
THE GAUSS-BONNET THEOREM

KAREN BUTT

Abstract. We develop some preliminary differential geometry in order to

state and prove the Gauss-Bonnet theorem, which relates a compact surface’s

Gaussian curvature to its Euler characteristic. We show the Euler charac-
teristic is a topological invariant by proving the theorem of the classification

of compact surfaces. We use the Gauss-Bonnet theorem to give a geometric

proof of the Poincaré-Hopf index theorem, which relates the index of a smooth
tangent vector field on a surface to the surface’s Euler characteristic.
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1. Introduction

The Gauss-Bonnet theorem is perhaps one of the deepest theorems of differential
geometry. It relates a compact surface’s total Gaussian curvature to its Euler
characteristic. A surface’s Euler characteristic tells us what kind of surface we
have up to homeomorphism. For example, under this classification a sphere and an
ellipsoid are the same, whereas a sphere and a torus are different. The theorem is
surprising because Gaussian curvature at a point is certainly not invariant under
homeomorphism. We can homeomorphically deform the unit sphere, which has
Gaussian curvature 1 everywhere, into an ellipsoid which will have some flatter
parts and some more curved parts. However, the theorem tells us both surfaces
have the same total Gaussian curvature.

We can also ask how the global shape of a surface limits the properties of smooth
tangent vector fields we can define on it; for instance, we can ask about the number
and nature of the vector field’s stationary points. The famous Hairy Ball Theorem
states that there is no smooth non-vanishing vector field on a sphere. However,
there is one on a torus.
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Our goal is to show ∫
S

K dA = 2πχ = 2π

n∑
i=1

µ(pi)

for a compact surface S in R3. K is the Gaussian curvature, χ is the Euler char-
acteristic and µ(pi) is the multiplicity of the singular point pi of a tangent vector
field on S. These concepts will be formally discussed in the sections that follow.
The first equality is the Gauss-Bonnet theorem, the second is the Poincaré-Hopf
index theorem.

In Section 2, we introduce basic concepts from differential geometry in order to
define Gaussian curvature. In Section 4, we prove the Gauss-Bonnet theorem for
compact surfaces by considering triangulations. To do so, we use a result relating
the total geodesic curvature of a curve on a surface to the Gaussian curvature
of the region it encloses, which we prove in Section 3. In Section 5, we show
that all compact surfaces can be classified up to homeomorphism by their Euler
characteristics. In Section 6, we define the index of a vector field and use the
Gauss-Bonnet theorem to prove the Poincaré-Hopf theorem.

2. Preliminaries

In this section, we define surfaces in R3. We introduce the first and second
fundamental forms, central for the study of the local geometry of surfaces. We then
define the Gaussian curvature of a surface.

Definition 2.1. A subset S ⊂ R3 is a regular surface if for each p ∈ S, there exists
a neighborhood V in R3 containing p and a map σ : U → V ∩ S of an open set
U ⊂ R2 onto V ∩ S ⊂ R3 such that
i) σ is smooth, meaning it has continuous partial derivatives of all orders.
ii) σ is a homeomorphism.
iii) For each q ∈ U the differential dσq is injective, or equivalently, σu × σv is never
0.

We call σ a surface patch or parametrization of S ∩ V . We call a collection
{(Ui, σi)} with

⋃
σi(Ui) = S an atlas. We will use the term surface to mean

smooth, regular surface.
Condition i) allows us to use the tools of differential calculus to study surfaces,

condition ii) means that locally we can flatten or straighten out surfaces to look
like R2, and condition iii) allows us to talk about tangent planes to surfaces.

Example 2.2. The unit sphere S2 = {(x, y, z) ∈ R3 : x2 +y2 +z2 = 1} is a surface.

Let
σ1(θ, φ) = (cos θ cosφ, cos θ sinφ, sin θ)

and take U1 to be the open subset of R2 given by

U1 = {(u, v) ∈ R2 : −π/2 < θ < π/2, 0 < φ < 2π}.
The image of σ1 does not cover all of S2; we are missing points of the form (x, 0, z)
with x ≥ 0. So we define another surface patch also on U1 by

σ2(θ, φ) = (− cos θ cosφ,− sin θ,− cos θ sinφ).

