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ABSTRACT. The properties of the metric topology on infinite and finite sets
are analyzed. We answer whether finite metric spaces hold interest in algebraic
topology, and how this result is generalized to pseudometric spaces through
the Kolmogorov quotient. Embedding into Lebesgue spaces is analyzed, with
special attention for Hilbert spaces, ¢, and ENV.
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1. INTRODUCTION

Finite metric spaces are simple objects, a finite collection of points with a real
distance defined between each pair. Despite their apparent simplicity, they are
intriguing. From the perspective of algebraic topology, they have no interest as dis-
crete spaces. Although relaxing metrics to pseudometrics appears to provide finite
metric spaces with more interest, pseudometric spaces are homotopically equiva-
lent to the discrete space formed when they are passed through the Kolmogorov
quotient. Despite their uninteresting topogical structure, finite metric spaces have
applications to computer science. Many physical systems can be modeled with fi-
nite points and distances between them, so computer scientists are motivated to
embed finite metric spaces into host spaces like RY where detailed analysis can be
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done. Perfect embeddings cannot always be achieved, so the study of the distortion
needed for embeddings and when isometric embeddings exist is a rich area.

This paper first considers finite metric spaces from a topological perspective,
highlighting general properties and showing why they seem to hold no interest
topologically. The last section surveys the literature on embeddings of finite metric
spaces.

2. FINITE METRIC SPACES

Finite spaces have different metrization and pseudometrization conditions and
their metrics can be represented in convenient ways.

2.1. Pseudometrizing Finite Spaces.

Definition 2.1. A pseudometric is a function d : X x X — R which satisfies the
following properties:

i dz,z)=0Vzxe X

ii. d(z,y) >0

ili. d(z,y) =d(y,z) Ve,y € X

iv. d(z,y) +d(y,z) > d(z,z) Va,y,z € X

This definition is a weakening of the standard metric. Two distinct points may
have a distance of zero. Pseudometrics are sometimes referred to as semimetrics.

—

Definition 2.2. A space X is pseudometrizable if there is a pseudometric d on X
that induces the topology of X.

Definition 2.3. A space is Ry if each pair of topologically distinct points (i.e.
points which do not have the same set of neighborhoods) have some neighborhood
not containing the other point.

Theorem 2.4. A finite topological space is pseudometrizable iff it is Ry.

Proof. Given a topological space X and points x and y in X, define x = y to mean
that x and y are topologically indistinguishable.
Define the standard discrete pseudometric to be:

d(z,y) 0 ifx=y
x,y) =
4 1 ifx#y

Given x # y, take neighborhoods B(x,(3)) and B(y,(3)) of x and y so that

B(x, (3)) N Bly, (3)) =0
This metric induces a topology on X where every topologically distinguishable pair
is separated.

If a finite space is Rg with its given topology, then it can be given this topology
which separates topologically distinguishable points, satisfying the Ry condition as
well as inducing a topology which puts families of points equivalent to the given
topology into the same neighborhoods.

Take a space X to be pseudometrizable. Then its metric topology forms open
balls around topologically distinguishable points which can be separated.

If no points in the space have distinct neighborhoods (i.e. the pseudometric
outputs 0 given any two points), then there are no topologically distinguishable
points, so the space is vacuously Ry. (]
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2.2. Representing Metrics on Finite Spaces.

A metric on a finite space can be explicitly defined by (g) non-negative numbers,
where each number corresponds to a distance between two points. This property
of finite metric spaces allows them to represented in convenient ways, most impor-
tantly with matrices and graphs.

2.2.1. Matrix Representation.

Take a finite metric space (X,d) with points (xg,X1,...,X5). Construct an n x n
matrix with entries (a; ;) giving the distance between point i and point j in the
space. Then the following characteristics can be observed.

1. d(z;,xz;) > 0 for all 0 < ¢,j <n so the matrix is comprised of nonnegative real numbers.
2. d(x;,x;) =0 for all 0 < i < n so the diagonal of the matrix is 0.

3. d(z,z;) = d(xj,x;) for all 0 < 7,7 < n so the matrix equals its transpose.

Thus any finite metric space has a real, positive, symmetric matrix containing all

the information of its metric.

2.2.2. Graph Representation.

The matrix defined by the finite metric space can be translated to an undirected,
no loop, weighted, finite graph. Given a finite metric space (X,d) with points
(xX0,X1,---yXp ), & graph G with n vertices and (72‘) weighted edges giving the distance
between vertices can be constructed to represent it.

The distance function defines a distance between any two points of the space, so
each vertex of the graph connects to every other vertex, forming a complete graph.

Metrics satisfy the triangle inequality, so all edges may not be necessary if the
shortest path metric is used on the graph.

Definition 2.5. Given a weighted graph G, the shortest path metric is a metric
which defines the distance between two vertices to be the length of the shortest
path between them. If the two vertices are not connected, the distance is said to
be infinite.

Theorem 2.6. A graph G with n vertices and the shortest path metric represents
an n point finite metric space (X,d) iff it is undirected, no loop, weighted and
connected.

Proof. Set each vertex in G to represent a distinct point in the underlying set X.
The properties of a metric give rise to the conditions necessary for the graph.
d(zi,xz;) = d(z;,z;) V0 < i, <n G must be undirected

d(z;,2;) =0V 0 <1i<n G must have no loops

d(z;, :Ej) >0V 0<i<n G must be weighted with nonnegative real values
d(z;,xz;) < ooV 0<14,j7 <n G must be connected

The triangle inequality means that the shortest path metric must be used.

