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Abstract. This paper is dedicated to present a proof of the Spectral Theo-

rem, and to discuss how the Spectral Theorem is applied in combinatorics and

graph theory. In this paper, we also give insights into the ways in which this
theorem unveils some mysteries in graph theory, such as expander graphs and

graph coloring.

Contents

1. Introduction 1
2. Proof of the Spectral Theorem 2
3. Consequences and Applications – Spectral Graph Theory 3
Acknowledgments 8
References 8

1. Introduction

The topic of this paper is a fundamental theorem of mathematics: The Spectral
Theorem. This theorem concerns symmetric transformations on finite dimensional
Euclidean spaces. It specifies a condition for matrix diagonalization, which is widely
used in discrete mathematics and other fields including physical sciences (for ex-
ample, quantum mechanics). In order to understand the Spectral Theorem, first
we need to look at some definitions:

Definition 1.1. Let V be a Euclidean vector space. A set of vectors {b1, . . . , bk} ⊆
V forms an orthonormal basis if

〈bi, bj〉 =

{
0 if i 6= j,

1 if i = j.

and the set spans V .

Definition 1.2. Let V be as above and let φ be a linear transformation from V to
itself. φ is a symmetric transformation if (∀x, y ∈ V )(〈φ(x), y〉 = 〈x, φ(y)〉).

If we represent φ with respect to an orthonormal basis then we get a symmetric
matrix, i.e. Aij = Aji. The converse is also true: if A is a symmetric matrix, then
it defines a symmetric transformation on Rn. This justifies the use of the same
adjective for both notions.

For example, A =

[
1 2
2 1

]
defines a symmetric transformation on R2.
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Now let us state the Spectral Theorem:

Theorem 1.3. In a finite-dimensional Euclidean space, every symmetric transfor-
mation has an orthonormal eigenbasis.

In this paper, we will prove this theorem in several steps that will be presented
as a series of separate lemmas. We will conclude by including specific examples of
the theorem’s application to graph theory, such as the theory of expander graphs.

2. Proof of the Spectral Theorem

To prove the Spectral Theorem, the first step is to prove that there exists one
eigenvector. Then, we want to show that assuming the theorem holds true for a
subspace, we can prove the theorem for the orthogonal complement of that space.
Lastly, combining the first and second steps, we can prove the entire Spectral
Theorem by induction, because we know there always exists one eigenvector.

Definition 2.1. For every v 6= 0, define the Rayleigh quotient as
〈φv, v〉
〈v, v〉

. Further-

more, define

λ = sup
v 6=0

〈φv, v〉
〈v, v〉

.

Note that the function v 7→ 〈φv, v〉 is a continuous function on the compact set
{v | ‖v‖ = 1}. Therefore, by the Extreme Value Theorem, the number λ is attained.

To prove the Spectral Theorem, we need to find an eigenbasis. So the first step
is to find one eigenvector. The next lemma will show that a vector that maximizes
the Rayleigh quotient is actually an eigenvector.

Lemma 2.2. Suppose ‖v0‖ = 1 satisfies 〈φv0, v0〉 = λ, then φv0 = λv0.

Proof. Since λ is the supremum of all Rayleigh quotients, for all v and w such that
v + w 6= 0, we have

λ ≥ 〈φ(v + w), v + w〉
〈v + w, v + w〉

=⇒ λ〈v + w, v + w〉 ≥ 〈φ(v + w), v + w〉.

We notice that this last inequality holds even if v + w = 0. Expanding both sides
of the inequality, we have

λ(〈v, v〉+ 〈w,w〉+ 2〈v, w〉) ≥ 〈φv, v〉+ 〈φw,w〉+ 〈φv,w〉+ 〈φw, v〉.

Since φ is symmetric, 〈φw, v〉 = 〈w, φv〉 = 〈φv,w〉, and thus we get

λ〈v, v〉+ λ〈w,w〉+ 2〈λv,w〉 ≥ 〈φv, v〉+ 〈φw,w〉+ 2〈φv,w〉.

