
MILNOR’S CONSTRUCTION OF EXOTIC 7-SPHERES

RACHEL MCENROE

Abstract. In this paper, I will provide a detailed explanation of Milnor’s construction of exotic 7-spheres.
The candidate manifolds will be constructed as total spaces of S3 bundles over S4, denoted Mh,l. The subset

of these candidates satisfying the condition h + l = ±1 will be shown to be topological spheres by Morse
Theory. A subset of these that do not satisfy (h−l)2 ≡ 1 (mod 7) will be shown to not be differential spheres,

by the Hirzebruch Signature Theorem and some other results from the theory of characteristic classes.

Finally, I will discuss some interesting applications of exotic smooth structure throughout mathematics.
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1. Motivation

The existence of exotic smooth structure is a sign of the limits of human intuition. Geometric intuition is
based on generalization of everyday objects. Surfaces, or 2-manifolds, are a class of such objects. One of the
most ‘natural’ spaces is a sphere. We can give several different ‘natural’ definitions of spheres. A selection
follow.

Definition 1.1. A standard sphere is a hypersurface cut out by an equation of the form

(1.2)

n∑
i=1

x2i = 1

where the xi are all real numbers.
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Definition 1.3. A homotopy sphere is a topological manifold M of dimension n with H0(M,Z) =
Hn(M,Z) = Z, H∗(M,Z) = 0 otherwise and π1(M) = 0.

Definition 1.4. A topological sphere is a topological manifold that is homeomorphic to a standard
sphere.

The intuition behind the definition of a topological sphere is that a topological sphere can be continuously
deformed into a standard sphere.

Definition 1.5. A differential sphere is a smooth manifold that is diffeomorphic to a standard sphere.

In other words, a differential sphere can be ‘smoothly deformed’ into a standard sphere or, equivalently,
the calculus done on a differential sphere is equivalent to the calculus done on a standard sphere.

For the case of surfaces, homotopy spheres, topological spheres, and differential spheres are all equivalent.
Therefore, it seems obvious that all of these topological equivalences will hold in higher dimensions. In
fact, by the Poincare Conjecture, homotopy spheres and topological spheres are equivalent in all dimensions.
On the other hand, topological spheres and differential spheres are not. The simplest known example of a
smooth manifold that is a topological sphere, but is not a differential sphere, occurs in 7 dimensions. In this
paper, we will construct this example.

2. Hopf Fibrations

In this section, we will discuss Hopf fibrations, which are fiber bundles in which the base space, the fibers,
and the total space are all spheres.

2.1. The Complex Hopf fibration. We will start with the classical Hopf fibration, which can be realized
in 3 dimensions. This is the fiber bundle with fibers homeomorphic to S1 and base space S2. The total
space of this fiber bundle is a 3-sphere. So, we represent this fiber bundle with the following diagram:

S1 S3

S2

The 1-sphere S1 is just the set of complex numbers with norm 1, and the 3-sphere is the set of ordered pairs
of complex numbers with norm 1. The 2-sphere is the one point compactification of the complex plane,
which is the complex projective line CP1.

We can explicitly write down the projection map in the complex Hopf fibration as π : (z1, z2) 7→ [z1, z2].
For example, note that the preimage of [1; 0] ∈ CP1 under the projection map π is {z1 ∈ C

∣∣‖z1‖2 = 1},
which is a copy of S1, and therefore is a fiber embedded in the total space.

Note that every two fibers are linked with linking number one in the total space. This is a qualitative
difference from the relationship between the fibers in the fiber bundle whose fibers and base space are copies
of S1 and whose total space is a torus. In that case, the linking number of any two fibers is zero.

2.2. The Quaternionic Hopf fibration. There are in fact only four Hopf fibrations, which correspond to
the four division algebras, which is a result of Adams. The four division algebras are R, C, H, and O. The
quaternions are denoted H, and they have non-commutative multiplication. Formally,

Definition 2.1. H is the set of numbers of the form a + bi + cj + dk, where ij = k = −ji and addition is
component-wise.

The octonions are a division algebra with non-associative multiplication. So, as the ‘size’ of the division
algebra increases, the division algebra has fewer basic properties like commutativity.

The quaternionic Hopf fibration is formed exactly analogously to the complex, or classical, Hopf fibration.
So it has the following diagram:

S3 S7

S4
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where S3 is the set of unit quaternions and S7 is the set of pairs of quaternions with unit norm. The maps
are also analogous to the complex case: π : (z1, z2) 7→ [z1, z2]. The preimage of the point [1; 0] under the
projection map is {z1 ∈ H

∣∣‖z1‖2 = 1}, which is a 3-sphere embedded in the total space. The only difference
is in the definition of projective space. Projective space is defined by putting an equivalence relation on any
two points that are on the same line through the origin. That is:

(2.2) (z1, z2) ∼ (λz1, λz2)

Since multiplication in the quaternions is not commutative, the definition of quaternionic projective spaces
includes a choice of default multiplication. We choose left-multiplication. This is a degree of freedom that
did not occur in the complex Hopf fibration and is the reason why the simplest known example of exotic
smooth structure occurs in seven dimensions, instead of three dimensions.

