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Abstract. Throughout the course of this paper, we will first prove the Stone-

Weierstrass Theroem, after providing some initial definitions. Afterwards, we
will introduce the concept of an L2 space and, using the Stone-Weierstrass

theorem, prove that L2[0, 1] is separable.
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1. Introduction

Most calculus students are familiar with the concept of a Taylor Polynomial and
some of the associated results. While these polynomials can be made arbitrarily
close to certain functions on a closed interval, they require that the functions be
analytic (highly differentiable) which is a relatively small subclass of functions. This
raises the question of whether this condition is actually necessary for a function to be
approximated on a closed interval, to an arbitrary degree, by a polynomial. It turns
out, as Karl Weierstrass proved with the Weierstrass Approximation Theorem, it
is only necessary for f to be continuous on the closed interval in order for such
polynomials to exist. This, however, assumes that f maps from R into R. Marshall
Stone, with the Stone-Weierstrass theorem, generalized the result to any continuous
function that maps the elements of a compact Hausdorff space into R. This result
also generalizes the approximating functions from polynomials to the members of
a subalgebra of the continuous functions that map X to R. The remainder of this
paper will be dedicated to exploring this theorem in more detail, as well as some
applications of it.

2. Stone-Weierstrass Theorem

Before we get to the actual statement of the theorem, let’s begin by defining
a few terms necessary to state and prove this theorem. Now, we’re interested in
considering continuous on compact Hausdorff spaces.
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Definition 2.1. A Hausdorff space, X, is a topological space such that for any
two distinct elements, x1 and x2, there exist two open sets, U1 and U2, such that
x1 ∈ U1, x2 ∈ U2, and U1 ∩ U2 = ∅

C(X,R) will be used to denote the set of all continuous f : X → R, where X is a
compact Hausdorff space. Now, for any f, g ∈ C(X,R), x ∈ X, and c ∈ R, let f +g
be defined by (f + g)(x) = f(x) + g(x) and cf by (cf)(x) = c · f(x). Since both
f + g and cf are continuous if f, g are continuous, C(X,R) forms a vector space
over R. In fact, C(X,R) is actually a normed space, with norm defined as follows

Definition 2.2. The uniform norm of a function, f , denoted by ‖f‖u is given
by ‖f‖u = supx∈X |f(x)|.

Since X is compact and f is continuous, this supremum is always guaranteed to
exist.

Furthermore, if, for all f, g ∈ C(X,R) and x ∈ X, we define fg by (fg)(x) =
f(x)g(x), it follows that fg ∈ C(X,R). Thus, we see that C(X,R) actually forms
an algebra over R.

Definition 2.3. An algebra is a vector space over R, A, equipped with a metric
and an associative bilinear product, m : A×A → A. A will be referred to as unital
if the operation m has an identity element. A subalgebra is a subset of an algebra
which is also an algebra under the same operations.

The following definitions define a few terms related to algebras and sets of func-
tions

Definition 2.4. A set of functions, S, is said to separate points if, for all x, y
where x 6= y, there exists some f ∈ S such that f(x) 6= f(y).

Definition 2.5. An algebra, A ⊂ C(X,R), is said to be a lattice if, for all f, g ∈ A,
max{f, g},min{f, g} ∈ A.

Now that all preliminary definitions are out of the way, let’s proceed with the
statement of the Stone-Weierstrass theorem.

Theorem 2.6 (Stone-Weierstrass Theorem). Suppose A is a subalgebra of C(X,R)
that separates points, where X is a compact Hausdorff space. If there exists x0 ∈ X
such that f(x0) = 0 for all f ∈ A, then A is dense in {f ∈ C(X,R)} | f(x0) = 0}.
Otherwise, A is dense in C(X,R).

Before proving this theorem, we’re going to slightly restate it to make it easier
to prove. Since a set A is dense in another set, B, if and only if A = B, where A
is the closure of A, it will suffice to consider, and classify, the closed subalgebras
of C(X,R). The following is a restatement of the above theorem which takes this
into account.

Theorem 2.7 (Stone-Weierstrass Theorem (Restatement)). If A is a closed sub-
algebra of C(X,R) that separates points, then either A = C(X,R) or A = {f ∈
C(X,R)} | f(x0) = 0} for some x0 ∈ X.

In order to prove this theorem, let’s first start by considering a simpler case- one
in which X consists of only two points, x1 and x2. Since any function f : X → R is
described entirely by the image of x1 and x2, each function can be represented by the
ordered pair (f(x1), f(x2)). Thus, it will suffice to consider the closed subalgebras
of R2.
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Lemma 2.8. Consider R2 as an algebra under coordinate addition and multiplica-
tion. The only subalgebras for R2 are R2, {(0, 0)}, {(x, 0) | x ∈ R}, {(0, x) | x ∈ R},
and {(x, x) | x ∈ R}.

