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Abstract. Modular forms are complex analytic objects, but they also have

many intimate connections with number theory. This paper introduces some of
the basic results on modular forms, and explores some of their uses in number

theory.
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1. Modular Forms

1.1. Definitions.

Definition 1.1. The upper half-plane, denoted H, is the set {z ∈ C : Im(z) > 0}.

Definition 1.2. The modular group is another name for the group SL2(Z), which
is the group of 2× 2 matrices with integer entries and determinant 1.

Throughout this paper, the modular group will act on H via the following: for

γ =

(
a b
c d

)
∈ SL2(Z), τ ∈ H, define γ(τ) = aτ+b

cτ+d . Note that if τ = x+ iy, then

γ(τ) =
(ax+ b) + iay

(cx+ d) + icy
=

((ax+ b) + iay)((cx+ d)− icy)

|cτ + d|2

which, by expanding, gives

(1.3) Im(γ(τ)) =
ady − bcy
|cτ + d|2

=
Im(τ)

|cτ + d|2
.

Therefore, the action of SL2(Z) fixes H. Note that negating all of the entries of a
given element of SL2(Z) does not affect the action of the element.

Definition 1.4. A modular form is a function f on H satisfying:
1
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(1) for all γ =

(
a b
c d

)
∈ SL2(Z), τ ∈ H, we have f(γ(τ)) = (cτ + d)kf(τ) for

some integer k, called the weight of f .
(2) f is holomorphic on H
(3) f is holomorphic at ∞

By “holomorphic at ∞”, we mean the following: let q = e2πiτ and define the
function g(q) = f( log q

2πi ). This is a well-defined function despite the log, because by

letting γ =

(
1 1
0 1

)
in condition (1), we see that f(τ + 1) = f(τ), so f takes the

same value on each of the multiple arguments given by the logarithm. We will think
of ∞ as lying infinitely far in the imaginary direction, and q → 0 as Im(τ) → ∞,
so we say that f is holomorphic at∞ if and only if g extends holomorphically to 0.

The modular forms of a given weight k form a vector space, denotedMk(SL2(Z)).

1.2. Connection to number theory. The way that we will use modular forms
to investigate number theory is through their Fourier expansions or q-expansions,
so called because of the notation q = e2πiτ . The existence of such expansions is
given by the condition of holomorphy at ∞. One important example of a modular
form is the Eisenstein series:

Gk(τ) =
∑
(c,d)

1

(cτ + d)k

where the sum extends over all (c, d) ∈ Z2 \ (0, 0). One can show that for even
k > 2, the series converges uniformly and

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

where ζ is the Reimann zeta function and σa(n) =
∑
d|n d

a, where the sum extends

over the positive divisors of n.
We also define the normalized Eisenstein series, denoted Ek(τ), byGk(τ)/(2ζ(k)).

This is normalized in the sense that its constant term is always 1. It turns out that
M8(SL2(Z)) is a 1-dimensional vector space, and thus E2

4 and E8, which are two
of its elements, must be equal, as they have equal constant terms. Using this fact,
we can equate the rest of the coefficients in their respective series. After expanding
out the series for E2

4 , we arrive at the unexpected fact that for all integers n ≥ 1,

σ7(n) = σ3(n) + 120

n−1∑
k=1

σ3(k)σ3(n− k).

Similar methods will be used to investigate other problems below.

1.3. The fundamental domain. A central object relating to the modular group
SL2(Z) is its fundamental domain. This is a subset D of H with the property that
for every element of H, there is exactly one (in most cases) γ ∈ SL2(Z) such that
γ(τ) ∈ D. The cannonical choice of D is {τ ∈ H : − 1

2 ≤ Re(τ) ≤ 1
2 , |τ | ≥ 1}.

Proposition 1.5. For D as defined above, every τ ∈ H is transformed into D by
some γ ∈ SL2(Z)
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Figure 1. The fundamental domain D.