3. S3 bundles over S4

To construct the exotic 7-sphere, we want to look at different ways of constructing sphere bundles of S3

over S4. We will need some tools from algebraic topology to do this, which will be developed in this section.
We will construct this family explicitly and show that each element of the family corresponds to an element
of the group Z⊕ Z. We will show that this is π3(SO(4)).

First, we note that S4 can be covered by an atlas with only two charts, just like any other topological
sphere. An R4 bundle over each chart is trivial since the charts are contractible, so the only way to get a
non-trivial bundle is to have some ‘twisting’ in the gluing maps between the fibers. We want to construct a
family of such gluing maps that give a variety of total spaces.

We will choose the two charts to be all of S4 except the south pole, which will be denoted U1 and all of
S4 except the north pole, which will be denoted U2. Now I define a map that takes each chart to R4, which
I can identify with the quaternions. I will write this correspondence in the following diagrams to emphasize
to the reader the importance of this correspondence for this construction. The maps are called φ1 and φ2
respectively.

φ1 : U1 → R4 = H(3.1)

[z; 1] 7→ z(3.2)

φ2 : U2 → R4 = H(3.3)

[1;w] 7→ w(3.4)

Note that the transition map is:

φ2 ◦ φ−11 : H− {0} → H− {0}(3.5)

z 7→ 1

z
(3.6)

which is exactly what we expect. We will start with the simplest example, which is that of the standard
quaternionic Hopf fibration of an S3 bundle over S4. The total space of this fiber bundle is given by

(3.7) {
(
(x, y), [z;w]

)∣∣xw = zy; z, w 6= 0} ⊂ H2 ×HP1

The projection from the total space to S4 is denoted π.
We want to construct the local trivializations of the fiber bundle. These need to be done on each chart of

the base space and then matched.
First, we will consider the preimage of the the first chart of the base space in the total space.

(3.8) π−1(U1) = {((x, y), [z; 1]) | x = λz, y = λ for some λ ∈ H}

For the first chart, the local trivialization is:

ρ1 : π−1(U1)→ φ1(U1)×H(3.9)

((x, y), [z, 1]) 7→ (z, y)(3.10)

Similarly the preimage of U2 in the total space of the Hopf fibration is:

(3.11) π−1(U2) = {((x, y), [1;w]) | x = λ, y = λw for some λ ∈ H}
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The local trivialization is:

ρ2 : π−1(U2)→ φ2(U2)×H(3.12)

((x, y), [1;w]) 7→ (w, x)(3.13)

Now we want to compute the transition map of the trivializations

ρ2 ◦ ρ−11 : φ1(U1 ∩ U2)×H→ φ2(U1 ∩ U2)×H(3.14)

(z, y) 7→

(
1

z
, yz

)
(3.15)

So what we are doing is gluing (z, y) to ( 1
z , yz). The coordinate on the base space is actually the same, so

we are essentially gluing the fibers, which are quaternion lines, in a twisted way. We actually want the fiber
to be the unit quaternions, or 3-spheres, so we need to normalize the coordinate on the fiber.

ρ2 ◦ ρ−11 : φ1(U1 ∩ U2)× S3 → φ2(U1 ∩ U2)× S3(3.16)

(z, y) 7→

(
1

z
,
yz

‖z‖

)
(3.17)

This gives a total space that is a 7-sphere. Note that the non-commutativity on the quaternions and the
fact that S3 is the unit quaternions gives a second gluing with the multiplication in the second coordinate
reversed. This is another way of saying that the ‘inside-out’ Hopf fibration is isomorphic to the Hopf fibration.
Now we construct an entire family of such gluing maps

fh,l : φ(U1 ∩ U2)× S3 → φ(U1 ∩ U2)× S3(3.18)

(z, y) 7→

(
1

z
,
zhyzl

‖z‖h+l

)
(3.19)

The indices h and l are elements of Z, so this family of gluing maps is labeled by the group Z ⊕ Z. We
have not yet shown that this is the family of all possible gluing maps, nor have we shown that every gluing
map fh,l gives a distinct fiber bundle. To show these two facts, we consider the following special case of the
classification theorem of fiber bundles.