The reader can check that the surface patches σ1 and σ2 satisfy the properties in
Definition 2.1, and that these two surface patches give an atlas for S2.
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Example 2.3. The torus obtained by revolving a circle in the xz-plane with center
(a, 0) and radius b < a about the z-axis is a surface.

We can parametrize the circle by γ(θ) = ((a+b cos θ), b sin θ). Then, by revolving
this curve about the z-axis, we obtain the surface patch

σ(θ, φ) = ((a+ b cos θ) cosφ, (a+ b cos θ) sinφ, b sin θ).

We leave it to the reader to find an atlas for the torus.
Next, we introduce the notion of tangent space.

Definition 2.4. A tangent vector to a surface S at a point p ∈ S is a tangent
vector at p to a curve in S passing through p. The tangent space TpS is the set of
all tangent vectors to S at p.

Proposition 2.5. Let S be a surface and let σ(u, v) be a surface patch containing
a point p ∈ S. Then TpS = span(σu, σv).

Proof. Let γ(t) = σ(u(t), v(t)) be a curve on S. Differentiating, we get

γ̇ = u̇σu + v̇σv.

Conversely, if v = λ1σu + λ2σv, we can define

γ(t) = σ(u0 + λ1t, v0 + λ2t).

Then γ̇ = v. �

Remark 2.6. Condition iii) of Definition 2.1 guarantees that σu and σv are linearly
independent, so we see TpS has dimension 2. We sometimes refer to TpS as a
tangent plane.

To make measurements on a surface, such as lengths of curves or areas of re-
gions, we need to define a metric on the tangent space. This brings us to the first
fundamental form.

Definition 2.7. The first fundamental form is a symmetric bilinear form on TpS
given by

Ip(v, w) = 〈v, w〉
where the right hand side denotes the usual inner product in R3.

We will consider the associated quadratic form Ip(w,w). Fixing a basis, we
can find a matrix representation of this quadratic form. This means we can write
Ip(w,w) = 〈AX,X〉, where X is a vector in R2 which gives the coordinates of w
with respect to the chosen basis of TpS.

Take {σu, σv} as the basis for TpS. Then we can write w = α1σu + α2σv. Since
Ip is a symmetric bilinear form, we have

Ip(α1σu + α2σv) = α2
1〈σu, σu〉+ 2α1α2〈σu, σv〉+ α2

2〈σv, σv〉.
Now let

E = 〈σu, σu〉, F = 〈σu, σv〉, G = 〈σv, σv〉,
where the partial derivatives are evaluated at (u0, v0) with p = σ(u0, v0). Then we
have 〈(

E F
F G

)(
α1

α2

)
,

(
α1

α2

)〉
= Ip(α1σu + α2σv).
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Since the Gauss-Bonnet theorem involves a surface integral, we briefly discuss areas
of regions on surfaces. We define the area Aσ(R) of a region σ(R) on a surface by

Aσ(R) =
∫
R
‖σu×σv‖ du dv. The reader can easily verify ‖σu×σv‖ =

√
EG− F 2.

We will write

dA =
√
EG− F 2 du dv,

dropping the subscript σ because this quantity is independent of parametrization.
This is clear since EG− F 2 = det(Ip), which is independent of the choice of basis.

In this paper, we are interested in the curvature of surfaces. Curvature of a
surface should measure how much a surface deviates from a plane, which has to
do with how the tangent plane TpS changes as p changes. Note that since we are
working in three-dimensional space, the tangent plane is completely determined by
a unit vector perpendicular to it. One such vector is

Np =
σu × σv
‖σu × σv‖

.

(The other option is to take −Np). We call Np the standard unit normal. Note
that ±Np does not depend on the parametrization (see [3], Section 4.5), but the
parametrization pins down the sign. So we say that σ induces an orientation on
the part of S contained in its image.

