field is identical
to the proof for left-invariant vector fields. Now

Lg = Rg ◦ (Rg−1 ◦ Lg) = Rg ◦ Cg
which implies that for any v ∈ TeG and g ∈ G,

Lvg = D(Lg)ev = D(Rg)e ◦D(Cg)ev = (RAdg(v))g.(4.9)

We first use this to evaluate the right-hand side. Let b1, ..., bn be a basis for g and
let εjk be a basis for End(g), so εjk(y) =

∑n
i=1 c

i
jkbi for constants cijk. Proposition

4.7 implies that Ad has a coordinate representation Ad(g) =
∑
j,k αjk(g)εjk with

αjk smooth functions G→ R. Then

(4.10) Adg(y) =
∑
j,k

αjk(g)ejk(y) =

n∑
i=1

ai(g)bi

where each ai(g) =
∑
j,k αjk(g)cijk is smooth. Using Equation 4.9 to subsitute

RAdg(y) for Ly and expanding the expression for Adgy gives

[Lx, Ly](g) = [Lx, R
∑n

i=1 ai(g)bi ](g) =

n∑
i=1

[Lx, ai(g)Rbi ](g).

The product rule allows us to expand the last term:
n∑
i=1

[Lx, ai(g)Rbi ] =

n∑
i=1

ai(g)[Lx, Rbi ] + Lx(ai)R
bi(g).
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We state without proof that the bracket of a left-invariant and right-invariant vector
field is zero (this follows from [5, Theorem 9.42 and Proposition 20.8(h)]). Therefore
the first term on the right vanishes. Evaluating the resulting expression at e gives

[x, y] = [Lx, Ly](e) =

n∑
i=1

(Lx(ai)R
bi)(e) =

n∑
i=1

x(ai)bi.

To evaluate the left-hand side, take γ(t) such that γ(0) = 0 and γ′(0) = x. Then,
recalling the identification Mn(R) ' TeGLn(R) discussed before Proposition 3.8,

ad(x)y =

(
d

dt

∣∣∣∣
t=0

Ad(γ(t))

)
y =

d

dt

∣∣∣∣
t=0

Ad(γ(t))y.

Finally, by Equation 4.10,

d

dt

∣∣∣∣
t=0

Ad(γ(t))y =
n∑
i=1

d

dt

∣∣∣∣
t=0

ai(γ(t))bi =
n∑
i=1

x(ai)bi.

�

5. A General Exponential Map

In the previous section, we demonstrated that the Lie algebra of a Lie group is
determined by its algebraic structure. Now, we work in the opposite direction to
show that the group is locally determined by its Lie algebra. For this purpose, we
introduce notation to describe the flows of left-invariant vector fields.

Definition 5.1. Let (G, ?) be a Lie group. A one-parameter subgroup is a Lie
group homomorphism (R,+)→ G.

Proposition 5.2. The one-parameter subgroups of a Lie group are exactly the
maximal integral curves of its left-invariant vector fields, initialized at e.

Proof. [5, Theorem 20.1] Let γ(t) be a one-parameter subgroup. Then a calculation
shows that for all t ∈ R,

D(Lγ(t))eγ
′(0) = (Lγ(t) ◦ γ)′(0) = γ′(t).

Therefore, γ′(t) = L
γ′(0)
γ(t) for all t, so by definition γ(t) is an integral curve of Lγ

′(0).

Conversely, for any v ∈ TeG, let γv(t) be the maximal integral curve of Lv

such that γv(0) = e. In general, the maximal integral curve of a vector field is
only guaranteed to exist on some neighborhood of 0. However, using invariance to
extend the domain, one can show that any integral curve of a left-invariant vector
field is defined on all of R (see [5, Lemma 9.15, Theorem 9.18]). For any s ∈ R,
define η(t) = Lγv(s) ◦ γv(t). Then, since γ′v(t) = Lvγ(t),

η′(t) = D(Lγv(s))γv(t)γ
′
v(t) = D(Lγv(s))γv(t)L

v
γv(t)

= Lvη(t)

by the left-invariance of Lv. Therefore, both η(t) and γv(s+ t) are integral curves
for Lv initialized at γv(s). By uniqueness, this implies that η(t) = γ(s + t), so for
all t, s ∈ R,

γ(s+ t) = Lγv(s) ◦ γv(t) = γv(s) ? γv(t).

�

Since every vector field has a unique maximal integral curve and every v ∈ TeG
corresponds to a unique left-invariant vector field, the following is well-defined.
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Definition 5.3. Let γv(t) be the unique one-parameter subgroup such that γ′v(0) =
v. The exponential map is the function exp : TeG→ G that sends v to γv(1).

Proposition 5.4. Let G be a Lie group and g its Lie algebra. There exists a
neighborhood U ⊂ g contaning 0 and a neighborhood V ⊂ G containing e such that
exp|U : U → V is a diffeomorphism.