Since the inequality holds for any v and w, it holds particularly for v = v0 and
w = tu, where t ∈ R and u ∈ V is any vector. Since ‖v0‖ = 1 and 〈φv0, v0〉 = λ,
the previous inequality becomes

λ+ λt2〈u, u〉+ 2t〈λu, u〉 ≥ λ+ t2〈φu, u〉+ 2t〈φv0, u〉
=⇒ t2(λ〈u, u〉 − 〈φu, u〉) + 2t(〈λv0 − φv0, u〉) ≥ 0.

As t varies we see that the left-hand side of the inequality traces a parabola in
t. At t = 0 the parabola vanishes, and the inequality demonstrates that t = 0 is
in fact a global minimum, so the derivative at 0 vanishes. Thus, for all u ∈ U ,
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we deduce that 〈λv0 − φv0, u〉 = 0. In particular for u = λv0 − φv0, we get

0 = 〈λv0 − φv0, λv0 − φv0〉 = ‖λv0 − φv0‖2. So φv0 = λv0.
�

Now that we have one eigenvector, we need to continue this process and produce
additional eigenvectors inside {v0}⊥.

Lemma 2.3. Let U be a subspace of V . If U is φ-invariant, then U⊥ is also
φ-invariant.

Proof. Let u′ ∈ U⊥. We want to show that φu′ ∈ U⊥, i.e. for every u ∈ U , it
holds that 〈φu′, u〉 = 0. Since φ is symmetric, 〈u′, φu〉 = 〈u, φu′〉 = 0, because the
φ-invariance of U implies φu ∈ U and u′ ∈ U⊥.

�

Lemma 2.4. Let V be a Euclidean vector space, and let U ⊆ V be a linear subspace
with inner product induced from V . As before, let φ be a symmetric transformation.
If U is φ-invariant, then φ|U is symmetric.

Proof. By definition, φu = φ|U (u). So for all u, u′ ∈ U , the symmetry of φ implies
〈φu, u′〉V = 〈u, φu′〉V . Since the inner product on U is the restriction of the inner
product on V , we have 〈φ|U (u), u′〉U = 〈u, φ|U (u′)〉U . Therefore φ|U is symmetric.

�

With the lemmas proven above, we can now proceed to prove the Spectral The-
orem.

Proof of Theorem 1.3. Base case: dimV = 1. Take any nonzero vector v in this
one-dimensional vector space. Divide v by its norm so that it becomes an orthonor-
mal basis. The vector φv is a scalar multiple of the given vector v.

Induction hypothesis: for k = n−1, a symmetric k×k matrix has an orthonormal
eigenbasis. Then since dimU⊥ = n− 1, U is φ-invariant.

Inductive step: Let λ = max
‖x‖=1

〈x, φx〉 = 〈v0, φv0〉. By Lemma 2.2, we have φv0 =

λv0. Define U = span{v0} as a φ -invariant subspace of V . Since dimU = 1, it
follows that dimU⊥ = n−1. By Lemma 2.3, U⊥ is φ-invariant, and by Lemma 2.4,
φ|U⊥ is symmetric. By the induction hypothesis, φ|U⊥ has orthonormal eigenbasis
{v1, . . . , vn−1} on U⊥. Therefore, we conclude {v0, v1, . . . , vn−1} is an orthonormal
eigenbasis of φ on V .

�

3. Consequences and Applications – Spectral Graph Theory

Now, we will look at the specific ways in which the Spectral Theorem and its con-
sequences are applied to solve problems in graph theory, including how eigenvalues
illuminate some “mysteries” of graphs.

We have defined λ to be the supremum of all Rayleigh quotients. The next
lemma shows that λ is the maximum of all eigenvalues.

Lemma 3.1. For any eigenvalue λi of φ, we have λi ≤ λ, where λ = max
‖x‖=1

〈x, φx〉.
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Proof. If λi is an eigenvalue of V and vi is a corresponding eigenvector, without
loss of generality, we may assume that ‖vi‖ = 1. So we deduce

λi = λi〈vi, vi〉 = 〈vi, λivi〉 = 〈vi, φvi〉 ≤ max
‖x‖=1

〈x, φx〉 = λ.