Conversely, a graph fulfilling the above properties can be made into a finite
metric space if the vertices are made into the underlying set and the shortest path
metric is made into the metric on that set. (]

Ll ol e

n

Definition 2.7. It may be possible to obtain a graph with fewer than (2) edges
(i.e. not a complete graph) to represent the finite metric space. When all edges
which do not alter the output of the shortest path metric are dropped, the critical
graph is obtained.
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Example 2.8. Where the triangle inequality is satisfied by an equality an edge
can be removed. In this case a critical graph is obtained.

3. THE PROBLEM WITH FINITE METRIC SPACES

Finite metric spaces are of no interest to algebraic topologists as they induce the
discrete topology on the space. This section illustrates why this is the case and
how an indiscrete pseudometric space can be made into a discrete space when it is
made T through the Kolmogorov Quotient.

3.1. The Discrete Topology.

Definition 3.1. The discrete topology is the finest topology possible on a set.
Every subset is an open set (and therefore every subset is also a closed set). Every
point separates the space in this topology, so it is called the discrete topology.

The fact that finite metric spaces have the discrete topology can be proved directly,
or illustrated through Lipschitz equivalence of metrics.

Theorem 3.2. Any metric on a finite space induces the discrete topology.

Proof. Take a finite metric space (X,d). If every point in the space is open, then
all of their possible unions are open, giving the discrete topology.
For any x € X, find r = mi)r(l (d(x,y)). This r exists and is nonzero as X is finite
ye

and d(x,y) > 0 for x # y. Then the open ball of radius r about x contains only x.
The set {x} is open. O

Theorem 3.3. A finite space is metrizable iff it is discrete.

Proof. Given a finite space with the discrete topology, the discrete metric ensures
that every point is in a singleton open set (any open ball of radius less than 1) and
so the finite space can be metrized.

Conversely, any finite space can be metrized in order to give the discrete topology.
In fact, as proved above, the discrete topology is the only possible metric topology
given to a finite space. O

3.2. The Kolmogorov Quotient.
Finite pseudometric spaces allow distinct points to have the same open neighbor-
hoods in the induced topology. This seems to give them greater topological interest
as they are not necessarily discrete. The Kolmogorov quotient provides a way to
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identify the topologically indistinguishable points and form a Ty space. In this
case, the Ty space would be a metric space. Denote the Kolmogorov quotient of a
space X by K(X).

Definition 3.4. A space is Ty if for every pair of distinct points, at least one of
them has an open neighborhood not containing the other. In a Ty space all points
are topologically distinguishable.

Definition 3.5. There is a quotient space of any topological space which is always
To. This is the Kolmogorov Quotient. This quotient space is formed under the
equivalence relation which identifies points with the same open neighborhoods.

A pseudometric space is converted into a metric space through a Kolmogorov
quotient by metric identificaiton.

3.2.1. Metric Identification.
Take (X,d) to be a pseudometric space with x, y € X. Set x ~ y if d(x,y) = 0.
Define X* = X/~. Construct a metric d* on X* by setting d*([x], [y]) = d(x,y).
Then (X*, d*) is a metric space.

Proposition 3.6. Metric d*([z], [y]) = d(x,y) is well-defined

Proof. If d* is well-defined, then this equality will hold regardless of the choice of
point in the equivalence class [x] and that d* is a metric. It is clear that d* is a
metric as it inherits properties from metric d. Take x;, xo € [x] and y € [y]. Then
d* is well-defined if d*(x1,y) = d*(x2,y) = d(x,y). Take d*(x;1, y) = d(x,y). By
the triangle inequality on d*, d*(x1,x2) + d*(x2,y) > d*(x1,y). Because x; ~ xg,
d*(x1,x2) =0, so d*(x2,y) = d*(x1,y). This means that d* is well-defined as it does
not depend on choice of representative from the equivalence class. O

Theorem 3.7. Metric identification preserves the metric induced topology.

Proof. To show that metric identification does preserve the topology of a pseudo-
metric space (X,d) after passing to the quotient (X*, d*), it needs to be shown that
the set A C X is open iff set [A] (the set of all [x] where x is in A) is open in (X*,
d*).

Take A C (X,d), open. Then V x € A, there is an open ball around x which is
contained in A. Identify all x, y € such that d(x,y) = 0. These equivalence classes
are made of points distance zero from each other, so the set of open balls [B(x,e)]
for a given [x], all overlap. O

3.2.2. Kolmogorov Quotient of Pseudometric Spaces.

Theorem 3.8. The topology induced by metric identification forms a quotient space
that is the Kolmogorov quotient.

Proof. Take (X,d) a pseudometric space with identified metric as above.

To prove that this quotient space is a Kolmogorov quotient, it must be shown
that the relation ~ is an equivalence relation and that topology induced by d* on
X/~ forms K(X).

1. The Relation ~ is an equivalence relation
i. Reflexivity: d(x,x) =0V x € X, 80 x ~ X.
ii. Symmetry: d(x,y) = d(y,x) Vx =y € X, so if d(x,y) = 0, then d(y,x) = 0
so if x ~ y, then y ~ x.
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iii. By the triangle inequality, d(x,y) + d(y,z) > d(x,2) V x,y,2 € X. If x ~ y
and y ~ z, then d(x,y) + d(y,2) = 0, so d(x,z) > 0, so d(x,z) = 0.

