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Abstract. We explore the mathematical foundations of topological quantum

computation, a quantum computation model that is based on principles of
topology which as a result is more resistant to quantum decoherence than

existing models. From the generalization of the topological basis for the two

common particle exchange statistics, we explore the possibility of particles
that exhibit arbitrary exchange statistics called anyons. We will also look at

the mathematical justification for the search for non-abelian anyons, which are

instrumental in creating topological quantum computers.
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1. Quantum Particle Statistics

A key principle in quantum mechanics is the concept of indistinguishable parti-
cles. We can tell particles apart by measuring their charge, mass, or by tracking
the precise position of each individual particle as it moves. For example, to tell an
electron from a proton, we might check its electric charge. However, it is impossible
to tell an electron from an electron just by checking its charge, mass, spin, etc. The
only way we can hope to tell two electrons apart is by tracking the precise trajectory
of each of the electrons. However, that is against the principle of quantum theory
that particles do not possess a specific position between measurements. Instead,
their positions are described by a wave function.

The wave function Ψ : Mn → C describes the state of an n indistinguishable
particle system on a smooth manifold M . The square modulus of the wave function
|Ψ(v)|2 is interpreted as the probability density function of a system to be in a given
state v ∈ Mn [2]. That is, if we wish to know the probability of n particles to be
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in a submanifold R ⊂M , we can simply evaluate∫
R

|Ψ(v)|2 dv

Naturally, as the square modulus is viewed as a probability function, we get the
normalization condition of wave functions:∫

M

|Ψ(v)|2 dv = 1

As the wave function describes the state of indistinguishable particles, one must
expect there to be some amount of symmetry under the interchanging of particles.
Exchange statistics arise from this expectation.

Exchange measures how a wave function would change under an exchange of
particles. As explained in the previous section, we would like to preserve certain
amounts of symmetry under exchange, since our particles are indistinguishable.
Thus under an exchange, we expect the square modulus of our wave function, the
probability function of our state, to remain unchanged and therefore respect the
normalization condition,

Ψ(σv) = ρ(σ)Ψ(v)

Observe that the phase factor ρ(σ) has to be a unitary transformation under our
restrictions.

In a two particle system in three dimensions, we can identify two possible ex-
change statistics. The Bose–Einstein statistics leave the wave function in a sym-
metric state,

Ψ(y, x) = Ψ(y, x)

and the Fermi–Dirac statistics leave the wave function in an anti-symmetric state.

Ψ(y, x) = −Ψ(x, y)

Particles that satisfy the Bose–Einstein statistics we call bosons and particles that
satisfy the Fermi–Dirac statistics we call fermions.

In two dimensions, however, there can be particles that don’t exhibit bosonic
nor fermionic behavior but have arbitrary exchange statistics. Particles with such
kind of exchange statistics are called anyons, as they can exhibit arbitrary exchange
statistics. This is also where the term fractional exchange statistics is from. We
will be exploring the mathematical theories that allow such a phenomenon to occur
in two dimensions while restricting to exactly two possible exchange statistics in
three, and in fact higher, dimensions.

See Baez p.p. 133 for a more detailed treatment of the basic principles of quan-
tum mechanics.

2. Braid Groups

The Aharonov–Bohm effect tells us that the phase factor of a wave function
under a particle exchange is affected by the path a particle takes [2]. The effect
states that if a particle with charge q traveling along a path P in a zero magnetic
field but a nonzero magnetic vector potential A (given by Maxwell’s equations
∇×A = B = 0), the wave function describing the system gains a phase factor,

q

~

∫
P

A · dx
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Thus this tells us that the symmetric group action, as showed briefly before, isn’t
the only group at work here since the path that the particle takes affects the phase
factor acquired under exchange.

Here we will define, algebraically, a group, called the Artin braid group, that is
similar to the symmetric group but instead of permuting points, we twist strands
of string. Thus in this group, swapping the same endpoints twice is a nontrivial
element in the group, whereas in the symmetric group, we have (i i+ 1)2 = 1.