�

In the same way that we find λ, we can find all eigenvalues. Throughout this
section, we denote orthonormal eigenvectors v1, . . . , vn, where for all i ∈ [n], vi has
corresponding eigenvalue λi. Additionally, the λ’s are decreasing, and so λ1 ≥ λ2 ≥
. . . ≥ λn.

One of the most widely used consequences of the Spectral Theorem is the
Courant-Fischer min-max principle.

Theorem 3.2 (Courant-Fischer Principle). The eigenvalues λ1 ≥ · · · ≥ λn of
the symmetric matrix A are given by

λk = max
S⊆Rn

dim(S)=k

min
x∈S,x 6=0

xtAx

xtx
= min

S′⊆Rn

dim(S′)=n−k+1

max
x∈S′,x 6=0

xtAx

xtx
.

Proof. First we prove that λk is achievable.
By the Spectral Theorem, there exists an orthonormal eigenbasis for A. Suppose

v1, . . . , vn form such an orthonormal eigenbasis. Let Sk = span {v1, . . . , vk}. For

all x ∈ Sk, we can expand and express x =
k∑
i=1

(vi
tx)vi. Considering the Rayleigh

quotient

xtAx

xtx
=

k∑
i=1

λi(vi
tx)2

k∑
i=1

(vitx)2
≥

k∑
i=1

λk(vi
tx)2

k∑
i=1

(vitx)2
= λk.

Next we prove that λk is the maximum over all such expressions.
Let S′k = span {vk, . . . , vn}. Since dimS′k = n − k + 1, for all S such that

dimS = k we have S∩S′k 6= ∅. Then we can deduce that min
x∈S

xtAx

xtx
≤ min
x∈S∩S′

k

xtAx

xtx
.

Similar to previous expressions, for all x ∈ S ∩ S′, we can write x =
n∑
i=k

(vi
tx)vi.

Since for all i ≥ k we have λk ≤ λi, it follows that

xtAx

xtx
=

n∑
i=k

λi(vi
tx)2

n∑
i=k

(vitx)2
≤

n∑
i=k

λk(vi
tx)2

n∑
i=k

(vitx)2
= λk.

We have thus proven for all S ⊆ Rn with dimension k that λk ≤ min
x∈S

xtAx

xtx
. The

proof for the equality λk = min
S′⊆Rn

dim(S′)=n−k+1

max
x∈S′

xtAx

xtx
is analogous.

�

Now, we will look at the specific ways in which the Spectral Theorem and its
consequences are applied to solve problems in combinatorics and graph theory. For
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all the following examples, let G be a finite graph, whose vertices are labeled 1
through n.

Example 3.3 (Adjacency matrix). We define A to be the adjacency matrix such
that

Aij =

{
1 if i and j are adjacent,

0 otherwise.

We note that the matrix Aij is symmetric, and this will provide the connection
between the Spectral Theorem and its application to graph theory.

We can use adjacency matrices in a lot of different ways. For example, denote

ei =



0
...
1
...
0

 ,

where 1 is in the i-th place. Then

[1, . . . , 1]Aei = the number of vertices adjacent to the i-th vertex.

We define this number to be the degree of the i-th vertex, denoted by deg(vi).

Example 3.4 (Laplacian matrix). The Laplacian matrix is a matrix that aver-
ages over the neighbors of every vertex, and it is defined as follows:

Let D be the degree matrix whose i-th entry is equal to the degree of the i-th
vertex. The Laplacian matrix of G is defined as L = D −A. More formally,

Lij =


deg(vi) if i = j,

−1 if i 6= j and vi is adjacent to vj ,

0 otherwise.

The Laplacian matrix plays an important role in random walks on graphs.

Definition 3.5. We let λ denote the largest absolute value of any eigenvalue other

than the largest one, that is, λ =
max
λ>1
|λi|

d
. The spectral gap is the difference

between the largest eigenvalue and the eigenvalue whose absolute value is the second
largest, which is equal to λ1 − λ.