2. The topology induced by d* on X/~ forms K(X). For the topology induced by d*
on X/~ to be K(X), the equivalence classes must be comprised of topologically
indistinguishable points. Take x,y € X, with x and y topologically distinguish-
able. Then there is an open subset U of X where x € U but y ¢ U. This means
that there an open ball of some radius about x that does not contain y, so
d(x,y) > 0, so x = y. Conversely, if x and y are topologically indistinguishable,
then there is no open ball containing only one of the points. Then each B(x%)
must contain both x and y, so d(x,y) must be zero. This means that the topol-
ogy induced by d* on X/~ is putting only topologically indistinguishable points
into equivalence classes. This, taken with Theorem 3.18 above, shows that this
quotient forms K(X).

O

3.2.3. Homotopy Equivalence of the Kolmogorov Quotient.

Finite pseudometric spaces (in fact all finite spaces) are homotopy equivalent to
their Kolmogorov Quotient K(X).

Definition 3.9. Take X,Y topological spaces and maps f: X — Y and gz X — Y.
Maps f and g are homotopic if there is a continuous map h: X x [0,1] — Y where
h(x,0) = f(x) V x € X and h(x,1) = g(x) V x € X. Denote this relation f ~ g.

Definition 3.10. Take X,Y topological spaces. Spaces X and Y are homotopically
equivalent if there are continuous maps f: X — Y and g: Y — X where f o g ~ Idy
and g o f ~ Idx. Denote this relation X ~ Y.

Theorem 3.11. Every finite space is homotopically equivalent to a Ty space, K(X)
3.

Corollary 3.12. Any finite pseudometric space X is homotopically equivalent to
its Kolmogorov Quotient, K(X), with K(X) being a finite metric space.

4. EMBEDDING FINITE METRIC SPACES

Despite the properties explored above, finite metric spaces are of interest to fields
other than algebraic topology. In fields like microbiology, large tables of numbers
are generated and need to be analyzed. It can be difficult to work with large tables,
meaning that a representation in Euclidean space is desirable. An embedding would
offer a way to see the distribution and behavior of the points of the metric space.
In addition, a metric space with n points could be described in 2n numbers instead
of (%) numbers.

The interest in representing combinatorial objects like finite metric spaces in
this way comes from a wider interest in the geometrizaiton of combinatorial objects,
which is a method used to transform large amounts of information into a usable
form.

Considering the equivalence between linear graphs and finite metric spaces given
above, it would seem that all finite metric spaces could be represented in RN for
some finite N. This is not the case.

The distance metric on the weighted graph representing the finite metric space is
the shortest path metric. In RN, the shortest path between two points is a straight
line, so if equality holds in the triangle equality, those three points lie on the same
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line in RN. This fact will mean that not all finite metric spaces can be embedded
without distorting the distances between points. This is illustrated in the following
example.

Example 4.1. Take finite metric space (X,d) with 4 points represented by the
weighted graph below with distance given by the shortest path metric.

This is a simple 4 cycle with edges of uniform length. Note that
d(z,z) =d(z,y) +d(y,z) = 2 and d(z, z) = d(z,w) + d(w, z) = 2

This fact will give a contradiction when an embedding is done. Embed this metric
space in RN. There are then two minimal paths between x and z and both obtain
equality with the triangle inequality. As explained above, the fact that

d(z,z) = d(z,y) + d(y, z) and d(z, z) = d(z,w) + d(w, 2)

implies that points x,y,z are collinear, as are x,w,z. Line segments xyz and xwz are
the same as they have the same endpoints. Because y and w are both distance 1
away from x on the same line, they are distance zero from each other. This implies
that y = w, contradicting the fact that X has 4 points.

The graph must be distorted to be represented in RN.

Definition 4.2. Take metric spaces (X,dx) and (Y,dy) and a function f: X — Y.
Then the distortion of f can be realized by its Lipschitz constants. The expansion

of f is defined as
dy (f(z), f(y))

ip = Sup
||fHL1p z,yeX dX(xvy)

The contraction of f is given by

—1 dX (aj? y)
Wi = S8 3 (7). £0)
The distortion of f is given by
distortion(f) = contraction(f) * expansion(f) = ||f||£llp || fllLip
This is equivalent to finding the closest a, b € R such that

dy(f(2) SW) -,

a >
- dx($7y) h

and defining distortion(f) = ¢.

Remark 4.3. A mapping f: X — Y is an isometry if § = 1, that is, all distances
are preserved up to scaling.
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Definition 4.4. Take metric spaces (X,d) and (Y,d'). Then (X,d) is isometrically
embeddable into (Y,d') if there is a map f: X — Y such that d(x,y) = d (f(x),f(y))
for all x and y in X.

As Example 4.1 illustrates, distortion is often necessary for embedding to occur.
In that particular case, the distances can be distorted by a factor of v/2 in order to
form the square cycle.

Embedding a metric space in RN is a useful case of embedding, but embedding
can be described in general settings.

Definition 4.5. For 0 < p < oo, £, space is the set of all real sequences {z,} such
that > |z P < oco.
The norm of this space is given by

Izl = (3 aal?)?

n

Note that when p = 2 this is the Euclidean norm.