Proof. The element

(
1 ±1
0 1

)
of SL2(Z) takes τ to τ ± 1, so repeatedly applying

it will take any element to the strip {|Re(z)| ≤ 1
2}, because the strip has length

1. Let τ ′ be the transformation of τ in this way. Then τ ′ ∈ D unless |τ ′| < 1. If

this is the case, then Im(− 1
τ ′ ) = Im( τ ′

|τ ′|2 ) > Im(τ ′). Therefore we can apply the

transformation

(
0 −1
1 0

)
τ ′ = − 1

τ ′ , and then use the previous transformation to

move the resulting point back into the strip. Each time we do this, the imaginary
part increases, as long as the result still has magnitude less than 1. However,
because there are only finitely many points on the lattice generated by 1 and τ ′

that lie within a given disk, there are only finitely many integers c, d such that

|cτ ′ + d| < 1. Combined with the fact established above that Im(γ(τ)) = Im(τ)
|cτ+d|2 ,

this shows that the imaginary part of τ ′ can only take on finitely many values that
are above its original value. Therefore, the second step will eventually no longer
result in a point with greater imaginary part, which means that the resultant point
will have magnitude greater than 1. Therefore the repeated application of the two
transformations eventually results in a point inside of D. �

It is clear, however, that for some τ , the element γ ∈ SL2(Z) that sends τ into D

is not unique. For instance, if Re(τ) = k + 1
2 , with k ∈ Z, then both

(
1 k
0 1

)
and(

1 k − 1
0 1

)
take τ into D. However, this case and another are the only two possible

ways that there can be any ambiguity. To state this fact differently, suppose τ ∈ H
and γ1, γ2 ∈ SL2(Z), and both γ1(τ), γ2(τ) ∈ D. Let τ1 = γ1(τ) and τ2 = γ2(τ).
Then γ2γ

−1
1 (τ1) = τ2. Thus we have τ1, τ2 ∈ D and γ = γ2γ

−1
1 such that γ(τ1) = τ2.

The next result enumerates the cases in which this is possible.

Proposition 1.6. Suppose τ ∈ D and γ ∈ SL2(Z) such that γ(τ) ∈ D, with
γ 6= ±I. Then one of the following is true:

(1) γ = ±
(

1 ±1
0 1

)
(2) γ = ±

(
0 −1
1 0

)
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Proof. Without loss of generality, assume Im(γ(τ)) ≥ Im(τ) (otherwise invert γ and

swap τ with γ(τ)). Let γ =

(
a b
c d

)
. By equation (1.3), we thus have |cτ +d|2 ≤ 1.

Also, Im(τ) ≥
√
3
2 because this is true of any point in D. Therefore

|c|
√

3

2
≤ |c|Im(τ) = |Im(cτ + d)| ≤ |cτ + d| ≤ 1.

Thus c ∈ {−1, 0, 1}. If c = 0, then ad = 1, so a = d = ±1, so γ(τ) = τ1 ± b. This
can only be the case if τ is on the left or right boundary and b = ±1, which leads
to (1).

Now suppose c = ±1. Then |τ ± d|2 ≤ 1, so

(Re(τ)± d)2 + (Im(τ))2 ≤ 1 =⇒ (Re(τ)± d)2 ≤ 1− (Im(τ))2 ≤ 1− 3
4 = 1

4
=⇒ |Re(τ ± d)| ≤ 1

2

which means that |d| ≤ 1, because |Re(τ)| ≤ 1
2 . Now we have to examine the

cases for d. If d = 0, then we in fact have |τ | ≤ 1, so |τ | = 1 because τ ∈ D,
and Im(τ) = Im(γ(τ)) by (1.3). But then we can apply the same analysis to
τ ′ = γ(τ) and γ′ = γ−1, because now τ ′ and γ′ also satisfy the condition that
Im(γ′(τ ′)) ≥ Im(τ ′). Thus we can conclude that |τ ′| = 1 as well. Then we have τ
and γ(τ) both have magnitude 1 and have the same imaginary part but are distinct,
so γ(τ) = − 1

τ , from which (2) follows.