Theorem 3.20. There is a bijection between the isomorphism classes of vector bundles of real dimension
m over Sn and the homotopy classes of maps from Sn−1 → GLm(R).

Proof. See [2] �

The case m = n = 4 corresponds to R4 bundles over S4. We only want the unit vectors in these bundles, so
we only want orthogonal matrices with determinant 1, which gives the following special case of the theorem:

Theorem 3.21. There is a bijection between isomorphism classes of S3 bundles over S4 with structure group
SO(4) and homotopy classes of maps from S3 to SO(4).

So, to classify our candidate manifolds, we need to find π3(SO(4)).
From now on, we treat S3 as the unit quaternions. So we can treat S3 as a group with the group operation

given by multiplication in the quaternions. We build the following map Ψ:

Ψ : S3 × S3 → SO(4)(3.22)

(u, v) 7→ {ψuv : x 7→ uxv−1}(3.23)

The map ψuv can be viewed as a linear isometry from H to H, or from R4 to R4, since R4 and H are isomorphic
as R-vector spaces. Ψ is actually a group homomorphism with kernel {(1, 1), (−1,−1)}. Therefore, S3 × S3

is a double cover of SO(4). Now we apply the following theorem from algebraic topology:

Theorem 3.24. For two topological spaces X and Y , and a covering map between them F : X → Y , then
for n ≥ 2, πn(X) ∼= πn(Y ).

Proof. This follows from the mapping lifting theorem and the homotopy lifting lemma. �
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Therefore, π3(S3 × S3) ∼= π3(SO(4)). Clearly, π3(S3 × S3) = Z × Z ∼= Z ⊕ Z, so we have found that
π3(SO(4)) ∼= Z⊕ Z. The isomorphism is given explicitly as follows. For any (h, l) ∈ Z⊕ Z, we define

f̃h,l : S3 → S3 × S3(3.25)

u 7→ (uh, u−l)(3.26)

This is not the most natural definition of f̃h,l, but this will result in the nicest form of fh,l, which we define

as fh,l = Ψ ◦ f̃h,l.
fh,l : S3 → SO(4)(3.27)

u 7→ {x 7→ uhxul}(3.28)

where x is an element of H.
For each gluing map fh,l we call the corresponding total space Mh,l and the entire fiber bundle ξh,l. So

we have constructed a family of fiber bundles ξh,l as follows

S3 Mh,l

S4

which are classified by π3(SO(4)) ∼= Z⊕ Z.

4. The exotic sphere is a topological 7-sphere

Our fundamental tool in this part of the proof will be Morse Theory, specifically Reeb’s Theorem, which
is a method of detecting topological spheres in any dimension.

4.1. Morse Theory. Morse Theory is a way of translating the homotopy type of a manifold into statements
about critical points of particular functions. Therefore, the primary difficulty of applying Morse Theory lies
in finding a function with a set of critical points that is easy to study. In particular, we want a minimal set
of critical points with well-behaved Hessians.

We will discuss an illustrative example of Morse Theory, which is the motivating example in Milnor’s
book on the subject. [5]

Consider a torus T over a plane P such that the hole of the torus is perpendicular to the plane, as in the
following figure:

p

q

r

s

Consider a height function on T that cuts the torus at the height specified. There are clearly 4 points where
the homotopy type of the portion of the torus below the level curve changes. The first is the lowest point of
the torus over the plane p. When the height function reaches this point, the cell structure goes from empty
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to a 0-cell. The second is the point q which is where a 1-cell is added. At heights between the height of p
and the height of q, the space can be shrunk to a 0-cell by deformation retract. At the point r a 1-cell is
added, and at the point s a 2-cell is added.

The negative gradient of the height function given above is the flow of ‘rain’ on the torus. At the point s,
all of the water will be flowing away from the point, since there is no neighborhood of the torus ‘uphill’ from
s. Similarly, at the point p, all of the water will be flowing towards the point, since there is no neighborhood
of p containing a point downhill from p. The points r and s both have one direction along which the water
is flowing inward and one along which it is flowing outward.

We can express these statements about ‘flow of water’ in terms of axes of expansion and contraction of a
vector field, which is the negative gradient of the height function. Flow outward is expansion and flow inward
is contraction. Now, the correspondence is obvious: the number of linearly independent axes of expansion
of the vector field around a critical point is equal to the dimensionality of the cell added at that point under
a height function. Although we have only shown this for the example of the torus, it is true in general.

4.2. Reeb’s Theorem. Now we will prove Reeb’s Theorem, which is the main tool in the next subsection.
We will give a proof using a handlebody construction, which only holds if the critical points are non-
degenerate, but the theorem is more generally true. Milnor’s book gives a more detailed proof of this case
[5].