Proof. Since each one of these sets is closed under coordinatewise addition and
multiplication, they each form a subalgebra of R2. To see that these are the only
ones, consider a point (a, b) ∈ A. If A contains a point such that a 6= b 6= 0, then
(a, b) and (a2, b2) are linearly independent. As a result, A = R2. Now, the cases
a = b 6= 0, a 6= 0 = b, or a = 0 6= b generate the other three nonzero subalgebras
mentioned above. Finally, the only case remaining is if the only point happens when
a = b = 0, which corresponds to the set {(0, 0)}. Thus, the subalgebras mentioned
above are the only possibilities. �

Now, we’ve essentially proven the theorem when X consists of 2 elements. It
turns out that, with a few additional lemmas, proving the theorem in this case
proves it in general. Before exploring this in more detail, we will first prove these
additional lemmas, which focus largely on classifying functions within the subal-
gebra as well as determining whether a certain function is contained within the
algebra. The first of these is a special case of the Weierstrass Approximation theo-
rem, applied to the absolute value function.

Lemma 2.9. For any ε > 0 there is a polynomial P on R such that P (0) = 0 and
||x| − P (x)| < ε for x ∈ (−1, 1).

Proof. Let’s start by considering the Maclaurin series for f(t) = (1 − t) 1
2 , given

by 1 −
∑∞
k=1 akt

k, for constants ak. Computing several derivatives, we see that

f (k+1)(t) = (2k−1)f(k)(t)
2 for k ≥ 1. Therefore,

ak+1 =
f (k+1)(0)

(k + 1)!
=

(2k − 1)f (k)(0)

2(k + 1)k!
=

(2k − 1)ak
2(k + 1)

Therefore, we have that

lim
k→∞

∣∣∣∣ak+1t
k+1

aktk

∣∣∣∣ = lim
k→∞

2k − 1

2k + 2
|t| = |t|

Thus, applying the ratio test, we see that the above series converges for t ∈ (−1, 1).
Now, let’s show that this Maclaurin series actually equals f(t). To see this, note

that, according to Taylor’s theorem, we know that the remainder for any Maclaurin

polynomial of degree n must be given by Rn(t) = f(n+1)(c)

(n+1)! t
k+1 for some c ∈ (0, 1).

Now, since t ∈ (−1, 1) and f (n+1)(c) achieves it’s maximum for c = 0, we see that
this term must be less than an+1. Now, since the series above converges, we have
that limn→∞Rn(t) = 0, as required.

To see that this series also converges for t = 1, we can apply the monotone
convergence theorem to the counting measure on the natural numbers to conclude
that

∞∑
k=1

ak = lim
t→1

∞∑
k=1

ak = 1− lim
t→1

(1− t) 1
2 = 1

Therefore, we have that the Maclaurin series for f(t) converges to f(t) for t ∈
[−1, 1].
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This means that for every ε > 0 there exists a polynomial, Q(t), such that
|f(t)−Q(t)| < 1

2ε. Substituting t = 1− x2, we see that

|f(1− x2)−Q(1− x2)| = ||x| −R(x)| < 1

2
ε

where R(x) is the polynomial given by Q(1−x2). Finally, let P (x) = R(x)−R(0).
Then, we have that

||x| − P (x)| < ||x| −R(x)|+ |R(0)| < ε

where the last step follows from plugging x = 0 into the above inequality. �

Now that we have that the absolute value function can be approximated suf-
ficiently closely, we can use this to show that, for any f contained in the closed
subalgebra, A, |f | ∈ A. As a result, A must be a lattice.

Lemma 2.10. If A is a closed subalgebra of C(X,R), then |f | ∈ A whenever f ∈ A
and A is a lattice.

Proof. If f = 0, then |f | = 0, and therefore, |f | ∈ A. Now, consider f 6= 0. Let

h : X → [−1, 1] be given by h = f
‖f‖u

. Therefore, by lemma 2.9, for every ε > 0,

there exists a polynomial P such that ‖|h|−P ◦h‖u < ε. Since h ∈ A and P has no
constant term, P ◦ h ∈ A. Now, since we have constructed a sequence whose limit
if |h| and A is closed, it follows that |h| ∈ A. Thus, |f | = ‖f‖u|h| ∈ A, as required.

To see that A is a lattice, note that, by definition,

max{f, g} =
f + g + |f − g|

2

min{f, g} =
f + g − |f − g|

2

Therefore, by the first part of this lemma, we have that max{f, g},min{f, g} ∈
A. �

While the first of these results does provide some information on the contents
of any potential subalgebra, the second condition gives an important restriction
on the structure of any closed subalgebra, which can in turn be used to provide a
condition for the inclusion of a function f within this algebra.