If |d| = 1, then we have |Re(τ)±1| ≤ 1
2 . However, because |Re(τ)| ≤ 1

2 , we must

have equality and |Re(τ)| = 1
2 . By the inequalities at the beginning of the previous

paragraph, this gives |Im(τ)| =
√
3
2 , so τ is one of the two corners of D. In this

case, both (1) and (2) work. �

The previous results establish an important fact: T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
generate SL2(Z). Indeed, S and T are the same transformations used in Proposi-
tion 1.5, and they are (up to sign) the elements in the conclusion of Proposition
1.6. Therefore, we can pick τ ∈ D, and γ ∈ SL2(Z). If γ(τ) /∈ D, then we can use
proposition 1.5 to move γ(τ) back into D by using S and T . If the resulting point
is τ , then we have written γ in terms of S and T . If not, we apply Proposition 1.6
and simply add on one more instance of ±T±1 or ±S. This last step also takes care
of the case that γ(τ) /∈ D. Note that S2 = −I, so the sign differences can be dealt
with.

1.4. Congruence Subgroups. In addition to SL2(Z), it will also be useful to
consider special subgroups of the same. We define the principle congruence subgroup
of level N as

Γ(N) =

{(
a b
c d

)
∈ SL2(Z) : a, d ≡ 1 (mod N), b, c ≡ 0 (mod N)

}
.

We will also write the congruences as

(
a b
c d

)
≡
(

1 0
0 1

)
. Such subgroups are

normal, because each is the kernel of the natural homomorphism taking SL2(Z)→
SL2(Z/NZ). It is also true that each of these subgroups has finite index in SL2(Z).
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Definition 1.7. A congruence subgroup of level N is a subgroup Γ ≤ SL2(Z) such
that Γ(N) ≤ Γ.

Because Γ(N) has finite index, any congruence subgroup does as well.
Two important classes of congruences subgroups are the following:

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}
Γ1(N) =

{(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)

}
where the congruence is entrywise, and a ∗ indicates that there are no restrictions
on that entry (besides those imposed by membership of SL2(Z)).

We can define weight-k modular forms with respect to a congruence subgroup Γ
in a similar way as modular forms above. In condition (1), we only check γ ∈ Γ, and
we also require that f(α(τ))(cτ + d)−k be holomorphic at ∞ for each α ∈ SL2(Z),
where c and d make up the bottom row of α. We denote the vector space of modular
forms of weight k with respect to Γ as Mk(Γ).

Congruence subgroups also have fundamental domains. In fact, their fundamen-
tal domains consist of unions of translates of D by elements of SL2(Z), where each
translating element is taken from one coset of the congruence subgroup in SL2(Z).
Thus the number of regions comprising the fundamental domain of Γ is the index
of Γ in SL2(Z). This will be unproven, but some intuition may be provided by the
next proposition.

Proposition 1.8. Let Γ be a congruence subgroup and suppose
⋃
j{±I}Γγj =

SL2(Z). Then for every τ ∈ H, the orbit Γτ is equal to an orbit Γτ ′ for some
τ ′ ∈

⋃
j γjD.

Proof. We know that for each γ ∈ SL2(Z), there is some  and some γ′ ∈ Γ such
that ±Iγ′γj = γ. Thus SL2(Z) is the union of all such elements, because any
element of that form is clearly in SL2(Z). However, the union of all of the elements
of a group inverted is equal to the original group, so SL2(Z) is also the union of
all elements of the form (±Iγ′γj)−1 = γ−1j ± Iγ′−1. However, γ′−1 runs through

SL2(Z) as γ′ does, so the union of such elements is
⋃
j γ
−1
j {±I}Γ, and thus this

union is equal to SL2(Z). Next, pick τ ∈ H. Then there is some γ′ ∈ Γ and some j
such that γ−1j ± Iγ′(τ) ∈ D. Then γ(τ) ∈ γjD (we can drop the ±I because it does

not affect the transformation). Choosing τ ′ = γ(τ), we then see that Γτ = Γτ ′ and
τ ′ ∈ γjD ∈

⋃
j γjD. This completes the proof. �

2. A theorem

We will now prove an important theorem in the study of modular forms.