We are interested in the spectral gap because it is related to the randomness of
the graph in a subtle way, which we will later see more clearly in the Expander
Mixing Lemma. Further, in order to get a quantity that can be compared across
different graphs, we proceed to normalize the spectral gap.

Definition 3.6. A graph is d-regular if all of its vertices have degree d, which
represents the regularity and equals the largest eigenvalue. We define

spectral expansion =
spectral gap

d
.

Remark 3.7. Consider a d-regular graph G = (V,E) whose adjacency matrix A has
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. We let d = λ1, which is the largest eigenvalue of
A. Let S and T be sets of vertices from G, i.e. S, T ⊆ V . The number of possible
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pairs of vertices from S and T is |S| · |T |. The number of edges between pairs of

vertices from S and T is expected to be |S| · |T | · d

n− 1
, because for an arbitrary

pair of vertices i, j of G, the probability that there is an edge between i and j is
number of edges(

n
2

) =
dn
2(
n
2

) =
dn
2

n(n−1)
2

=
d

n− 1
.

Before we state the Expander Mixing Lemma, let us take a look at the following
lemma that concerns the relationship between the largest eigenvalue of S and degree
of vertices in the subgraph of S.

Lemma 3.8 (Average Degree Lemma). Let S ⊆ V be a subset of vertices, and
consider the subgraph of V spanned by S. Let degave(S) denote the average degree
of vertices in the subgraph S (whose edges are all between vertices of S). Then
degave(S) ≤ λ1.

Proof. Let v(S) and v(T ) be the characteristic vectors of S and T . Considering the
Rayleigh quotient, we can deduce

λ1 = max
x 6=0

xtAx

xtx
≥ v(S)

t
Av(S)

v(S)
t
v(S)

.

Then we get

v(S)
t
v(S) = ‖v(S)

2‖ = |S|.
By the definition of v(S), we have

v(S)
t
Av(S) =

∑
(u,v)∈S×S

A(u, v).

We know ∑
(u,v)∈S×S

A(u, v) =
∑
u∈S

∑
v∈S

A(u, v) = deg(u),

because here we are counting the number of neighboring vertices of u, which is the
definition of degree. Let n be the size of S. Then we get v(S)

t
v(S) = n.

In conclusion,

λ1 = max
x 6=0

xtAx

xtx
≥ v(S)

t
Av(S)

v(S)
t
v(S)

=

∑
(u,v)∈S×S

A(u, v)

n
=

∑
u∈S

deg(u)

n
= degave(S).

�

One final ingredient for the Expander Mixing Lemma is the expander graph.

Definition 3.9. A λ-expander graph is a d-regular graph whose spectral expansion

is 1− λ (which is equal to
λ1
d
− λ).

Intuitively, on an expander graph random walks converge quickly to the sta-
tionary distribution. The speed of convergence is a consequence of the Expander
Mixing Lemma, which we will prove next. It is important to note that given the
size of the spectral expansion, this lemma allows us to know how close the graph is
from being in the random situation.
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Theorem 3.10 (Expander Mixing Lemma). Let G = (V,E) be a d-regular,
n-vertex graph with spectral expansion 1− λ, such that its adjacency matrix A has
eigenvalues λ1 = d ≥ λ2 ≥ · · · ≥ λn. Let S, T ⊆ V be two subsets, and let
E(S, T ) = {s ∈ S, t ∈ T : {s, t} ∈ E} be the set of edges between the elements of S
and T . Then we have ∣∣∣∣|E(S, T )| − d|S| · |T |

n

∣∣∣∣ ≤ λd√|S| · |T |.
Proof. Let {v1, . . . , vn} be an eigenbasis corresponding to the eigenvalues λ1 ≥
. . . ≥ λn. As we saw in the proof of the Average Degree Lemma, we can expand

v(S) and v(T ) into v(S) =
n∑
i=1

αivi and v(T ) =
n∑
i=1

βivi. For all i ∈ [n], let λi be

the eigenvalue corresponding to eigenvector vi. Then we have

|E(S, T )| = v(S)
t ·A · v(T ) =

( n∑
i=1

αivi

)t
A

( n∑
i=1

βivi

)
=

n∑
i=1

λiαiβi.