Lemma 2.11. Suppose that A is a closed lattice in C(X,R) and f ∈ C(X,R). If
for every x, y ∈ X there exists gxy ∈ A such that gxy(x) = f(x) and gxy(y) = f(y),
then f ∈ A.

Proof. Let ε > 0 be given. For all x, y ∈ X, define Uxy = {z ∈ X | f(z) < gxy(z)+ε}
and Vxy = {z ∈ X | f(z) > gxy(z) − ε} and note that x, y ∈ Uxy and x, y ∈ Vxy.
Fix y ∈ X. Since, for all x, x ∈ Uxy, the set {Uxy | x ∈ X} forms an open cover
of X. Since X is compact, there exists a finite subcover, {Uxiy | 1 ≤ i ≤ n}. Let
gy = max{gx1y, . . . , gxny}. Now, we have that f < gy + ε over X and f > gy − ε on
Vy = ∩ni=1Vxiy. Since, for all y, y ∈ Vy, the set {Vy | y ∈ X} is an open cover for X.
Therefore, because X is compact, there exists a finite subcover, {Vyi | 1 ≤ i ≤ k}.
Let g = min{gy1 , . . . , gyk}. From this we see that ‖f −g‖u < ε. Since A is a lattice,
it follows that g ∈ A. Finally, since A is closed, we have that f ∈ A. �
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Now that we have conditions for classifying and identifying the functions that
must be in any closed subalgebra of C(X,R), we can prove the Stone-Weierstrass
theorem. This will be done by appealing to the much simpler case proved in lemma
2.8, and then, using lemmas 2.10 and 2.11, expanding this to any compact Hausdorff
space X.

Proof: Stone-Weierstrass theorem. Let Axy = {(f(x), f(y)) | f ∈ A}. Now, since
A is a subalgebra of C(X,R), Axy is a subalgebra of R2. Therefore, by lemma 2.8
Axy is either R2, {(0, 0)}, {(x, 0) | x ∈ R}, {(0, x) | x ∈ R}, or {(x, x) | x ∈ R}. Now,
since A separates points, Axy cannot be {(0, 0)} or {(x, x) | x ∈ R}. If Axy = R2,
then it follows from lemma 2.10 and lemma 2.11 that A = C(X,R). Finally, if Axy
is {(x, 0) | x ∈ R} or {(0, x) | x ∈ R}, then there exists some x0 (y = x0 or x = x0,
respectively) such that f(x0) = 0 for all f ∈ A. Furthermore, from lemma 2.10 and
lemma 2.11 , we have that A = {f ∈ C(X,R)} | f(x0) = 0}. Finally, note that if A
contains a constant function, then there does not exist an x0 such that f(x0) = 0
for all f ∈ A. Thus, A = C(X,R). �

3. L2 Spaces

To start, let’s define L2[0, 1] and discuss some of its properties. This set consists
of all functions f : [0, 1] → R which are square, Lebesgue integrable (

∫
f2dµ is

finite). Now, if f, g ∈ L2[0, 1] and c ∈ R, then f + g ∈ L2[0, 1] (this follows from∫
(f + g)2dµ =

∫
f2dµ +

∫
g2dµ + 2

∫
fgdµ and all these terms are finite) and

cf ∈ L2[0, 1]. Thus, L2[0, 1] forms a vector space over R. Additionally, we can

define a norm over L2[0, 1], where, for f ∈ L2[0, 1], ‖f‖L2 = (
∫ 1

0
f2dµ)

1
2 . This

space is actually a Hillbert space, although the proof that L2[0, 1] is complete is
omitted here.

Now, we wish to show that L2[0, 1] is separable.

Definition 3.1. A space is separable if it has a dense, countable subset.

We wish to show that this subset is the set of all polynomials, p : [0, 1]→ R (this
set will be denoted P[0, 1]). In order to do this, we will first prove that P[0, 1] is
dense in C([0, 1],R). Then, we will show that C([0, 1],R) is dense in L2[0, 1]. From
these two results, and an additional lemma, we will conclude that P[0, 1] is dense
in L2[0, 1].

Lemma 3.2 (Weierstrass Approximation Theorem). The set of real-valued poly-
nomials, P, is dense in C(R,R).

Proof. If f, g ∈ P, then f + g ∈ P and f · g ∈ P. Therefore, P forms a subalgebra
of C(R,R). Additionally, since P contains every constant, there does not exist an
x0 ∈ R such that f(x0) = 0 for all f ∈ P. Thus, by the Stone-Weierstrass theorem,
P is dense in C(R,R). �

Now that we’ve proven the above result, we will next show that C([0, 1],R) is
dense in L2([0, 1]). In order to show this, we will prove the equivalent statement
that any function f ∈ L2([0, 1]) can be approximated by a continuous function,
i.e. for every ε > 0, there exists a continuous function g such that ‖f − g‖L2 = 0.
To show that this must be the case, we will start by proving this for indicator
functions. From this, we can derive the result for simple functions, from which
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follows the same result for nonnegative functions. The final result follows from
this.