Theorem 2.1. Let f ∈Mk(SL2(Z)). Then

v∞(f) +
1

3
vρ(f) +

1

2
vi(f) +

∑
P∈D
P 6=i,ρ

vP (f) =
k

12

where vp(f) is the order of f at point p and ρ = e
2
3πi.
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Figure 2. The fundamental domain of Γ0(24), shown as a union
of translates of D.

Figure 3. The path of integration in Theorem 2.1.
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Proof. We will prove the theorem by integrating f around the contour shown in
Figure 3.

If f has any poles or zeroes along the sides this contour, we can place half
circles around them, as shown in Figure 3 between A and B and between D’ and
E. Placing these bumps in this way will keep the point inside the region and by
the periodicity of f , the integrals along the bumps will cancel out. Similarly, if
any poles or zeroes exist on the curved portion, we can place circular arcs around
the point and the integrals will cancel out as the radii tend to 0. Therefore we
can assume that f has no zeroes or poles on the boundary besides at i or ρ. The
contour that we chose avoids these points. Then by the residue theorem, we have
1

2πi

∮
f ′

f dz =
∑

Res[f, p] =
∑

P∈D
P 6=i,ρ

vP (f) as the region approximates D. Now

we’ll compute the integral over all of the components of the path. By changing
variables to q, the top segment becomes a circle around infinity. Therefore, as the
top segment goes to ∞, the value of the integral over it goes to v∞(f). Next, by
the periodicity of f , the integrals along the left and right sides cancel each other
out. Next we look at the arc BB′. Near ρ, we can write f = a(z − ρ)m(1 + · · · ),
so f ′/f = m/(z − ρ) + holomorphic terms. The holomorphic terms have 0 integral
as the radius of the arc shrinks, so we are left with integrating m/z over a arc
approaching an angle of π/3, so the integral tends to −m/6. The arc around −ρ̄
gives the same value, so in total we get − 1

3vρ(f). The same argument shows that

the small arc in the middle gives a contribution of − 1
2vi(f).

Finally, we have the arcs B′C and C ′D. The element S maps B′C to DC ′, and
we know f(Sz) = zkf(z). We compute

df(Sz)

dz
= f ′(Sz)

1

z2
= zkf ′(z) + 2kzk−1f(z)

which we can rearrange to

1

z2
f ′(Sz)

f(Sz)
=
f ′(z)

f(z)
+
k

z

By change of variables, we have∫ D

C′

f ′(z)

f(z)
dz =

∫ B′

C

f ′(Sz)

f(Sz)
dz.

Therefore the two integrals cancel, except for a term k
12

∫ C
B′

k
z dz. This term ap-

proaches k/12 in a similar manner to the above integrals. Combining all of these
integrals proves the theorem. �

This is a useful result, because it allows us to classify the elements ofMk(SL2(Z)).
For example: if k = 2, there is no way for the left hand side to equal 1/6, so
M2(SL2(Z)) is empty. If k = 4, then the right hand side is 1/3, so we must have
vρ(f) = 1 and there must not be any other zeroes, unless f is identically 0. We
know G4 is inM4(SL2(Z)), so G4(ρ) = 0. Then there is some a such that f − aG4

has a zero at ∞ and thus is identically 0, so f = aG4. Thus M4(SL2(Z)) is a
one-dimensional vector space generated by G4, denoted M4 = (G4). Similarly, we
can show that M6 = (G6), M8 = (G2

4), M10 = (G4G6), and in fact that every
element ofM(SL2(Z)) =

⋃
kMk(SL2(Z)) is a polynomial in G4 and G6. Note that

we have demonstrated the claim in section 1.2.
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3. The k-Squares Problem

We now move on to investigate an important problem in number theory: in how
many ways can one write an integer n as a sum of k squares? Let r(n, k) be the
number of such representations, where order does not matter. One property of this
function that is easy to see is that if a+b = k, then r(n, k) =

∑n
i=0 r(i, a)r(n− i, b).