In this paper, we will restrict ourselves to considering surfaces which are ori-
entable. We take this to mean that there is a smooth choice of unit normal Np on
all of S. This means Np varies smoothly in p, even as we move from one surface
patch to another. Intuitively, this means a surface has two separate sides. (A classic
example of a non-orientable surface is a Mobius strip.)

Definition 2.8. The Gauss map is the map G : S → S2 which associates to each
p ∈ S its normal vector Np ∈ S2, where Np is defined as above.

Remark 2.9. The Gauss map changes sign when the orientation of the surface
changes.

Our definition of curvature of a surface should be closely related to how the
normal vector changes as p changes, so we will work with the derivative of the
Gauss map.

Definition 2.10. The Weingarten map W is given by Wp = −DpG.

By Remark 2.9, the sign of W depends on the orientation of the surface.
By the definition of the derivative, W is a map from TpS to TG(p)S

2. The unit

normal of TG(p)S
2 is G(p). Since G(p) = Np, we have TG(p)S

2 = TpS. So W is a
map from TpS to itself.

Definition 2.11. The second fundamental form IIp : TpS → R is a bilinear form
given by

IIp(v, w) = 〈W (v), w〉.

The bilinearity of IIp follows from the bilinearity of the inner product and the
linearity of the derivative.

Lemma 2.12. The second fundamental form is a symmetric bilinear form.



THE GAUSS-BONNET THEOREM 5

Proof. First, note

W (σu) = − d

du
G(σ(u, v0)) = −Nu.

Similarly, W (σv) = −Nv. Let v = α1σu + α2σv and let w = β1σu + β2σv. Then,

IIp(v, w) = 〈−α1Nu − α2Nv, β1σu + β2σv〉
= −α1β1〈Nu, σu〉 − α1β2〈Nu, σv〉 − α2β1〈Nv, σu〉 − α2β2〈Nv, σv〉
= 〈−β1Nu − β2Nv, α1σu + α2σv〉
= IIp(w, v). �

Now we can consider the associated quadratic form. We have

IIp(v, v) = −α2
1〈Nu, σu〉 − 2α1α2〈Nu, σv〉 − α2

2〈Nv, σv〉,

where we used the fact that 〈Nu, σv〉 = 〈Nv, σu〉, which can be seen by differenti-
ating 〈N, σu〉 = 〈N, σv〉 = 0 with respect to u and v.

So the matrix of the second fundamental form is(
L M
M N

)
,

where L = −〈Nu, σu〉, M = −〈Nu, σv〉 = −〈Nv, σu〉, N = −〈Nv, σv〉.
The reader can easily check that L = σuu ·N, M = σuv ·N, and N = σvv ·N.

Definition 2.13. The Gaussian curvature K of S at p is given by K = detW .

Example 2.14. The Gaussian curvature of S2 is 1 everywhere.

To see this, note that the Gauss map of S2 is the identity, and hence so is the
Weingarten map. So

K = detW = 1.

It is not usually this simple to determine the Weingarten map for other surfaces.
However, by considering −Nu and −Nv as linear combinations of σu and σv, it
is easy to see that the matrix of the Weingarten map with respect to the basis
{σu, σv} is (

E F
F G

)−1(
L M
M N

)
.

(For the full derivation, the reader can consult [3], Proposition 8.1.2.) Then we see
that

K =
LN −M2

EG− F 2
.

Remark 2.15. The Gaussian curvature K does not depend on orientation. To see
this recall W changes sign with a change of orientation, and the determinant of a
2× 2 matrix stays the same when we multiply all the entries by −1.

Example 2.16. We can now compute the Gaussian curvature of the torus.

Recalling the parametrization from Example 2.3, we have

σθ = (−b sin θ cosφ,−b sin θ sinφ, b cos θ),

σφ = (−(a+ b cos θ) sinφ, (a+ b cos θ) cosφ, 0).
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This gives E = b2, F = 0, G = (a + b cos θ)2. We can also compute N, σuu
and σvv to get the coefficients of the second fundamental form: L = b, M = 0,
N = (a+ b cos θ) cos θ. Hence,

K =
cos θ

b(a+ b cos θ)
.