We know the graph is d-regular, and so every vertex has d edges coming out of
it. Thus when we apply A to the vector 1 = (1, 1, 1, . . .), the result is d times the
vector 1. To normalize this quantity, we divide it by its norm

√
n, and the result

we get is v1. Then, since v1 = 1
‖1‖ = 1√

n
, we conclude α1 = 〈v(S), v1〉 = |S|√

n
.

In [1] it is shown that the largest eigenvalue λ1 ≤ d. Thus we know the eigenvalue
of 1 is d, which proves that λ1 = d. Then we get

|E(S, T )| = λ1α1β1 +

n∑
i=2

λiαiβi = d · |S| · |T |
n

+

n∑
i=2

λiαiβi.

Given λ =
max
λ>1
|λi|

d
, we know |λi| ≤ λ · d, for all i > 1. Then we deduce∣∣∣∣|E(S, T )| − d · |S| · |T |

n

∣∣∣∣ ≤ n∑
i=2

|λiαiβi| ≤ λ · d ·
n∑
i=2

|αiβi|.

By Cauchy-Schwartz Inequality, we can deduce∣∣∣∣|E(S, T )| − d · |S| · |T |
n

∣∣∣∣ ≤ λ · d · ‖v(S)‖ · ‖v(T )‖ = λ · d ·
√
|S| · |T |.

�

To grasp Wilf’s Theorem, which allows us to determine elusive properties of
graphs with the tool of eigenvalues, we need the following definition.

Definition 3.11. A legal k-coloring of a graph G is a map c : V → {1, 2, . . . , k}
such that for all {i, j} ∈ E we have c(i) 6= c(j). The chromatic number of G,
denoted χ(G), is the smallest value of k for which a legal k-coloring exists. In
simpler terms, the chromatic number of a graph is the smallest number of colors
needed to assign colors to the vertices of a graph without assigning the same color
to any pair of adjacent vertices.

Theorem 3.12 (Wilf’s Theorem). χ(G) ≤ 1 + λ1.
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Wilf’s Theorem reveals how a graph is controlled by eigenvalues. Determining
coloring is laborious, and there is no quick and easy way to do so without going
through and checking all possible colorings. Thus, Wilf’s Theorem is very powerful
because it guarantees that there exists one coloring and an upper bound of the
number of colors needed to color the graph, without having to know any specific
coloring of the graph.

Proof. To prove Wilf’s Theorem, it is sufficient to show there exists an ordering for
the vertices v1, v2, . . . , vn such that for all i ∈ [n], the number of neighbors that vi
has among the ones that come before it is at most λ1. If we can order the vertices
this way, then we can color the vertices one by one with λ1 + 1 many colors.

Now we want to show such an ordering exists. We prove by induction on i that
we can construct vn−i. We begin with i = 0 and show that we can choose vn with
at most λ1 many neighboring vertices. Let V be the set of all vertices v1, v2, . . . , vn.
We know such vn exists because by Lemma 3.8, degave V ≤ λ1, which implies that
there exists vn ∈ V such that degV (vn) ≤ λ1.

For the induction hypothesis assume that we have already chosen vn−k+1, . . . , vn.
We want to show that we can choose vn−k. Let S be the collection of all vertices
except for vn−k+1, . . . , vn. Then we get a subgraph with n − k vertices. Applying
Lemma 3.8 to S, we know there exists vn−k ∈ S such that degS(vn−k) ≤ λ1.

By reverse induction, we have thus proven that we can construct an ordering
of vertices such that every vertex vi has at most λ1 many neighbors among the
previous vertices.

�

In conclusion, the Spectral Theorem can reveal deep insights into a graph, as
demonstrated by its applications in graph theory such as Wilf’s Theorem. This is
exactly the beauty of the Spectral Theorem, which is unveiling rather inaccessible
aspects of the graph by providing easily computable invariants of a graph, in the
form of eigenvalues.
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