Theorem 4.1. If M is a compact smooth manifold of dimension n, and f is a differentiable function on M
with only two nondegenerate critical points, then M is homeomorphic to a standard sphere.

Proof. Let M and f be as in the theorem statement. Then one of the critical points, p, must be a maximum
and the other, q, must be a minimum. By definition, in any small neighborhood around p, the vector field
must be directed outward in every direction. So the point p corresponds to an n-cell. By definition, a
minimum has the vector field directed inward everywhere. So q corresponds to a 0-cell. M is the union of
an n-cell and a 0-cell and therefore is homeomorphic to an n-sphere. �

4.3. Proof that Mh,l is a topological sphere if h+l = −1. The main difficulty of this proof is constructing
a suitable function so that Reeb’s Theorem can be applied. We have already constructed our candidate
manifold, which is the total space in the following fiber bundle:

S3 Mh,l

S4 = HP1

We, with a regrettable lack of motivation, define the following function g. This function is defined on each
coordinate chart of S4 to match with the local trivializations.

g ◦ ρ−11 : φ1(U1)× S3 → R(4.2)

(z, v) 7→ Re(v)√
1 + ‖z‖2

(4.3)

g ◦ ρ−12 : φ2(U2)× S3 → R(4.4)

(w, u) 7→ Re(wu−1)√
1 + ‖wu−1‖2

(4.5)

We check that this agrees on the intersection and find that it does only if the condition h+ l = −1 holds.
That is, we verify this diagram:

(z, v) Re(v)√
1+‖z‖2

(
1
z ,

zhvzl

‖z‖h+l

)
Re(wu−1)√
1+‖wu−1‖2

g◦ρ−1
1

ρ2◦ρ−1
1 =

g◦ρ−1
2
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We calculate

u−1 =
ū

‖u‖2

=

(
zhvzl

‖z‖h+l

)−1

=
zhvzl

‖z‖h+l
1

‖v‖2

=
z̄lv̄z̄h

‖z‖h+l

Now:

wu−1 =
1

z

z̄lv̄z̄h

‖z‖h+l

=
z̄l+1v̄z̄h

‖z‖h+l+2

We want to take the real part of this to find the numerator. If h+ l = −1, we have:

Re

(
z̄l+1v̄z̄h

‖z‖h+l+2

)
=
Re(z̄l+1v̄z̄h)

‖z‖h+l+2

=
Re(z̄l+1v̄z̄−1−l)

‖z‖−1−l+l+2

=
Re(v̄)

‖z‖

=
Re(v)

‖z‖
This used the following computation. For any x, y ∈ H, Re(xyx−1) = Re(y), since

2Re(xyx−1) = xyx−1 + xyx−1 = xyx−1 +
xyx̄

‖x‖2

= xyx−1 +
xȳx̄

‖x‖2

= xyx−1 + xȳx−1

= x(y + ȳ)x−1

= x(2Re(y))x−1

= 2Re(y)

Now we compute the denominator: ∣∣∣∣∣
∣∣∣∣∣ z̄l+1v̄z̄h

‖z‖h+l+2

∣∣∣∣∣
∣∣∣∣∣
2

=
‖v‖2

‖z‖2

=
1

‖z‖2

So the denominator is
1√

1 + ‖wu−1‖2
=

1√
1 + 1

‖z‖2

Putting these together we get

Re(v)

‖z‖
1√

1 + 1
‖z‖2

=
Re(v)√
1 + ‖z‖2
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and so we have the desired equality.
Now we want to find the critical points of this function. For a fixed z, the critical points are where the

condition Re(v) = ±1 holds. So let’s consider the points of the form (z,±1). If ‖z‖ 6= 0, then

(4.6) ∇

(
±1√

1 + ‖z‖2

)
=

±2‖z‖√
1 + ‖z‖2

6= 0

Therefore (0, 1) and (0,−1) are the two critical points in the first chart. We can easily check the second
chart and find that it has no critical points.
So, the function g has only two critical points on Mh,l for h + l = −1 and therefore we can apply Reeb’s
Theorem to show that Mh,l is homeomorphic to S7 under this condition. By Lemma 6.14, we have that Mh,l

is homeomorphic to S7 if h+ l = 1 as well.

5. Characteristic Classes

Characteristic classes are a way to generalize the linking number mentioned in the section on the Hopf
fibration above. We want to describe the way in which the fibers over Mh,l are linked together analogously
to the linking number of the complex Hopf fibration. This generalization will be called the Euler class. Then
we want to find other characteristic classes that allow us to distinguish our exotic spheres, that is to give
more detail about how the fibers are twisted together than just a generalized linking.