So K ≥ 0 when −π/2 ≤ θ ≤ π/2 and K ≤ 0 when π/2 ≤ θ ≤ 3π/2.

Remark 2.17. If we apply a dilation (x, y, z) 7→ (ax, ay, az) to a surface S, the
parametrization σ gets multiplied by a. Thus E, F , G get multiplied by a2 and L,
M , N get multiplied by a. Thus K gets multiplied by a2.

Example 2.18. Let S be a sphere of radius a. Its Gaussian curvature is 1/a2

everywhere by the above remark. Hence,∫
S

K dA =

(
1

a2

)
4πa2 = 4π.

3. Gauss-Bonnet Theorem for Curves

Our goal is to prove the Gauss-Bonnet theorem for compact surfaces. This
theorem relates the local property of curvature to a global topological invariant.
It is instructive to first consider how the total curvature of a curve is affected by
its global properties. For simple closed curves in the plane, we have the following
result.

Theorem 3.1. Let γ be a unit-speed simple closed curve in R2. Then∫ l(γ)

0

κs ds = ±2π.

The quantity κs denotes the signed curvature, where the sign depends on the
orientation of the parametrization. Also note that κs = dφ

ds , where φ(s) is the angle
the tangent vector γ̇(s) makes with some fixed unit vector (see [3], Proposition
2.2.3.). Thus, Theorem 3.1 says that the tangent vector rotates by an angle of 2π
when going once around the curve. For a proof, see Section 5-7 of [2].

Next, we consider curves on curved surfaces. A simple closed curve γ on a surface
patch σ : U → R3 is given by γ = σ ◦ β, where β is a simple closed curve in R2

and int(β) is entirely contained in U . By int(β) we mean the region of R2 enclosed
by β. Since β is a simple closed curve, the Jordan Curve Theorem (see [1] Section
5.6) tells us the set of points in R2 which are not in the image of γ is the union of
two disjoint connected subsets, which we denote by int(β) and ext(β), where the
former is bounded and the latter is unbounded.

Given a curve γ on a surface S, we have {γ̇,N,N× γ̇} forming an orthonormal
basis of R3. We can look at the projections of γ̈ onto these basis vectors. Recall
that the curvature κ of a unit-speed curve γ is given by κ = ‖γ̈‖.

Definition 3.2. The geodesic curvature κg is given by

κg = γ̈ · (N× γ̇).

Remark 3.3. The sign of the geodesic curvature depends on our choice of orientation
of S. It also depends on the orientation of the curve itself. This will become
important in later proofs.
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Remark 3.4. For a plane curve, κg = κs up to a sign. To see this, note that for a
plane curve, γ̇ is always perpendicular to N. Since γ̇ is perpendicular to γ̈ for any
unit-speed curve, we see that N× γ̇ is parallel to γ̈.

Now we can state the Gauss-Bonnet theorem for simple closed curves. We present
the main ideas of the proof, omitting the lengthy computations. For a complete
proof, see [3], Theorem 13.1.2.

Theorem 3.5. Let γ = σ ◦β be a positively-oriented unit-speed simple closed curve
on a surface patch σ of length l(γ). Then∫ l(γ)

0

κg ds = 2π −
∫

int(β)

K dA.

Note that for a plane curve, this is consistent with Theorem 3.1 because κg = κs
and K = 0.

Proof. To begin, we consider a smooth orthonormal basis {E1, E2} of the tangent
plane at each point of the surface patch. For example, we can take E1 = σu/‖σu‖
and E2 = N × E1, where N is the standard unit normal. Then {E1, E2,N} is a
smooth right-handed orthonormal basis of R3. We want to compute the geodesic

curvature κg of γ in terms of this basis. Let θ(s) be the oriented angle ̂̇γE1. This is
the angle by which γ̇ must be rotated counter-clockwise to be parallel to E1, when
looking at the surface from the side to which N points. It is only defined up to
adding a multiple of 2π. We can write

(3.6) γ̇ = cos θE1 + sin θE2.