Proof. [5, Proposition 20.8] The smooth dependence of a differential equation on
initial conditions can be used to prove that exp is smooth (see [5, Proposition
20.8(a)]). It remains to prove that exp is a local diffeomorphism at 0. By the
inverse function theorem, it is sufficient to show that D(exp)0 : T0g→ g is a linear
isomorphism. In fact, identifying T0g with g as in Proposition 3.8, D(exp)0 is the
identity map. For given X ∈ g, the curve η(t) = tX is a map from some interval
containing 0 into g such that η(0) = 0 and η′(0) = X. We use η to compute

D(exp)0X = D(exp)0
d

dt

∣∣∣∣
t=0

η(t) =
d

dt

∣∣∣∣
t=0

exp(tX).

Let γX(t) be the one parameter subgroup for X. By the chain rule, γX(λt) is an
integral curve for LλX . Therefore γλX(1) = γX(λ) by the uniqueness of integral
curves, so

d

dt

∣∣∣∣
t=0

exp(tX) =
d

dt

∣∣∣∣
t=0

γtX(1) =
d

dt

∣∣∣∣
t=0

γX(t) = X.

�

Example 5.5. [1, Exercises 12.40-12.52] Let G = GLn(R) with Lie algebra TeG '
Mn(R). In this case, the exponential map has an explicit power series form using
the multiplicative operation on Mn(R):

(5.6) eA =

∞∑
n=0

1

n!
An.

One can verify that this power series converges componentwise to a smooth function
Mn(R)→ GLn(R), that eA(t+s) = eAteAs, that e0 = I, and that

(5.7)
d

dt

∣∣∣∣
t=0

eAt = A.

Therefore t 7→ eAt is the unique integral curve for LA, so eA = exp(A).

6. The Campbell-Baker-Hausdorff Formula

The exponential map gives a diffeomorphism between a neighborhood of the
identity V of G and a neighborhood U containing 0 in g. By the continuity of
the group operation, this implies that for sufficiently small v, w ∈ g, the product
exp(v) ? exp(w) should be an element of V , and therefore take the form exp(z) for
some z ∈ U . Therefore we have the map

T (v, w) = exp−1(exp(v) ? exp(w))

defined for small v, w, such that exp(T (v, w)) = exp(v) ? exp(w). We say that the
function T encodes the group law locally, since close to the identity, we can use T
and exp to evaluate multiplication on G.

Incredibly, the function T (v, w) is given by a Lie polynomial, a power series
whose terms involve only iterated brackets of v and w. The following formulas are
quoted from Jeffrey Lee [4, pp. 223-224].
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Theorem 6.1. (Campbell-Baker-Hausdorff) Let T (v, w) = exp−1(exp(v)?exp(w)).
Then in a neighborhood of 0, T (v, w) is given by the power series

(6.2) T (v, w) = v + w +

∞∑
n=1

(−1)n

n+ 1

∫ 1

0

( ∑
k,l>0,k+l≥1

tk

k!l!
(ad v)k(ad w)l

)n
v dt.

Computing the first few terms gives

T (v, w) = v + w +
1

2
[v, w] +

1

12
([[v, w], w] + [[w, v]v]) + ...

Therefore the Lie bracket appears as the first nonlinear term in the “logarithmic”
expansion of the group law.

We can obtain global information from this theorem if G is connected.

Proposition 6.3. Let G be a connected Lie group and let U be an open set con-
taining e. Then U generates G.

Proof. (See [3, Corollary 2.10]) Let H be the algebraic subgroup of G generated by
U . Then for all h ∈ H, the preimage L−1h−1(U) = h ? U is an open set containing
h and contained in H. Therefore, H is an open subset of G and an embedded
submanifold. On the other hand, it is a theorem that an algebraic subgroup of
a Lie group is an embedded submanifold exactly when it is closed ([5, Corollary
20.13]). Since G is connected and H is nonempty, H = G. �

It follows that the Lie algebra determines the group operation on a connected
Lie group. As an application, we show that a Lie group is abelian exactly when its
Lie algebra has a trivial Lie bracket (such a Lie algebra is also called abelian).

Corollary 6.4. A connected Lie group G with Lie algebra g is abelian if and only
if g is abelian.

Proof. On the one hand, if G is abelian, then the conjugation map is the identity:
Cg(x) = x for all g, x ∈ G. Therefore Adg = D(Cg)e is the identity map on TeG,
for all g. From this we compute Ad(g) = Ide for all g, and so ad = D(Ad)e = 0.
By Proposition 4.8, this implies that [v, w] = 0 for all v, w ∈ g.

On the other hand, say g is abelian. Then all nonlinear terms in Equation 6.2
are zero, so T (v, w) = v + w. This implies that exp(v) ? exp(w) = exp(v + w) =
exp(w+v) = exp(w)?exp(v) for all small w, v. Since G is connected, it is generated
by any neighborhood of e. But an algebraic group with a commuting generating
set is abelian. �
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