Now, before proving this, we will first state a theorem that will be necessary to
prove this

Theorem 3.3 (Lebesgue Dominated Convergence Theorem). Let {fn} be a se-
quence of measurable functions such that this sequence converges pointwise to some
f and |fn| ≤ g for all n and an integrable function g. Then, f is integrable and∫
fdµ = limn→∞

∫
fndµ

Lemma 3.4. The set C([0, 1],R) is dense in L2[0, 1].

Proof. It suffices to show that, for all f ∈ L2[0, 1], there exists a sequence of func-
tions, {gn}, such that limn→∞‖f − gn‖L2 = 0. In this case, we say that f is
approximated by {gn}.

First, let A be a closed subset of [0, 1] and KA be it’s indicator function. Now,
define t(x) = infy∈A{|x − y|} and gn(x) = 1

1+nt(x) . For all n, we have that |gn| is

continuous and, for all x ∈ [0, 1], |gn(x)| ≤ 1. In particular, for all x ∈ A, gn(x) = 1.
Furthermore, for x ∈ B = [0, 1] \A, limn→∞ gn(x) = 0. Thus,

lim
n→∞

‖gn(x)−KA(x)‖L2 = lim
n→∞

(∫
B

gn(x)2dx

) 1
2

=

(∫
B

lim
n→∞

gn(x)2dx

) 1
2

= 0

where the last step follows from the Lebesgue dominated convergence theorem.
Therefore, the indicator function for any closed subset of [0, 1] can be approximated
by a sequence of continuous functions. Since simple functions are a finite linear
combination of such indicator functions and continuity is preserved under finite
linear combinations, any simple function can be approximated by a sequence of
continuous functions.

Now, suppose that f ∈ L2[0, 1] is nonnegative. Since f has these properties, there
exists a sequence of nonnegative simple functions, {sn}, such that limn→∞ sn = f .
Since each sn, and f , is nonnegative, we have that (f−sn)2 ≤ f2. Therefore, by the
Lebesgue dominated convergence theorem, it follows that ‖f − sn‖L2 = 0. Thus,
since every simple function can be approximated by a continuous function, every
nonnegative function can be approximated by a sequence of continuous functions.

Finally, for any f ∈ L2[0, 1], we can say that f = f+ − f−, where

f+(x) =

{
f(x) f(x) > 0

0 otherwise

f−(x) =

{
−f(x) f(x) < 0

0 otherwise

Since both f+ and f− are nonnegative functions, they can each be approximated by
a sequence of continuous functions. Thus, f can be approximated by a sequence of
continuous functions. Therefore, C([0, 1],R) is dense in L2([0, 1]), as required. �

Now, for the final lemma, we will prove that if a metric space M is dense in a
metric space N , and N is dense in a metric space O, where M , N , and O all have
the same metric. Then, M is dense in O.

Lemma 3.5. Let M , N , and O be metric spaces equipped with the same metric,
d. If M is dense in N and N is dense in O, then M is dense in O.
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Proof. Let ε > 0 be given and choose o ∈ O. Since N is dense in O, there exists
some n ∈ N such that d(o, n) < ε

2 . Furthermore, since M is dense in N , there
exists some m ∈ M such that d(m,n) < ε

2 . Using the triangle inequality, we have
that d(m, o) ≤ d(m,n) + d(n, o) < ε. Therefore, M is dense in O. �

Now, using the above lemma, we know that P[0, 1] is dense in L2[0, 1] under the
uniform norm. Thus, it only remains to show that the L2 norm is less than or equal
to the uniform norm.

Theorem 3.6. L2[0, 1] is separable.

Proof. By lemma 3.4 we have that C([0, 1],R) is dense in L2[0, 1] under the L2

norm. Furthermore, we have that the polynomials over [0, 1], P[0, 1], are dense in
C([0, 1],R) under the supremum norm. Now, note that(∫ 1

0

f2dx

) 1
2

≤
(∫ 1

0

‖f‖2udx
) 1

2

= (‖f‖2u)
1
2 = ‖f‖u

Thus, P[0, 1] is dense in C([0, 1],R) under the L2 norm. Therefore, by lemma 3.5
P[0, 1] is dense in L2[0, 1] under the L2 norm. So, since P[0, 1] is countable, L2[0, 1]
is separable. �

Now we have shown that L2[0, 1] is a separable Hillbert space. Consequently, it
has a countable orthogonal basis, which, among other things, allows us to define
fourier coefficients for functions in this space. This can prove exceedingly useful in
the study of these functions.
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