Differentiating gives

γ̈ = θ̇(− sin θE1 + cos θE2) + cos θĖ1 + sin θĖ2.

Now we can substitute N = E1×E2 along with the above expressions for γ̇ and
γ̈ into the formula κg = γ̈ · (N × γ̇). Using the orthonormality of E1 and E2, the
reader can easily check that we obtain

κg = θ̇ − E1 · Ė2.

Next, we compute the integral of the above expression. We claim

(3.7)

∫ l(γ)

0

θ̇ds = 2π.

We give only a heuristic argument. First, we claim the integral is a multiple of
2π. Since γ is a simple closed curve, we have γ(s+ l) = γ(s), so γ̇(s+ l) = γ̇(s). In
particular, γ̇(l) = γ̇(0). By (3.6),

(cos(θ(l)), sin(θ(l))) = (cos(θ(0)), sin(θ(0))),

which implies θ(l) − θ(0) is a multiple of 2π. By the fundamental theorem of
calculus, this is equal to the integral in (3.7).

Now, if γ̃ is another simple closed curve contained in the interior of γ, we can
find a family of curves γτ which are continuous in τ with γ0 = γ and γ1 = γ̃.
The above integral should depend continuously on τ , but it can only assume values
that are integer multiples of 2π and nothing in between. By the intermediate value
theorem, the integral must be constant in τ , which means it does not depend on
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the choice of simple closed curve γ. We can therefore take γ to be a very small
circle, which is essentially a plane curve, so Theorem 3.1 applies. This proves (3.7).

Now we are left to show∫ l(γ)

0

E1 · Ė2 ds =

∫
int(β)

K dA.

Differentiating E2, we have∫ l(γ)

0

E1 · Ė2 ds =

∫ l(γ)

0

E1 · ((E2)uu̇+ (E2)v v̇) ds

=

∫
β

(E1 · (E2)u) du+ (E1 · (E2)v) dv

=

∫
int(β)

(E1 · (E2)v)u − (E1 · (E2)u)v du dv by Green’s theorem

=

∫
int(β)

(E1)u · (E2)v − (E1)v · (E2)u du dv.

We can also show

(E1)u · (E2)v − (E1)v · (E2)u =
LN −M2

(EG− F 2)1/2

by expressing the partial derivatives of E1 and E2 in terms of {E1, E2,N}. For
details see [3], Section 13.1.

Using the definition of the area element dA, we can easily see

∫
int(β)

LN −M2

(EG− F 2)1/2
du dv =

∫
int(β)

LN −M2

EG− F 2
dA

=

∫
int(β)

K dA,

which completes the proof. �

Now we show Theorem 3.5 generalizes from simple closed curves to curvilinear
polygons.

Definition 3.8. A curvilinear polygon in R2 is a continuous map β : R→ R2 such
that for some real number T and some points 0 = t0 < t1 < · · · < tn = T we have
i) β(t) = β(t′) if and only if t− t′ is a multiple of T .
ii) β is smooth on each (ti−1, ti).

iii) The one-sided derivatives β̇−(ti) and β̇+(ti) exist for i = 1, ..., n and are non-zero
and non-parallel.

The points γ(ti) are called the vertices of the curvilinear polygon. Now let β be
a curvilinear polygon in the plane and let σ be a surface patch. Then, γ = σ ◦ β is
called a curvilinear polygon on the surface patch σ.

As in the proof of Theorem 3.5, we can take {E1, E2,N} as a smooth orthonormal
basis of R3. For i = 1, ..., n, let θ±i be the oriented angle between γ̇±(ti) and E1,
as in the beginning of the proof of Theorem 3.5. Then δi = θ+

i − θ
−
i is the exterior

angle at the vertex γ(ti) and αi = π − δi is the interior angle.
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Theorem 3.9. Let γ be a positively-oriented unit-speed curvilinear polygon with n
edges on a surface patch σ. Then∫ l(γ)

0

κg ds =

n∑
i=1

αi − (n− 2)π −
∫

int(γ)

K dA.