Definition 2.1. The braid group with n strands, Bn is given by the presentation,

Bn = 〈σ1, . . . , σn−1 | σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi for |i− j| ≥ 2〉

Each generator σi can be thought of as entangling the i-th and (i+ 1)-th strand
by taking the i-th strand over the (i+ 1)-th strand. Naturally, we have an inverse
element σ−1i by doing the reverse action.

=

Figure 1. The braid generators and its inverse

The first set of relations mean that taking the strand on your left and crossing
it over then taking the strand on your right and crossing it under is the same as
crossing the right strand under first then the left strand over. Note in the following
diagram that the first strand is always on top and the third strand is always on the
bottom. The second set of relations means that the generators commute when the
strands they are working on are sufficiently far apart.

1 2 3

=

1 2 3

(a) First set

=

(b) Second set

Figure 2. Relations of the braid group

Observe that we have a natural homomorphism π into the symmetric group
Bn → Sn by sending the braid to the permutation of the end points,

1 2 3

12 3

7→ (1 3 2)

Figure 3. Homomorphism into the symmetric group
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We define the pure braid group Pn as the kernel of the homomorphism π of
the braid group into the symmetric group. Note that the pure braid group has
generators given by wrapping a strand around another strand and returning its
original endpoint.

αi,j = σj−1σj−2 . . . σ
2
i σ
−1
i+1σ

−1
i+2 . . . σ

−1
j−1 for i < j

Figure 4. The generator α1,3 of the pure braid P3

We are able to obtain the following relations for the pure braid group from the
relations for the braid group [3],

αr,sαi,jα
−1
r,s =


αi,j s < i or j < r

α−1i,sαi,jαi,s i < j = r < s

α−1i,j α
−1
i,rαi,jαi,rαi,j i < r < j = s

α−1i,sα
−1
i,rαi,sαi,rαi,jα

−1
i,rα

−1
i,sαi,rαi,s i < r < j < s

These relations for the pure braid group and the braid group all correspond to the
Reidemeister moves in knot theory. This is more apparent in the braid group where
σiσ
−1
i = 1 corresponds to the second Reidemeister move and σiσi+1σi = σi+1σiσi+1

corresponds to the third Reidemeister move.
By definition we get the following short sequence where i is the inclusion of Pn

into Bn.

(2.2) 1 Pn Bn Sn 1i π

Lemma 2.3. There is a homomorphism pi : Pi → Pi−1 given by removing the last
strand,

pn(αi,j) =

{
1 j = n

αi,j otherwise

Let Fn−1 = ker(pn). Then the following is an exact sequence where i is the inclusion
of Fn−1 into Pn,

(2.4) 1 Fn−1 Pn Pn−1 1i pn

and Fn−1 is the free group on n− 1 letters.

The proof is left as an exercise for the reader. Note that Fn−1 is generated by
the generators α1,n, . . . , αn−1,n of Pn as no matter how you wrap around the n-th
strand, they all get untangled once you take that strand away.
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3. Configuration Spaces

Observe that in the previous section, the strands in each braid look like the
trajectory of an exchange over time. Each strand cannot loop back on itself, rep-
resenting the inability for a particle to travel back in time, nor can it pass through
another strand, the inability for two particles to occupy the same space at a time.
In this section, we will show that the trajectories of particles in an exchange cor-
respond to braids in the braid group. But first, we will need a way to track the
trajectories of particles in a particle system.

Definition 3.1. The ordered configuration space of n points onM is a sub-manifold
of Mn defined as,

Fn(M) = {(x1, x2, . . . , xn) ∈Mn | xi 6= xj for i 6= j}

Intuitively, each point in Fn(M) represents a possible configuration of n particles
on our manifold and we can track the positions of n particles as they evolve over
time by looking at paths in Fn(M). While in reality, we can’t expect particles to
follow a definite continuous path like this due to quantum mechanics, but in a loose
sense, the “fuzziness” cancels out in a way we are able to calculate the phase factor
gained through the Aharonov–Bohm effect using continuous paths. We won’t delve
into the details as that would require some measure theory and is out of the scope
of this paper, you can find more details of this in [2]. Note that we disallow particle
creation or annihilation in our particle system under our model. Also note that
the paths the particles trace out over time cannot overlap as that would mean two
particles will be occupying the same position at a time. Both properties are what
we expect in an exchange.