5.1. Euler Class. The Euler class of a fiber bundle is a way of generalizing the linking number of fibers in
a bundle where the fibers are one dimensional circles. Suppose we have the following orientable real fiber
bundle of rank n, which we call ξ:

Rn E

Mm

p

where Mm is a compact orientable manifold of dimension m, E is a smooth manifold of dimension m + n,
and p is the projection map. We define the zero-section of M :

s0 : M E

by sending every x in M to the zero vector of p−1(x). So the zero-section gives an embedding of the base
space in the total space. We can perturb s0 by some small amount to get a new embedding s′0, such that
the images of s0 and s′0 intersect transversely.

(5.1) N := s0(M) ∩ s′0(M)

So N is a closed submanifold of dimension m− n. It is called the self − intersection of M inside E since
both s0(M) and s′0(M) are homeomorphic to M .

We denote the homology class in Hm−n(M,Z) represented by the closed chain N as [N ]. Now we can
define the Euler class of ξ, e(ξ) as the Poincare dual of [N ] ∈ Hm−n(M,Z).

In other words, the Euler class of a vector bundle can be represented by a differential n-form supported on
a tubular neighborhood of N ⊂M such that the integral of e(ξ) along any vertical slice of the tube orthogonal
to N is 1. More precisely, the tubular neighborhood is a disk bundle over the submanifold N . The Euler class
can be represented as some bump function times a (dimM−dimN)-form in the (dimM−dimN) dimensions
of the disc and the integral of this bump function over a disc in the bundle is 1.

5.2. Chern Class. If we consider vector bundles whose fibers are complex vector spaces, then we can define
Chern classes, which are analogous to the Euler class. The top Chern class, that is the Chern class with the
dimensionality of the fiber, is equivalent to the Euler class.

Definition 5.2.

(5.3) cn(ξ) := e(ξR) ∈ H2n(M,Z)
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We also define the first Chern class in this section. Our proof of the existence of exotic structure will only
rely on the first and top Chern classes, so we do not discuss the other Chern classes in this paper. See [6]
for a complete treatment.

To begin, we construct a line bundle ∧nξ associated to the vector bundle ξ that is known as the determinant
line bundle of ξ.

(5.4) ∧nE := {v1 ∧ v2 ∧ ... ∧ vn
∣∣v1, ..., vn all lie in the same fiber}

We define the projection

(5.5) ℘ : ∧nE →M

by sending every v1 ∧ v2 ∧ · · · ∧ vn to the point p(v1) = · · · = p(vn) ∈M .
For every x ∈M , we have ℘−1(x) = ∧n

(
p−1(x)

)
. Note that p−1(x) is a complex vector space of dimension

n, so ℘−1(x) is a complex vector space of dimension 1. Hence, ℘ : ∧nE →M actually forms a complex line
bundle over M . We denote this complex line bundle by ∧nξ.

Now, we define the first chern class c1(ξ) to be the same as the Euler class of the complex line bundle
∧nξ, i.e.,

(5.6) c1(ξ) = e ((∧nξ)R)

So we have c1(ξ) ∈ H2(M,Z).

5.3. Pontryagin Class. Pontryagin classes are defined in terms of Chern classes.

Definition 5.7. pk(ξ) := (−1)kc2k, where c2k is the (2k)th Chern class of the complex vector bundle ξ⊗
R
C.

So the kth Pontryagin class is an element of the 4kth cohomology group, H4k(X,Z). Note that the
Pontryagin class of ξh,l does not depend on the orientation of ξh,l.

6. Mh,l is not Diffeomorphic to the 7-sphere

We will prove this by contradiction. The general outline of the proof is as follows. First, we will assume
that Mh,l is diffeomorphic to the 7-sphere and use this assumption to construct a particular manifold Kh,l.
Then we will combine the Hirzebruch Signature Theorem and a particular lemma about Pontryagin classes
to get a contradiction for some combinations of h and l.

We can construct a manifold Nh,l that consists of all the vectors in ξh,l with length less than or equal to
1. The boundary of this manifold is clearly Mh,l. Assume that Mh,l is diffeomorphic to S7. Then, since the
boundary of an 8-disk is a 7-sphere, we can glue an 8-disk to Nh,l to create a new 8-manifold, Kh,l, that has
no boundary. This manifold has a smooth structure, since Nh,l had a smooth structure by construction, an
8-disk has a natural smooth structure, and the gluing is diffeomorphic.

6.1. Calculating p1(ξh,l). We want to calculate the first Pontryagin class of Kh,l, in terms of h and l. We
will do this by finding the Pontryagin class of ξh,l.