Proof. As in the proof of Theorem 3.5, we can find a smooth orthonormal basis
{E1, E2,N} of R3, express γ̇ and γ̈ in terms of this basis, and compute the geodesic
curvature of γ. As before, we get∫ l(γ)

0

κg ds =

∫ l(γ)

0

θ̇ ds−
∫

int(γ)

K dA.

We are left to show

(3.10)

∫ l(γ)

0

θ̇ ds = 2π −
n∑
i=1

δi.

If we approximate a curvilinear polygon with a smooth curve γ̃ by rounding off
the corners, then we know the tangent vector ˙̃γ turns an angle of 2π going once
around γ̃. Now note that when we integrate around the curvilinear polygon γ we
are really summing the integrals along each of the edges of the polygon. So the
integral on the left hand side of (3.10) only sees how much the tangent vector turns

along the smooth parts of the curve, not along the corners. But ˙̃γ turns more going
once around γ̃, since it also turns around the corners of γ. If γ̃ is a very close
approximation for γ, then the difference between the integral around γ̃ and γ is
only due to these corner contributions, and (3.10) follows. (The rigorous argument
goes the same way; see [3], Theorem 13.2.2.) This completes the proof. �

Corollary 3.11. If the polygon is given by arcs of geodesics (which means κg = 0),
then the internal angles satisfy the formula

n∑
i=1

αi = (n− 2)π +

∫
int(γ)

K dA.

For example, if we take a geodesic triangle on the unit sphere with interior angles
α, β, γ we have α+ β + γ = π +A, where A is the area of the triangle.

Now that we can say something about the total Gaussian curvature of the part of
a surface enclosed by a curvilinear polygon, we seek to cover a surface with adjacent
curvilinear polygons. This brings us to the notion of triangulation, which we define
in the next section.

4. Gauss-Bonnet Theorem for Compact Surfaces

Definition 4.1. Let S be a surface, with atlas consisting of the patches
σi : Ui → R3. A triangulation of S is a collection of curvilinear polygons each of
which is contained, together with its interior, in one of the σi(Ui) such that
i) Every point of S is in at least one of the curvilinear polygons.
ii) Two curvilinear polygons intersect only at a common vertex or common edge.
iii) Each edge is an edge of exactly two polygons.

Definition 4.2. The Euler characteristic χ of a triangulation is given by

χ = V − E + F,
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where V , E, F denote the total number of vertices, edges and faces of the triangu-
lation respectively.

Example 4.3. By intersecting the sphere with the three coordinate planes, we
obtain a triangulation with eight triangles.

Therefore,

χ = 6− 12 + 8 = 2.

Example 4.4. To triangulate the torus, we recall that we can think of the torus
as the unit square with opposite sides identified. A triangulation of the square is
shown in the figure below. When counting vertices and edges, we need to take into
account that opposite edges are identified. For example, all four corners of the unit
square correspond to the same vertex once we fold the square into a torus.

This triangulation gives χ = 9− 27 + 18 = 0.
To prove the Gauss-Bonnet theorem for compact surfaces, we use the following

topological fact, the proof of which is beyond the scope of this paper.

Theorem 4.5. Every compact surface has a triangulation with finitely many poly-
gons.

Now we can state the Gauss-Bonnet theorem for surfaces.

Theorem 4.6. Let S be a compact surface. Then for any triangulation of S we
have ∫

S

K dA = 2πχ.

Proof. Clearly, the left hand side is independent of triangulation, so if we can
prove the theorem for a particular triangulation, we have proved it for all possible
triangulations. Take a triangulation of S consisting of curvilinear polygons Pi.
Assume each of them is contained in a surface patch σi : Ui → R3. Let Ri be such
that σi(Ri) = Pi.
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The main idea behind the proof is to apply Theorem 3.9 to each of the polygons
in the triangulation. To do this, write∫

S

K dA =
∑
i

∫
Ri

K dA.

This is valid since the polygons of the triangulation only overlap at vertices and
edges, so these overlaps do not affect the integral. Applying Theorem 3.9 to each
of the terms on the right hand side, we get∫

S

K dA =
∑
i

∫ l(Pi)

0

κg ds+
∑
i

bi −
∑
i

(ni − 2π),

where bi is the sum of the interior angles of Pi, and ni is the number of vertices of
Pi.