However, the ordered configuration space is able to distinguish between parti-
cles, which is undesirable. The following configurations of particles are different
in the ordered configuration space but are in principle indistinguishable through
measurement.

(v1, v2, v3) 6= (v3, v2, v1)

As we are interested in indistinguishable particles, we will need a way to identify
configurations in Fn(M) that are the same under observation. Therefore instead of
looking at n-tuples in Mn, we need to look at sets of size n in Mn. Thus we will
need to identify permutations of our n particles in the ordered configuration space.
We can do that by defining an Sn-action, ϕ : Sn×Fn(M)→ Fn(M), on the space,
which will allow us to get another indistinguishable configuration by permuting the
particles.

ϕ(σ, x1, x2, . . . , xn) = (xσ(1), xσ(2), . . . , xσ(n))

Identity and compatibility of the group action should be clear from our definition.
ϕ(σ, v) will be denoted σv from now on for convenience. We will call the space
obtained by identifying a configuration v with gv for all g ∈ Sn the unordered
configuration space.

Definition 3.2. The unordered configuration space of n particles on a manifold
M is defined as all the possible configurations of n indistinct points in M ,

Cn(M) = Fn(M)/Sn

Note that this is essentially saying the following,

Cn(M) = {{x1, x2, . . . , xn} ⊂Mn | xi 6= xj for i 6= j}
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Now that we’ve set up a space that allows us to track n indistinguishable par-
ticles, it should be clear that paths in our ordered configuration space get turned
into loops since we’ve identified the endpoints. Thus loops in this space represent
the trajectories of our n particles under a particle exchange. Furthermore, Stokes
theorem suggests that we look at homotopic loops, loops that can be continuously
deformed to one another, as the Aharonov–Bohm effect tells us that the phase dif-
ference ∆ϕ of particles taking two different paths is determined by the magnetic
flux of the area S enclosed by the two paths (again given by B = ∇ × A from
Maxwell’s equations),

∆ϕ =
qΦB
~

=
q

~

∫∫
S

B · ds =
q

~

∮
∂S

A · dr

If the two paths are homotopic, the boundary of the enclosed area must be nullho-
motopic. Therefore the phase difference ∆ϕ must be 0. In our configuration space,
homotopic loops (in the unordered space) and homotopic paths (in the ordered
space) represent particle trajectories being homotopic. Thus we will be studying
homotopic loops of the configuration space. The fundamental group, which iden-
tifies homotopic loops and gives them a group structure [6], will provide us with
the tool to see how different loops in the space will affect the wave function of the
system.

We will assume that we are working in Rm where m ≥ 2, as in one dimension
we can’t make nontrivial exchanges because no particles can cross over each other
without occupying the same space. For m ≥ 2 then, both Fn(Rm) and Cn(Rm) are
path-connected as it is possible to go to an arbitrary configuration given an initial
configuration. Since the spaces we will be working with are path-connected, the
fundamental groups of the space at any base point are all isomorphic to each other
through the change of base point map [6]. Thus we will be using a fixed base point
in the following proofs for convenience. We shall define the following,

ei = (0, . . . , 1︸︷︷︸
i-th

, . . . 0)

Then we will be using the following as the basepoint for the ordered configuration
space Fn(Rm),

x̃0 = (e1, e2, . . . , en)

and for the unordered configuration space Cn(Rm),

x0 = {e1, e2, . . . , en}
First we will look at a result that will be useful in understanding the fundamental

group of the configuration space.