This is a Cauchy product, and suggests that we construct power series with these
functions as coefficents. We thus define the generating functions

θ(τ, k) =

∞∑
n=0

r(n, k)qn.

It turns out that such series are absolutely convergent, and by our observation
above, we have θ(τ, k1)θ(τ, k2) = θ(τ, k1 + k2). Because q = e2πiτ , we have θ(τ +
1, k) = θ(τ, k). One can use these θ-functions to investigate the values of r(n, k);
in particular, we will derive the values of r(n, 4).

Theorem 3.1. For all integers n > 0, r(n, 4) = 8
∑
d|n
4-d

d.

Proof. Now let θ(τ) = θ(τ, 1). Then by definition, θ(τ) =
∑
d∈Z q

d2τ , because
the only numbers that can be written as the sum of one square are the squares
themselves, and it can be done with two numbers, one positive and one negative
(except for 0). One can show that θ( τ

4τ+1 ) =
√

4τ + 1θ(τ) and thus θ( τ
4τ+1 , 4) =

(4τ + 1)2θ(τ, 4). Thus θ4 is a weight-2 modular form with respect to the subgroup

generated by ±
(

1 1
0 1

)
and ±

(
1 0
4 1

)
, because these are the elements which θ4

respects with regard to the modularity condition. This subgroup turns out to be
Γ0(4). Note that θ4(τ) = θ(τ, 4). Therefore by studying θ4 we will be able to find
the values of r(n, 4).

We know that G2(τ) = 2ζ(2) − 8π2
∑∞
n=1 σ(n)qn, but the series defining G2 is

only conditionally convergent, so it is not a modular form. However, it turns out
that if we define

G2,N (τ) = G2(τ)−NG2(Nτ),

then G2,N ∈ M2(Γ0(N)). We will examine the functions G2,2 and G2,4. First we
will find explicit expressions for their q-coefficients.

We have

G2,2(τ) = G2(τ)− 2G2(2τ)

= 2ζ(2)− 8π2
∞∑
n=1

σ(n)qn − 2(2ζ(2)− 8π2
∞∑
n=1

σ(n)q2n)

= −2ζ(2) + 8π2
∞∑
n−1

σ �2(n)qn

= −π
2

3

(
1 + 24

∞∑
n−1

σ �2(n)qn

)

where σ �2(n) is the sum of the divisors of n that are not divisible by 2. Similarly,
we find that

G2,4(τ) = −π2

(
1 + 8

∞∑
n=1

σ �4(n)qn

)
.
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Figure 4. The fundamental domain for Γ0(4).

We will now use the normalized versions of these series, E2,2 = G2,2 · − 3
π2 and

E2,4 = G2,4/(−π2).
Computing the first few terms of each, we get E2,2 = 1 + 24q + · · · and E2,4 =

1 + 8q + · · · . Thus the two are linearly independent.
We can find a similar formula to that of Theorem 2.1 by integrating around the

fundamental domain of Γ0(4). In this case, the formula turns out to be∑
P∈X0(4)

vP (f) =
k

2

where X0(4) denotes the fundamental domain of Γ0(4) under some suitable iden-
tifications along the boundary, similar to how the two vertical edges of D can be
identified because they are equal under SL2(Z). Now, for each P , define fP =
aE2,2 + bE2,4 with a and b chosen such that fP (P ) = 0. Then if g ∈ M2(Γ0(4))
and g(P ) = 0, g/fP ∈M0 so it is a constant complex number. Thus every element
of M2 is a linear combination of E2,2 and E2,4.

Now expand out θ4 to get 1 + 8q + · · · . From this we can see that θ4 = E2,4

because the first two coefficients match and we have established that the vector
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space is two-dimensional so that’s all we need. Thus we can equate the coefficients

and find that r(n, 4) = 8σ �4(n) as desired. �

Thus we have used the theory of modular forms to solve a problem in number
theory. Other values of k can be attacked in similar ways.
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