We claim the first term on the right is zero. To see this, note that each edge of
the triangulation is traversed twice, once in each direction, since each edge is the
edge of precisely two polygons. Additionally, the geodesic curvature changes sign
when we traverse the curve in the opposite direction.

Next,
∑
i bi = 2πV because at each vertex of the triangulation, the sum of the

interior angles must be 2π.
Finally,

∑
i(ni − 2)π = π

∑
i ni − 2πF . Since ni is the number of vertices of

Pi, it is also the number of edges. Each edge is counted twice, because of property
iii) of the definition of a triangulation. This means we have

∑
i ni = 2E and this

completes the proof. �

Example 4.7. If S is a sphere, we know χ(S) = 2 and the Gauss-Bonnet theorem
says ∫

S

K dA = 4π,

which is in agreement with Example 2.18.

Example 4.8. If S is a torus, then χ(S) = 0, so the Gauss-Bonnet theorem gives∫
S

K dA = 0.

In Example 2.16, we saw the torus has regions of both positive and negative Gauss-
ian curvature; now we know these positive and negative contributions cancel each
other out.

As of yet, we cannot apply the theorem to any more surfaces since we do not know
any other Euler characteristics. Next, we will compute the Euler characteristic of
Tg, a genus g torus.

Theorem 4.9. χ(Tg) = 2− 2g.

Proof. We know the result for g = 0 and g = 1. Now we proceed by induction.
Suppose we know the result for g. We can obtain Tg+1 by gluing a copy of T1

onto Tg. We need to fix triangulations of Tg and T1 so that we can remove an
n-gon from each of them and attach them at the n-gon’s boundary. From here, it is
straightforward to compute how the vertices, faces and edges of the triangulations
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change. We removed one face, n vertices and n edges from the triangulations of
both T1 and Tg. So we have

Vg+1 = (Vg − n) + (V1 − n),

Eg+1 = (Eg − n) + (E1 − n),

Fg+1 = (Fg − 1) + (F1 − 1).

Hence,

χ(Tg+1) = Vg+1 − Eg+1 + Fg+1

= (Vg − Eg + Fg) + (V1 − E1 + F1)− 2

= 2− 2g − 2

= 2− 2(g + 1). �

In the next section, we say much more about the Euler characteristic, which will
add significance to the Gauss-Bonnet theorem.

5. Classification of Surfaces

In this section, we will see the Euler characteristic is invariant under homeomor-
phism. Moreover, if two oriented surfaces have different Euler characteristics, then
they are not homeomorphic. To see this, we will show that for a compact oriented
surface S, χ(S) = 2 − 2g is equivalent to S ∼= Tg, where T0 is S2. Thus we have
the remarkable result that any compact oriented surface is homeomorphic to one
of the Tg.

For the proof, we will again rely on triangulations of surfaces. Fix a triangulation
∆ of S. We will think of ∆ as an undirected graph, since it has vertices and edges.
Since graphs do not have faces, we have the following notion of Euler characteristic.

Definition 5.1. The Euler characteristic of a graph G is given by χ(G) = V −E,
where V is the number of vertices of G and E is the number of edges.

We will work with a spanning tree T of ∆. This means T is a subgraph of ∆
which is a tree and contains all the vertices of ∆. The reader can easily verify the
existence of such a tree for any connected graph. We prove a fact about trees which
will be useful later.

Lemma 5.2. For a connected graph G, we have χ(G) ≤ 1 with equality if and only
if G is a tree.

Proof. Suppose G is a tree. We will show E = V −1. The result is obvious for V = 1
and V = 2. Suppose the property is true for all trees with fewer than n vertices.
Take G to be a tree with n vertices. Choose an edge e connecting vertices v1 and
v2. Since G is a tree, e is the only path joining v1 and v2. Therefore, removing e
from G leaves two trees T1 and T2 with k and n − k vertices respectively. By the
inductive hypothesis, T1 has k − 1 edges and T2 has n− k − 1 edges. The edges of
G consist of the edges of these two trees along with the edge e, totaling n− 1.