Theorem 3.3. The projection Fn(M)→ Fn−1(M) removing the last coordinate is
a fiber bundle with fiber M − P where P is a set of n− 1 points in M .

Proof. The proof is in Fadell–Neuwirth [4]. �

The above fiber bundle gives as a long exact sequence of homotopy groups,
which will be useful in proving the following theorems. We will now relate the
braid group with the fundamental group of the unordered configuration space at
the base point x0, with the following homomorphism into the fundamental group
hi : Bi → π1(Ci(Rm), x0),

σk 7→ [γ : t 7→ {e1, . . . , ek−1, (1−t2)ek+(2t−t2)ek+1, t
2ek+(1−t2)ek+1, ek+2, . . . , en}]
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sending each generator σk to the action of exchanging the particles at ek and ek+1.

Lemma 3.4. The fundamental group of Fn(R2) is the pure braid group Pn.

Proof. To prove this we will be using the short five lemma, which states that given
the following diagram in the category of groups, if the rows are short exact sequences
and g, h are group isomorphisms, then f is a group isomorphism as well.

1 A B C 1

1 A′ B′ C ′ 1

g f h

Recall that we have the short exact sequence in (2.4), we also have a short exact
sequence of fundamental groups given by the fiber bundle R2 \ Q → Fn(R2) →
Fn−1(R2). Let hi be a homomorphism between Pi and π1(Fi(R2)) as defined pre-
viously, then clearly the following diagram commutes,

1 Fn−1 Pn Pn−1 1

1 π1(R2 \Q, x̃0) π1(Fn(R2), x̃0) π1(Fn−1(R2), x0) 1

hn|Fn−1

pn

hn hn−1

p̃n

Recall that Fn−1 is the free group on n− 1 letters. Since R2 minus n− 1 points
is homotopy equivalent to the wedge sum of n − 1 circles, thus the fundamental
group of R2 \ Q is also the free group on n − 1 letters. Each of the generators of
Fn−1, αi,n, is mapped to the loop that encircles the i-th hole once. Thus hn|Fn−1

must be an isomorphism.
Now we proceed by induction. Note that π1(F1(R2), x̃0) is the trivial group as

F1(R2) = R2 is contractible, and P1 is also trivial as you can’t make a nontrivial
braid with just one strand. Thus π1(F1(R2), x̃0) ∼= P1. Now suppose hi−1 : Pi−1 →
π1(Fi−1(R2), x̃0) is an isomorphism. Then by the five lemma hi must also be an
isomorphism. This proves the lemma by induction. �

Theorem 3.5. The fundamental group of Cn(R2) is the braid group Bn.

Proof. We will prove this theorem again by using the short five lemma. But first
we will need to show that the quotient map Fn(R2) → Fn(R2)/Sn is a covering
projection, as that would mean there is a natural surjective homomorphism from
Fn(R2)/Sn = Cn(R2) → Sn given by the unique path lifting property. Intuitively,
the homomorphism sends a braid to its permutation of endpoints. Proposition
1.40 in [6] tells us that it suffices to show that the Sn-action is topologically free
(properly discontinuous) for the quotient map to be a covering projection.

A group action is topologically free when every point admits an open neighbor-
hood such that their orbits do not overlap. That is, for every point p ∈ Fn(R2)
there exists an open neighborhood U such that if g(U) ∩ U 6= ∅ then g = e.
Te see this fact, let (x1, . . . , xn) ∈ Fn(M) with Hausdorff M . Find pairwise
disjoint open Ui such that xi ∈ Ui and define U =

∏n
i=1 Ui. Then suppose

(xg(1), . . . , xg(n)) ∈ g(U) ∩ U . Then it is the case that xi ∈ Ui and xg(i) ∈ Ui.
However, the Ui are pairwise disjoint and therefore for all 1 ≤ i ≤ n, we have that
g(i) = i. Thus g = e. [5].
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Thus we have our short exact sequence now that we’ve shown that the quotient
map is a covering projection,