Now, we will consider the relationship between the following three objects π3(SO(4)), π4(BSO(4)), and
H4(S4,Z). By section 3, we know that π3(SO(4)) = Z ⊕ Z, and that the elements (h, l) correspond to
fiber identifications fh,l. BSO(4) is the classifying space of S3 bundles with structure group SO(4), or
equivalently, the classifying space of rank 4 real oriented vector bundles.

Our second fact is the following theorem, which is used to prove Thm 3.20, and therefore was already
implied:

Theorem 6.1. π4(BSO(4)) and π3(SO(4)) are isomorphic as groups.

Proof. See p.126 of [4] �

We also use the following theorem, which is also a precursor to Thm 3.20:

Theorem 6.2. Every rank 4 real vector bundle over S4 is the pullback of the natural rank 4 vector bundle
over BSO(4) with respect to some continuous map from S4 to BSO(4).

Proof. See [2] �
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This implies that there is a one-to-one correspondence between homotopy classes of maps from S4 to
BSO(4) and rank 4 real vector bundles over S4.

From the discussion of Euler class, we have the following map:

{rank 4 vector bundles over S4} → H4(S4,Z)

ξ 7→ e(ξ)

So, we now want to find a group homomorphism between π4(BSO(4)) and H4(S4,Z) so that we can have a
diagram that commutes.

π4(BSO(4)) H4(S4,Z)

π3(SO(4))

∼=

Now we introduce characteristic classes into the discussion. Since characteristic classes are natural transfor-
mations, we have the following fact:

Lemma 6.3. For a vector bundle ξ, a characteristic class κ and a map on cohomology classes induced by
the pullback of a bundle f∗, f∗(κ(ξ)) = κ(f∗(ξ))

To find the group homomorphism we want, we need to look at the group structure of π4(BSO(4)). So,
we know that

(6.4) π3(SO(4)) ∼= π4(BSO(4)) ∼= Z⊕ Z

We also know that

(6.5) H4(S4,Z) ∼= Z

Now consider the wedge of two 4-spheres S4 ∨ S4. We define two maps ci by collapsing the ith summand
where i = 1, 2. We have the following isomorphism:

φ : H4(S4,Z)×H4(S4,Z)→ H4(S4 ∨ S4,Z)(6.6)

(α, β) 7→ c∗1(α) + c∗2(β)(6.7)

We define the map τ to be the map from S4 to S4 ∨ S4 by collapsing the equator. So we have

H4(S4,Z)×H4(S4,Z)
φ−→ H4(S4 ∨ S4,Z)

τ∗

−→ H4(S4,Z)(6.8)

(α, β) 7→ c∗1(α) + c∗2(β) 7→ α+ β(6.9)

We now consider π4(BSO(4)). Suppose [f ], [g] are two elements in π4(BSO(4)), where f , g are continuous
maps from S4 to BSO(4), and [f ] (resp. [g]) represents the class of maps which are based homotopic to f
(resp. g). Then by definition, the sum [f ]+[g] in π4(BSO(4)) is given by the homotopy class of the following
composition:

(6.10) S4 τ−→ S4 ∨ S4 f∨g−−→ BSO(4)

Here, the map f ∨ g is defined on S4 ∨ S4 such that the restriction of it on the first (resp. second) wedge
summand is equal to f (resp. g).

We denote the above composition by f + g. Then [f ] + [g] = [f + g] in π4(BSO(4)). Suppose now we fix
an element ν in H4(BSO(4),Z). We can define the following map:

Θ : π4(BSO(4)) −→ H4(S4,Z)(6.11)

[h] 7→ h∗(ν)(6.12)
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For any [f ], [g] in π4(BSO(4)),

Θ([f ] + [g]) = Θ([f + g]) = (f + g)∗(ν) = τ∗ ◦ (f ∨ g)∗(ν)

= (τ∗ ◦ φ) ◦ (φ−1 ◦ (f ∨ g)∗)(ν)

= (τ∗ ◦ φ)(f∗(ν), g∗(ν))

= f∗(ν) + g∗(ν)

= Θ([f ]) + Θ([g])

This shows that Θ is actually a group homomorphism.
If we choose ν to be the Euler class of the universal bundle over BSO(4), then this shows that

(6.13) e(ξhl) = (x · h+ y · l)α

where α is a generator of H4(S4,Z) ∼= Z.
We now introduce another fact

Lemma 6.14. There exists an orientation-reversing isomorphism of real vector bundles. That is, ξh,l ∼=
ξ−l,−h

This implies that e(ξh,l) = −e(ξ−l,−h). We can simplify equation 6.13 by considering the standard Hopf
fibration where (h, l) = (0, 1). This isomorphism gives that there is an ‘inside-out’ standard Hopf fibration,
that is isomorphic to the standard one. So we have:

(6.15) x · h+ y · l = −(x · (−l) + y · (−h))