Definition 4.6. A metric space (X,d) is ¢, embeddable if (X,d) is isometrically
embeddable into £} for some natural number n. This number n is the ¢, dimension
of (X,d).

4.1. Embedding in /5.

Embedding in ¢ attracts special attention. To those looking to analyze large
amounts of data, translating data points into a finite metric space and then into
a representation can be useful. In ¢y there are extremely well developed tools
in analysis and geometry to aid in the analysis of the data, so obtaining a good
representation is important.

For its usefulness, £y is very strict in its behavior, making embeddings difficult.
The general theory of Banach spaces gives additional insight into why this is the
case and additional motivation to consider ¢, embeddings.

Definition 4.7. The Banach—Mazur distance is a measure of distance on the set
of n-dimensional normed spaces. Take two normed spaces X and Y of dimension n
and GLx y, the set of linear isomorphisms from X to Y.

The Banach—Mazur distance between X and Y is defined to be
0(X)Y) = IOg(Teglfo,y distortion(T))
This is a metric on the space of n-dimensional normed spaces.
For many purposes (including ours) the multiplicative Banach—Mazur distance

d(X,)Y) = 2XY) = inf  distortion(T)
TeGL,

will be used. Because §(X,Y) is a metric, the multiplicative Banach—Mazur
distance obeys the multiplicative triangle inequality, d(X,Z) < d(X,Y)d(Y,Z).
For convenience, this will be referred to as the Banach— Mazur distance.

The Banach—Mazur distance gives a sense of how close two normed spaces are to
one another. If the distance is small, then the space needs little distortion for there
to be a linear isomorphism between them. The following theorem, Dvoretzky’s
theorem, is a classical theorem which gives a quantitative sense of how close #5
space is to arbitrary normed spaces.
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Theorem 4.8. (Dvoretzky’s Theorem [10]) For every n € N and € > 0, every
n-dimensional normed space contains a subspace X of dimension m = Q(e*log(n))
such that d(Xls) < 1 + e.

Q) denotes that m is bounded asymptotically by e*log(n) as n — oo.

4.1.1. Bourgain’s Theorem. [15]

Motivated by this property of ¢5, in 1986, Jean Bourgain developed an algorithm
which describes embedding in /5.

Theorem 4.9. Any metric space (X,d) with n points can be embedded in o with
distortion < O(log n).

Proof. Bourgain’s proof gives an efficient randomized algorithm for the embedding
in ¢5 with distortion < O(log n).
Take a metric space (X,d) with n points.

Take m and q to be integers m = |logs | and q = |Clog(n) | where C is a constant.
Construct an embedding into £5'? with coordinates i = 1,...,m and j = 1,...,q.
Construct subsets of X, A;; by putting each x € X into A;; with probability 277.
Now embed with function f(x);; = d(x,As;).

Ll e

This is an embedding in Zg(log)%. It has distortion O(log n). O

4.1.2. Tightness of Bound.

The construction of this algorithm raises the question whether a better embedding
can be achieved. A paper by Nathan Linial (2002) shows that this bound is tight.
He considers a specific type of graph that has a shortest path metric which is as
far from the /5 metric as possible in order to guarantee a large distortion, giving a
lower bound on distortion of graphs. To state his theorem, some definitions from
graph theory are be needed.

Definition 4.10. The girth of a graph is the shortest cycle contained in the graph.
The girth of an acyclic graph is defined to be infinite.

Definition 4.11. An expander graph is a connected graph in which every “small”
subset of vertices has a “large” boundary. That is, the graph cannot be disconnected
without removing many edges.

This quality can be quantified in the notion of an € edge expander. A graph with
n vertices is an € edge expander if every set of K vertices with 0 < K < 7 has ¢[K]
edges connected to K¢ (the set of vertices not in K).

Definition 4.12. A k—regular graph is a graph where each vertex is of degree k.

Example 4.13. Two instances of 3—regular graphs
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Theorem 4.14. Linial’s Lower Bound [10]
Take G, a k—regular graph, with k > 8, and girth g. Then every embedding f :
G — {3 has distortion Q(,/g).

Proof Sketch. This proof uses a random walk on the graph. Knowing the girth
of the graph and that all vertices are connected to k other vertices, it can be proven
that the walk moves away from where it started at constant speed at a time bounded
asymptotically by g.

The geometry of Euclidean space means that this class of random walks is at
time T expected to be O(v/T) from its origin.

This difference must be accounted for by a distortion in the metric if it is to
be embedded in ¢». Comparing the two walks on the graph at time O(g) gives a
distortion of Q(,/g)

This result is illustrated by the examples above. The triangle inequality is sat-
isfied by equality many times, necessitating significant distortion.

4.1.3. Isometric Embedding in {s.

I. J. Schoenberg’s 1937 paper [7] outlines the necessary and sufficient conditions
for an isometric embedding in ¢5. He addresses separable pseudometric spaces. He
characterizes embeddable metrics in terms of positive definite functions.

Definition 4.15. A real function f = f(x1, x2,...,X,) is a positive definite function
if it is defined for all real values and if for any real numbers x1, xs,...,x, the n X n
matrix A, where A = (a; ;) and a; ; = f(x; - x;) is a positive, semi-definite matrix
(that is, x*Ax > 0 for all real numbers x).

A similar notion of positive definite functions can be defined for real-valued
functions which take as input distances on a pseudometric space (X,d).