1→ π1(Fn(R2), x̃0)→ π1(Cn(R2), x0)
π̃−→ Sn → 1

Now recall that we have the short exact sequence (2.2). Let fn be a homomor-
phism from Bn to π1(Cn(R2)), clearly the following diagram commutes,

1 Pn Bn Sn 1

1 π1(Fn(R2), x̃0) π1(Cn(R2), x0) Sn 1

i

hn

π

fn id

p π̃

Since hn is an isomorphism, by the short five lemma, fn must also be an isomor-
phism. �

Theorem 3.6. The fundamental groups of Fn(Rm) and Cn(Rm) for m > 2 are,
respectively, the trivial group 0 and the symmetric group Sn.

Proof. From the fiber bundle we get the long exact sequence on homotopy groups,

· · · →πn(Rm \Q)→ πn(Fn(Rm))→ πn(Fn−1(Rm))→ πn−1(Rm \Q)

→ πn−1(Fn(Rm))→ πn−1(Fn−1(Rm))→ · · · → π1(Fn−1(Rm))→ 1

Note that when m > 2, then the space Rm \P , obtained by taking finitely many
points out of Rm, is simply connected, therefore π1(Rm \ Q) = 0. Thus we have
this short exact sequence:

0 = π1(Rm \ P )→ π1(Fn(Rm))→ π1(Fn−1(Rm))→ 0

Then we can induct on π1(F1(Rm)) = π1(Rm) = 0 to obtain π1(Fn(Rm)) = 0.
This proves the statement for Fn(Rm).

Since the Sn action on Fn(Rm) is topologically free, thus from proposition 1.40
in [6], we have that Sn is isomorphic to π1(Cn(Rm))/π1(Fn(Rm)). Since we’ve
already shown that π1(Fn(Rm)) is trivial, the fundamental group of Cn(Rm) must
be Sn. �

4. Abelian Exchange Statistics

The wave function we’re working with is a complex valued function (quantum
states with no degeneracy), thus we are looking at the representations (homomor-
phisms into vector spaces) of π1(Cn(Rm)) in U(1) ↪−→ C. Each different repre-
sentation of the fundamental group of our configuration space gives us a different
possible exchange statistics. The unitary group of dimension 1 is abelian, hence
the name abelian exchange statistics, thus any representation of the fundamental
group into U(1) must factor uniquely through the abelianization map [1] (for any
G → H where H is abelian, there exists a unique map from G/[G,G] → H such
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that the following diagram commutes).

G U(1)

G/[G,G]

g

f

h

Note that since U(1) ∼= S1 embedded in C is simply the unit circle, any phase
factor gained in a particle exchange in a nondegenerate particle system can only be
in the form of eθi.

Proposition 4.1. The abelianization of Sn is isomorphic to the cyclic group of
order 2, Z/2Z and the abelianization of Bn is isomorphic to the infinite cyclic
group Z.

Sketch of Proof. We can think of the abelianization of a group as forcing all ele-
ments to commute, that is, for any g, h ∈ Sn, we make ghg−1h−1 = 1. Thus to
abelianize a group, we add the above relation to the group. If we force the braid
group to commute, we get from the following relation, σiσi+1σi = σi+1σiσi+1,
which implies σi = σi+1. Thus the abelianization of the braid group,

Bab
n = 〈σ1, . . . , σn−1 | σi = σi+1, σiσjσ

−1
i σ−1j = 1〉 = 〈σ1〉 ∼= Z

is the group generated by one element of infinite order, which is the infinite cyclic
group Z. Recall that we have the homomophism of the braid group into the sym-
metric group by sending each braid to the permutation of the end points. Thus
clearly, we have that each generator σi of the braid group is mapped to the gener-
ator (i i+ 1) of the symmetric group. Furthermore, since for the symmetric group,
(i i+ 1)2 = 1, we have that the abelianization of the symmetric group is simply,