The Euler class of the standard Hopf fibration is −α, so

(6.16) x · 0 + y · 1 = −1

Combining these two gives x = y = −1. So, for some generator α in the relevant cohomology class,

(6.17) e(ξhl) = −(h+ l)α

If we choose ν to be the first Pontryagin class of the universal bundle of BSO(4), then, as before, we have
an equation of the form

(6.18) p1(ξhl) = a · h+ b · l

Since Pontryagin classes are independent of the orientation of the bundle,

(6.19) ah+ bl = a(−l) + b(−h)

Combining, this gives

(6.20) p1(ξhl) = a(h− l)α

where α is a generator in H4(S4,Z).
We can also calculate the Chern classes for this vector bundle, and we find that

c2(ξ0,−1) = −α(6.21)

c1 = 0(6.22)

Now we cite two lemmas about Chern classes from [6]

Lemma 6.23. ξ0,1 ⊗
R
C ∼= ξ0,1 ⊕ ξ0,1

Proof. See Lemma 15.4 in [6] �

Lemma 6.24. ck(ω̄) = (−1)kck(ω)

Proof. See Lemma 14.9 in [6] �
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Now we calculate

1 + c2(ξ0,1 ⊗
R
C) = (1 + c2(ξ0,1)) ^ (1 + c2(ξ0,1))(6.25)

= (1− α) ^ (1− α)(6.26)

= 1− 2α(6.27)

So, using the correspondence between Chern and Pontryagin classes,

(6.28) p1(ξ0,1) = −c2(ξ0,1 ⊗
R
C) = 2α

This generalizes to

(6.29) p1(ξh,l) = 2(h− l)α

6.2. Calculating the first Pontryagin class of Kh,l. However, the goal of this entire computation is to
find the first Pontryagin class of Kh,l, not ξh,l.

We will use multiple fiber bundles to get the Pontryagin class we want.
ξh,l is the real vector bundle of rank 4 over S4 that corresponds to fh,l ∈ π3(SO(4)). We denote the total

space of this bundle by E.

R4 E

S4

Next we have δh,l, the fiber bundle over S4 with fiber D4, the closed unit disk in R4 that consists of all the
vectors with length ≤ 1 in ξh,l. The total space of this bundle is denoted Nh,l, and the projection map is
denoted π.

D4 Nh,l

S4

Now we have a third fiber bundle, σh,l, which is a sphere bundle. The total space of this bundle is what was
previously denoted by Mh,l. Note that previously both ξh,l and σh,l were denoted ξh,l

S3 Mh,l

S4

For any smooth manifold M , we denote the tangent bundle τ(M) and the total space of the tangent bundle
TM . For any smooth manifold M , we denote the trivial real vector bundle of rank n over M by εn

Rn Rn ×M

M

Also, we can pull back ξh,l under π to get a new vector bundle π∗(ξh,l). We can pull the tangent bundle
back in the same way to get a new bundle π∗(τ(S4)). This is a real vector bundle of rank 4 over Nh,l.
We have the following isomorphism between the two rank 8 real vector bundles over Nh,l:

τ (Nh,l) ∼= π∗ (ξh,l)⊕ π∗
(
τ(S4)

)
.
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Noting that τ(S4)⊕ ε1 ∼= ε5 as vector bundles over S4, we have:

τ (Nh,l)⊕ ε1 ∼= π∗ (ξh,l)⊕ π∗
(
τ(S4)

)
⊕ ε1

∼= π∗ (ξh,l)⊕ π∗
(
τ(S4)⊕ ε1

)
∼= π∗ (ξh,l)⊕ π∗

(
ε5
)

∼= π∗ (ξh,l)⊕ ε5

Now we apply the following lemma,

Lemma 6.30. For any real vector bundle ξ over a manifold X and for any n ∈ N, we have

(6.31) κ(ξ) = κ(ξ ⊕ εn)

where κ is the Euler class, Stiefel-Whitney class, or Pontryagin class. If we consider complex vector bundles,
this also holds for Chern classes.

We apply this theorem to Nh,l and use the above decomposition:

p1(Nh,l) = p1(τ(Nh,l))

= p1
(
τ (Nh,l)⊕ ε1

)
= p1

(
π∗ (ξh,l)⊕ ε5

)
= p1 (π∗ (ξh,l))

= π∗ (p1 (ξh,l))

In other words, the tangent bundle τ(Nh,l) can be split into two ‘directions’, one of which is trivial. The
Pontryagin class only depends on the nontrivial direction.