A real function g(t) is positive definite if g is continuous, even, defined on the
range of distances in the pseudometric space and satisfies the inequality

n
Z g(d(zi; x5)) = 0
ij=1

—t A2

An example of a positive definite function in £5 is function f(t) = e~*" asis e~

for all real \.
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Theorem 4.16. Schoenberg’s Embedding
Take separable pseudometric space (X,d). It is isometrically embeddable in lo if
and only if the functions e~ are positive definite in (X,d).

Proof Sketch The idea of this proof is to note that e=*" for (A € R) is a family
of positive definite functions in 5. It is only necessary to consider A > 0 as A = 0 is
an accumulation point of this family and the cases where A < 0 follow by symmetry.
The proof uses ideas from analysis about positive definite functions to show that if
the given characteristics of positive definite functions are preserved on embedding
into f5, then all distances must have been preserved and if the given family of
functions are positive definite in the metric space, then the metric of the space will
allow isometric embedding into /5.

4.2. Embedding in /¢;.
Following the formula given for ¢, space ¢; is the set of all real sequences {z,}
such that Y |z,] < oo.
Define the distance on £ as d, (x,y) = >_,, [Zn — Yn| < 00.
To consider isometric embedding in £, the cut semimetric will be used.

Definition 4.17. The cut semimetric is a pseudometric d on a set X. Given par-
titions A and B of X, define d(x,y) = 0 if x,y € A or x,y € B and define d(x,y) =
1 otherwise.

Every cut semimetric is clearly isometrically embeddable in ¢;.

The set of all linear combinations of semimetrics on a set forms a special class
of metrics on that set. These are exactly the ¢; metrics on the set (that is, the
metrics which can be isometrically embedded in ¢1) [4].

4.3. Embedding in /.

Definition 4.18. /., space is defined to be the set of all real bounded sequences.
It takes on the norm ||z||oc = sup|a,|.
nelN

Theorem 4.19. [1] Every finite metric space (X,d) with n points can be embedded
in £

Proof. Take a finite metric space (X,d) with X = {x3,xa,...,x, }. Define an embed-
ding function f: X — ¢2 by f(x;); = d(xi,x;) V1 <4,5 < n. O
Embeddings into lower dimensional £¥_ spaces exist.

Definition 4.20. Take a metric space (X,d) and every subset S C X. Then define
a mapping fg : X — R for each S by

fs(x) =d(x,S) = rsréigd(x, s)

A Frechet Embedding is a map f : X — R¥ where each coordinate in R* is a scaled
fg mapping. f is then a Frechet Embedding if, for some g € R

f@) = @ Bsfs(x)

SCX
Proposition 4.21. [18] When s =1 VS C V, ||f(x) — f(y)|leo < d(zx,y). That

18, Frechet embeddings are contraction mappings in the £o, metric.
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Proof. Let S, denote the point in S C X closest to some point x € X. Then both
d(z,S) —d(y,S) < d(x,Sy) —d(y, Sz) < d(z,y)

This implies that

£ (@) = f(W)lleo = d(z, 5) — dly, S) < d(z,y)
O

A 1996 paper by Jiri Matousek uses these mappings to do distorted mappings
into lower dimension ¢ space.

Theorem 4.22. [23] Take an n—point metric space (X,d) and integer D. Then
2
(X,d) can be embedded into QPP log(n),

Proof Sketch The idea of this proof is to divide X into O(Dn?log(n)) subsets,
each of which will correspond to a dimension in the range ¢, space.

2
Construct embedding function ¢ : (X,d) — QPP 1esm) ¢4 he a Frechet em-
bedding with j*" coordinate of ¢ (z) to be d(x,S). Noting the proposition above,
function 1 must be a contraction mapping. The rest of the proof uses an algorithm
and probability to show that its contraction is limited.

4.4. Embedding in RN. [8]

A paper by C.L. Morgan published in 1974 proved necessary and sufficient condi-
tions for embedding a metric space in RN. His theorem applies to arbitrary metric
spaces, not only finite ones. It holds special interest for embedding finite metric
spaces. His theorem makes the computation necessary to determine whether em-
beddability is feasible. His proof also shows that for any metric space, embedding
into RN is a very strong condition, but it is one that is determined by a finite
number of points in the metric space.

In order to state and prove the embedding theorem, some special definitions will
be needed, as well as some general results about inner products, metrics, and linear
algebra.

Definition 4.23. An inner product on a vector space V over a field F with char-
acteristic 0 is a bilinear map < , >: V xV — F. This function satisfies conjugate
symmetry and positive definiteness.

For a vector space V with element x € V, define a norm ||z|| = /< z,z >.

Theorem 4.24. For a vector space V over characteristic 0 field F with inner
product < , > and norm ||z|| = /< z,x >, a metric d(z,y) = ||x —y|| is induced
by the norm.

Definition 4.25. Take metric space (X,d) and points x,y,z € X. Then define a
function from X x X x X — R as follows

1
<,y z >= S (d(@,2)" +d(y, 2)* = d(z,y)?)

If we set X to be a subset of some vector space V such that metric d is induced by
an inner product on V, then < z,y,z > would be the inner product of x—z and

y—2z.
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Definition 4.26. Take metric space (X,d). Then set Y is a metric subspace of X
if Y € X and Y has the distance function d|y «y.

Finite metric subspaces of X are n—simplices in X. In particular, a metric sub-
space of n + 1 elements is an n—simplex in X.