Sab
n = 〈τ = h(σ1) | τ2 = 1〉 ∼= Z/2Z

the cyclic group of order 2, Z/2Z. �

Remark 4.2. The abelianization of a group is the group quotient its commutator
subgroup, the subgroup generated by all its commutators. For the symmetric group
Sn, its commutator subgroup is the alternating group An as, it contains all 3-cycles,

(a b c) = (a c b)2 = ((a b)(a c))2 = [(a b), (a c)] ∈ [Sn, Sn]

and the alternating group contains precisely all permutations generated by 3-cycles.
The alternating group contains all even permutations, thus the abelianization map
is the signature of a permutation sgn : Sn → Z/2Z, which sends each permutation
to 0 or 1 depending on its parity.

As for the braid group, its commutator subgroup is the group containing all
braids with writhe 0. The writhe of a braid is the sum of exponents of generators,

Wr (σa11 σa22 . . . σaii ) = a1 + a2 + . . . ai

or, equivalently and more intuitively, the number of left-handed coressings minus
the number of right-handed crossings,

Wr(γ) = # of −# of

Then clearly, Wr : Bn → Z is exactly the abelianization map of the braid group.
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Now that we’ve found the abelianization of the symmetric group and the braid
group, we can now find all the representations of those groups into U(1) by just
looking at representation of their abelianization.

Theorem 4.3. There can only be two exchange statistics in three and higher di-
mensions, bosons and fermions.

Proof. Since π1(Cn(Rm)) = Sn for m ≥ 3, thus we will be looking at representations
of the form Z/2Z→ U(1).

Sn U(1)

Z/2Z

φ f

A representation of a cyclic group is completely determined by where 1 is sent.
For Z/2Z there are only 2 possible places to send it to, namely, 1 and −1.

If 1 is sent to 1, we get the trivial map and the resulting exchange statistics are
the bosonic statistics that leave the particle system in a symmetric state, Ψ(σv) =
Ψ(v). Otherwise, we get the fermionic particle statistics, that leave the system in
a anti-symmetric state if the exchange is an odd permutation of particles, Ψ(σv) =
sgn(σ)Ψ(v). �

Theorem 4.4. Particles in two dimensions can exhibit arbitrary exchange statis-
tics.

Proof. In two dimensions, since the fundamental group of Cn(R2) is Bn whose
abelianization is Z, we will be looking at representations of Z in U(1). However,
since 1 can now be sent to any place on the unit circle in C there are infinitely
many possible representations of Z and therefore there are infinitely many possible
exchange statistics in R2. �

5. Topological Quantum Computation

By requiring there to be no degeneracy and for exchanges to be abelian we are
losing a lot of information that is encoded in the braid that is created from our
exchange. Thus it is desireable to be able to retain that information. Therefore
motivating non-abelian exchange statistics, which arise from degeneracy in the par-
ticle system, where the same particle configuration exhibits different wavefunctions.
It is represented by having a vector space of states that all correspond to the same
configuration. Thus instead of representations of the braid group into U(1), we are
now dealing with representations into U(n), which is non-abelian, hence the name.
This allows for much more types of statistics that retain much more information of
the exchange and is in fact essential to realizing topological quantum computation.
Topological quantum computation relies on the arbitrariness of exchange statistics
of such anyons and since it is based on topological attributes of particle exchanges,
small disturbances would not affect the state of the quantum system. By employing
these principles in quantum computation, this model effectively solves the problem
of quantum decoherence that plagues many existing models and is the biggest hur-
dle to overcome in creating reliable quantum computers [8]. Topological quantum
computers are also compatible with existing quantum computers so current de-
velopments in quantum algorithms and such can be adopted without modification.
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Furthermore, there are algorithms that make use of the braiding of particles, further
harnessing the topological nature of topological quantum computation [7].

As of the time of writing, abelian anyons have been observed through the Frac-
tional Quantum Hall Effect and there is strong evidence to believe in the existence
of non-abelian anyons, which is permissible in the spin-statistics theorem.
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