Now we use the fact that π : Nh,l → S4 is a homotopy equivalence to get the following induced isomorphism
on the cohomology classes:

(6.32) π∗ : H4(S4,Z)→ H4(Nh,l,Z)

Both are clearly isomorphic to Z. Now we apply equation 6.29 to get

(6.33) p1(Nh,l) = π∗(p1(ξh,l)) = π∗(2(h− l)α) = 2(h− l)π∗(α)

where π∗α is the the generator of H4(Nh,l,Z). Now we look at the following injection:

i : Nh,l Kh,l

and induces the following isomorphism on cohomology groups

(6.34) i∗ : H4(Kh,l,Z)→ H4(Nh,l,Z)

and

(6.35) i∗(τ(Kh,l)) ∼= τ(Nh,l)

So now we can again apply the previous lemma about the first Pontryagin class to get

(6.36) p1(Kh,l) = 2(h− l)β
where β is a generator of H4(Kh,l,Z), which is isomorphic to Z.

6.3. Applying the Hirzebruch Signature Theorem. The next big tool is the Hirzebruch Signature
Theorem, a major result of the theory of characteristic classes, which is proved on p. 224 of [6]. It relates
the signature of a manifold to the Pontryagin numbers of the manifold

Theorem 6.37. Hirzebruch Signature Theorem Let M be a closed orientable smooth manifold of di-
mension 8, with signature τ(M). Then

(6.38) τ(M) =
1

45
(7p2(M)− p21(M))

Remark 6.39. Note that the numbers in this formula come from a computation of multiplicative sequences.
The 7 has nothing to do with the fact that we are considering manifolds homeomorphic to 7-spheres!
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It is a fact from linear algebra that any symmetric matrix is congruent to a matrix such that all of the
diagonal entries are ±1 or 0, and the off-diagonal entries are all 0. The sum of the diagonal terms is defined
to be the signature. This quantity can be defined for any symmetric bilinear form, not just symmetric
matrices. For example, consider the map that was discussed above

H4(Kh,l,Z)×H4(Kh,l,Z)→ H8(Kh,l,Z)(6.40)

(α, β) 7→ α ^ β(6.41)

This is a symmetric bilinear form, so a signature can be defined on it. However, this map actually corresponds
to a 1-by-1 matrix and therefore the signature must be ±1.
Now we are ready to apply the Hirzebruch Signature Theorem to our manifold Kh,l. We have

(6.42) ±1 =
1

45
(7p2(Kh,l)− (±2(h− l))2)

We mod out by 7 to eliminate p2(Kh,l).

(6.43) 3 = ±4(h− l)2( mod 7)

which simplifies to

(6.44) (h− l)2 = 1( mod 7)

This is a necessary condition for Kh,l to have a differentiable structure. Since a disk can always be given a
differentiable structure and Nh,l clearly has differentiable structure, the faulty assumption must have been
that Mh,l could be glued to S7 smoothly. Therefore, Mh,l is not diffeomorphic to S7 if (h− l)2 6= 1( mod 7).
So, M0,1 and M1,0, which are the base spaces of the standard quaternionic Hopf fibrations are both diffeo-
morphic to S7, as they should be, but M3,−2, for instance, is not.

7. Conclusion

To summarize, we have constructed a family of manifolds that are homeomorphic but not diffeomorphic to
the 7-sphere. These are the simplest examples of exotic smooth structure known. The tool used to construct
this manifold is the quaternionic Hopf fibration. The non-commutativity of the quaternions causes the set
of possible S3 bundles over S4 to be classified by Z ⊕ Z. This gives enough ‘room’ in the set of candidate
manifolds for exotic structure to exist. The homeomorphism between the base spaces Mh,l and S7 was
shown for h + l = ±1 by Morse Theory, and, in particular, Reeb’s Theorem. The non-diffeomorphism for
(h − l)2 6= 1(mod7) is shown by constructing a smooth manifold from Mh,l and then using the Hirzebruch
Signature Theorem to find a contradiction, in the above cases.

8. Further discussion of Exotic Structure

Here we list some more facts about exotic structure in general, to encourage the reader to further explore
this subject. See [3] for more details.
(1) There are 28 distinct smooth structures on the 7-sphere and they form a group under connected sum.
(2) There are no exotic smooth structures on n-spheres for spheres of dimension n = 1, 2, 3, 5, 6.
(3) It is unknown whether or not there exist exotic smooth structures on the 4-sphere. However, it is known
that there are either infinitely many exotic smooth structures on the 4-sphere or none. Proving which of
these two alternative holds would resolve the smooth Poincare conjecture.
(4) R4 has uncountably many exotic smooth structures. No other Euclidean spaces have any exotic smooth
structures.
(5) We can explicitly write down an equation for the exotic 7-spheres as the points in C5 satisfying

(8.1) a2 + b2 + c2 + d3 + e6k−1 = 0

See [1] for more details.
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