If (X,d) is a subspace of Euclidean space, then these simplices have a clear notion
of volume. The following function with begin to generalize this idea to arbitrary
metric spaces.

Definition 4.27. Define a function D: X**t! — R as follows

Construct an n X n matrix, A, from (xo,x1,...,xp) with real entries (a; ;) =
< T, Tj,To >

Let D(x0,X1,--,Xpn) = det(A).

This function D is a real valued function on the n-simplices of X.
Proposition 4.28. The function D is symmetric.

In Euclidean space, the entry (a; ;) in the above matrix is
1
< i wj, w0 >= S (V@i = 20)*)* + (1/ (w5 = 20)*)* = (1) (w: = 25)*)?)
1 1
= 5((331 —20)* + (v; — w0)? — (x5 — x7)%) = 5(—2%960 — —2z0z; + 27,7, + 223)

5(—2%350 —2xow; + 22 +223) = —TT0— ToT; +T;T; a2 = (x5 —x0) * (xj —x0)

The determinant of a matrix with these entries is the square of the volume of a
parallelpiped spanned by the set of n vectors (x1,...,x,) based at xg.
With this machinery, it is possible to find the volume of the simplex (x0,X1,.-.,Xn)-

Proposition 4.29. The volume of the n-simplex Y = (x9,21,...,2,) in Fucledian
space s
Vol (Y) = L\/D(xo, 1, ..., )

n!
Having computed this volume in Euclidean space, define the volume of an n-
simplex Y in any metric space to be the formula given by Vol,, (V).
We can now provide two definitions which will describe which metric spaces can
be embedded in RN

Definition 4.30. Metric space (X,d) is flat if each n-simplex Y in X, Vol,(Y) is
real.

Definition 4.31. Take flat metric space (X,d). The dimension of (X,d) is the
largest n € IN such that there is an n-simplex of X with positive volume.

These characteristic of metric spaces will determine which can be isometrically
embedded in RN. To prove Morgan’s main theorem, some results from linear alge-
bra are needed.

Lemma 4.32. Any real n-dimensional inner product space is linearly isometric to
Fuclidean n-space.

Lemma 4.33. Let M be an m X m real symmetric matriz with all non-negative
etgenvalues.

Define DIi, j] be the determinant of the m — 1 x m — 1 minor of M obtained by
deleting its ith row and jth column. Then DJi, j)*> < D[i,i]D[j, j]
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Theorem 4.34. Morgan’s Embedding in RY. A metric space can be isometrically
embedded in Euclidean n-space iff the metric space is flat and has dimension less
than or equal to n.

Proof. Take a metric space (X,d) which can be isometrically embedded in Euclidean
n-space. Isometries preserve volume, so the simplices must have real volume in (X,d)
(as they have real volume in RY), so (X,d) is flat. Because volume is preserved,
the simplices of positive volume in (X,d) have positive volume in RY, because there
cannot be any simplices of positive volume in RN with greater than n + 1 points,
(X,d) must have dimension less than or equal to n.

Take metric space (X,d) which is flat and of dimension n and n-simplex Y =
(x0,X1,.--,X,) such that Y has positive volume.

If amap f: X — RN can be constructed such that f embeds X isometrically in RN
with some inner product, then because any real n-dimensional inner product space
is linearly isometric to Euclidean n-space, (X, d) can be embedded in Euclidean
n-space.

Define f: X — RN as follows

f(f]'}) = (< x"rlaxo >7"'7< JT,In,:Eo >)

Define a bilinear form on RN as follows. Take n x n matrix L with entries (a; ;) =<
x;, T4, o >. Define bilinear form

<u,v >=u'L™ ', Yu,v e RN

The claim is that this bilinear form is an inner product on RN and that f embeds
(X,d) isometrically into this inner—product space. This is true if the eigenvalues of
matrix L are positive.

Consider the polynomial det(xI 4+ L). Its roots are the negatives of the eigenvalues
of L. Look at the coefficient of the term of degree n — k in this polynomial. It is the
sum of the k*n minors of L which lie along the main diagonal. These minors are all
non-negative because they are volumes of k-simplicial complexes (these volumes are
all real, nonnegative as (X,d) is flat and dimension n). These make the polynomial
positive, so it must have no positive roots, so there cannot be negative eigenvalues
of L. L being symmetric and non-singular (as it (X,d) has non-zero dimension)
ensures that its eigenvalues are positive.

To show that embedding function f is an isometry, it must be shown that f
preserves the structure of (X,d). If this is true, then the inner product given on RN
preserves the structure of all of the n-simplexes of (X,d). Thus it suffices to show
that

< f($)7f(y) >=<x,Y,To >
for all x,y in X.

Construct a (n + 2) x (n + 2) matrix M with entries < z;,z;,29 >. By the
same reasoning used on the similarly constructed matrix L, M has all non-negative
eigenvalues.

Set Dli, j] to be the determinant of the (n+ 1) x (n+ 1) of the matrix obtained
by deleting the it row and j** column of M.

Recall the lemma stating that

Dl[i, j]* < D[i,i]Dlj, j]



FINITE METRIC SPACES AND THEIR EMBEDDING INTO LEBESGUE SPACES 15

DJi, ] is the determinant corresponding to the volume of a (n+1)—simplex squared
and scaled by a factor of (n 4+ 1)!. (X,d) is n-dimensional, so the volume of any
(n + 1)—simplex must be zero, so D[i,i] = 0. By the lemma, this means that
Dli,j] = 0.
Setting ¢ = n and j = n + 1 shows that, in particular, D[n,n + 1] = 0.
Consider the minor of M with the n** row and (n + 1)** columns deleted.

< x1,T1,To > < XTp,T1,To > < Tp42,T1,To >
<T1,Tp-1,Z0> ... ... < Tp,Tp-1,T0> < Tpt2,Tp—1,To >
<T1,Tp41,20 > v ovn < TpyTpt1,T0 > < Tpit2,Tpil, Lo >
<T1,Tp42,20 > -or oo < TpyTp42,20 > < T2, Tn42, L0 >

Note that by the definition of the inner product
< fl@), fly) >= f(@)'L™ " f(y)
The condition for isometry is
< [f(@), fly) >=<=z,y,30 >
Set x = x,,41 and y = X, 42 so that
f(@) = (< Tpy1,T1,T0 >, o0y < Tpa1, Tny To >)
f(y) = (< Tn+42, L1, TQ > ey < 42, Ty T >)

Note that by deleting one row and one column from the matrix above, and dividing
by the determinant of L, the matrix becomes the L~! (when assigning the correct
cofactor signs).

Expand the above matrix by the last row to calculate the determinant, using the
minors

<T1,T1,%0 > ... ... < Tp,T1,To >
<T1,Tp—1,0 > oo oo < Tp,Tp-1,To >
<T1,Tp41,20 > -or oo < TpyTnt1, %o >
< T2,T1,To > < Tp42,T1,To >
<X, Tp—1,0 > .o. .. < Tp42,Tp—1,To >
< T2, Tp41,20 > --- ... < Tp42,Tnt1,%0 >

Taking the appropriate sign changes and summing their determinants gives zero
(as D[n,n + 1] = 0). So dividing by det(L) still yields zero.
Continue the calculation to get that
< Tn+1yTn+2,T0 >= f(xn+1)tL71f(xn+2)
This means that
< f(2), fly) >=<z,y,20 >
for all x, y in X. This means that f is an isometry. O

These characterizations of metric spaces provides a useful way to analyze exam-
ples of metric spaces.
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Theorem 4.35. [8] For n > 2, RN with the (P metric is flat iff p = 2.

Proof. Morgan gives the two examples used below for his proof of this theorem
without additional argument. However, working through the process to show why
these examples work illustrates why the case when p = 2 is special.

Given RN with the ¢? metric, the previous theorem proves that it is flat (i.e.
(RN ,£2) can embed in itself).

The example given in 4.1 of a non-embeddable metric space suggests how to
construct simplices of imaginary volume in (RN,fP) when p # 2. It is only necessary
to find examples in R? as R? ¢ RN for n > 2.

Consider (RN ¢P) for p < 2.

If 1 < p the ¢P metric is induced by the norm

Izl = (3 aal?)?

n

Take example of the 3-simplex Y in (RN,¢?) with Y = {(0,0),(1,0),(1,1),(0,1)}.
Observe that for any value of p > 1, the horizontal and vertical distances on this
simplex are the same.
Ifp>1,
d((a,b), (a,0)) = |(a,b) = (a,¢) [, = ([(a = )| + |(b = )")> = |b— |
The same argument applies, by symmetry, when the second coordinates are equal.
This means that distortion would occur in the distance between two non-adjacent

points in this simplex.
By the triangle inequality, for any p > 1

d((0,0), (1,1)) <d((0,0), (0,1)) +d((0,1), (1,1)) = 1 +1 =2
d((0,0), (1, 1)) <d((0,0), (1,0)) + d((1,0),(1,1)) =1+ 1 =2

d((0,0), (1,1)) = [[(0,0) = (1L, Il = (10 = 1"+ (0 = )|")» = 25
As p — oo, the quantity d((0,0),(1,1)) — 1, so this square in (RN,¢?) collapses to
a line as p increases.

Now consider the matrix constructed to compute function D(Y)
<(0,0),(1,0),(1,0) > < (0,0),(1,0),(1,1) > < (0,0),(1,0),(0,1) >

A= |<(0,0),(1,1),(1,00> < (0,0),(1,1),(1,1) > < (0,0),(1,1),(0,1) >
<(0,0),(0,1),(1,0) > < (0,0),(0,1),(1,1) > < (0,0),(0,1),(0,1) >

Using the formula
1
<@,y z >= 5 (d(@,2)" +d(y, 2)° — d(z,y)°)
Any entry on the diagonal takes the form

1
<y >= = (d(z,y)* + d(y, y)* — d(z,y)*) =0

2
A has a zero diagonal.
0 < (0,0),(1,0),(1,1) > < (0,0),(1,0),(0,1) >
A=1<(0,0),(1,1),(1,0) > 0 < (0,0),(1,1),(0,1) >
< (0,0),(0,1),(1,0) > < (0,0),(0,1),(1,1) > 0

Using the fact that for any p value,

d((0,0), (0,1)) = d((0,0), (1,0)) = d((1,0), (1,1)) = d((0, 1), (1,1)) = 1
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Matrix A can be simplified to

0 3d((0,0),(1,1))*  3d((1,0),(0,1))?
A= |1-3d((0,0),(1,1)) 0 1—34d((0,0),(1,1))
3d((0,1),(1,0))*  3d((0,0), (1,1))? 0
Then D((0,0),(1,0),(1,1),(0,1)) can be calculated

DY) = (3d((0,0), (1, 1))2)(5d((0, 1), (1,0))*)(1 — 2d((0,0), (1, )*)+

(501,00, 0,1)*)(1 = 2((0,0), (1,1))*)(3d((0,0), (1,1))?)
This simplifies to
a(1,0), (0, 1)d((0,0), (1, 1) (5 — (0,0}, (1,1))"
The term d((1,0), (0,1))%d((0,0), (1,1))? is always positive. This value of D(Y) is
negative (and so the volume of Y imaginary) only when

5 < 3(0,0),(1,1))?

Solving this inequalities gives that the volume is imaginary when
V2 <d((0,0),(1,1))

If 0 < p < 1, then ¢P has metric

Zm ui

Then
d((0,0), ( Z|o—1|P—1p +17 =2

i=1
D(Y) is negative for 0 < p < 1, so Vol(Y) is imaginary, so (RN, ¢P) is not flat for
0<p<1 If1<p<2, then this distance takes the form

d((0,0), (1,1)) = [(0,0) — (1, 1), = (1? + 17)7 =27

If p < 2, then the inequality is satisfied, meaning that (RN, ¢P) is not flat for
1<p<2.

Consider (RN.P) for p > 2. Take example of the 3-simplex Y in (RN () with
Y = {(0,1),(1,0),(-1,0),(0,-1)}. This simplex has vertical and horizontal distances
of 2 which are preserved in all (RN,/?) for all p. It is the distances which are
not preserved which will cause this simplex to have imaginary volume for p > 2.
This example’s invariant distances are larger than the changing distances, so by
repeating the same computation as above, the inequality is reversed, giving that
the volume of Y is imaginary when

V2 > d((—1,0),(0,1))

This is an equality when p = 2. By the same analysis as above, as p becomes
greater than 2, this inequality is satisfied, showing that Y has an imaginary volume
when p > 2. This means that (RN.P) is not flat for p > 2. O
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4.5. Embeddings of the /; Metric.

In section 4.2 it was shown that ¢2 is close to other normed spaces, that is, there
is a linear isomorphism between them which requires little distortion of the spaces.
It is then natural to ask when there is an isometric embedding from /5 to other
spaces.

4.5.1. Dimension Reduction in {s.

Given a metric space (X,f2) in RY, it is useful to ask whether the dimension of
the host space, 2, can be reduced in exchange for distortion. A paper by William
Johnson and Joram Lindenstrauss quantified the possible dimension reduction.

Theorem 4.36. (Johnson and Lindenstrauss Dimension Reduction [19]) Given any
n point metric space (X,l2) C RN and € > 0, there is an embedding of distortion
of at most 1 + € such that

o) log n
(X, b) — 050

The proof of this dimension reduction theorem and other proofs of isometric
embedding from £ to £, uses a technique in theoretical computer science, random
projection.

Definition 4.37. Take vectors 11,...,rx, C RN which have been obtained by some
random process. Then define map 1 : RV — RF as follows

Vv — (Kv,ry >, < v, TR >)

Map ¢ is a random projection from RN — R*.
Random projection v can be conveniently expressed as a k x n matrix A whose
rows are ry,...,ry, so that ¥)(v) = Av. This means that random projections are linear.

There are three notable examples of random process used to generate the rq,...,rg.
All three have been used to prove the Johnson—Lindenstrauss Theorem.

Examples 4.38. .

1. Set each r; = (r},...,r"). Obtain values for each rg from a normal probability
distribution centered at 0 with variance 1. This is labeled ¥ and was used to
prove Johnson—Lindenstrauss [21].

2. Set each r; = (r},...,r™). Obtain values for each rz by choosing either +1 or -1,
each with probability % This method is called binary coins. This is labeled ¥ 5.
This is the simplest method used to prove Johnson—Lindenstrauss [22].

3. Take r1,...,r;, to be a set of k orthogonal vectors from $7~!. This is labeled g

and was originally used by Johnson and Lindenstrauss [19].

4.5.2. Isometric Embedding from ls to ;.

Two interesting cases of £, spaces are /5 and ¢;, so the existence of an isometric
embedding of a n—point metric space in £§ to some finite dimensional ¢¥ is an
important one. In order to prove that there does exist such an embedding, the
space @Wl will be explored. The definition of this space and the proof of an
embedding theorem is given in lecture 12 of the series on finite metric spaces given
at TTIC [18].
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Definition 4.39. Space é?”fl is an ¢; metric space with a coordinate for each
vector in $"~1. Each point in " in given by a function f: $"~! — R. The
norm is then given by

= [ e

Lemma 4.40. There exists an isometric embedding of every n—point metric space
in 03 to (5"

With this embedding lemma, it only need be shown that there is an isometric em-
bedding from E?nA into a finite dimensional ¢;. This result can also be generalized
to isometric embeddings from ¢5" " to finite dimensional £,

Theorem 4.41. [18] Every n—point metric space in 5 can be isometrically em-
bedded into (7.

Proof Sketch Isometrically embed space metric space X= {x1,...,x,, }in €5 by the
above lemma. $"~! is partitioned into n! regions and each region is assigned an x;
and x;. Each region is defined in such a way that the sign of < z;,7 > — < x;,r > is
constant within it. It can then be shown that this produces an isometric embedding
from £2 to 3" and into £7".
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