Conversely, if G is an arbitrary graph with n vertices, then the number of edges
must be at least n− 1 for G to be connected.

Now suppose we have a connected graph G with n vertices and exactly n − 1
edges, and suppose G is not a tree, i.e. G contains cycles. Then we can delete edges
from G until we are left with a tree. By the previous paragraph, this tree must also
have n− 1 edges, a contradiction. �
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In the proof of our next lemma, we work with the dual graph Γ of T , defined as
follows. We take the vertices of Γ to be the faces of ∆. We determine whether or
not two vertices f1 and f2 of Γ are connected by an edge according to the rule

f1 ↔ f2 ⇐⇒ f1 ∩ f2 * T,

where f1 and f2 are the faces of ∆ corresponding to f1 and f2 respectively, and
f1 ∩ f2 is the edge between f1 and f2. If f1 and f2 intersect trivially, then there is
no edge between them.

We can represent Γ on the triangulation of S by associating each vertex to an
interior point on a face of ∆ and connecting the vertices by bent edges. This is
illustrated in the figure below, where the tetrahedron can be regarded as a trian-
gulation of a sphere. The tree T is shown in blue and its dual graph Γ is shown in
red.

Each of the bent edges of Γ crosses an edge of ∆. By the construction of Γ,
it is clear that none of these edges are in T . Therefore, we have a one-to-one
correspondence between the edges of Γ and the edges of ∆ that are not in T .

Using this fact, we can write

χ(∆) = V − E + F

= V (T )− E(T )− E(Γ) + V (Γ)

= χ(T ) + χ(Γ) ≤ 2,

where the last inequality is an application of Lemma 5.2.
Recall that we want to show

χ(S) = 2− 2g ⇐⇒ S ∼= Tg.

The next lemma treats the case g = 0.

Lemma 5.3. Given a compact orientable surface S, the following are equivalent:

(1) Every simple closed curve separates S.
(2) χ(S) = 2.
(3) S ∼= S2.

Proof. We begin by showing (1) =⇒ (2). From the above discussion, we see
showing χ(S) = 2 amounts to showing Γ is a tree. Suppose not, i.e. suppose Γ
contains a cycle. Then the representation of Γ on S discussed above corresponds to
a simple closed curve γ on S. By assumption, γ separates S into two disconnected
components. This means γ splits the vertices of ∆ into two collections, but since
T is a tree containing all these vertices, it must be that γ crosses an edge of T
somewhere. This in turn implies that some edge of Γ crosses an edge of T , which
is a contradiction. Therefore Γ is a tree.
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To show (2) =⇒ (3), we show that S is made up of two discs identified along
their boundaries. Since χ(S) = 2, Γ is a tree. So if we thicken both T and Γ,
we obtain two regions on S that are each homeomorphic to discs. We can keep
thickening each tree until their boundaries touch, so we indeed have two discs with
identified boundaries.

Finally, (3) =⇒ (1) follows from the Jordan curve theorem. For details see [1],
Section 5.6. �

Before we continue, we consider why condition 1) cannot hold for Tg with g > 0.
For simplicity, consider g = 1. Take a curve on the torus such as the blue curve in
the figure below. This curve does not separate the torus, since if we cut along it,
our new surface is still one connected component; it looks like a bent cylinder.

We see that the existence of non-separating closed curves on a surface has something
to do with the surface having holes in it; so this property is closely related to the
genus. It is this relationship that gives us an idea of how to proceed for g > 0.
We cannot work with the genus of an arbitrary surface, since a priori this concept
only makes sense for the Tg. But for any surface, we can ask whether or not a
simple closed curve separates S, and this is the approach we use to prove the main
theorem.

Theorem 5.4 (Classification of Surfaces). Every compact orientable surface is
homeomorphic to the sphere or to one of the Tg.

Proof. Given S, we ask whether or not every simple closed curve separates S. If
yes, then by Lemma 5.3, S is homeomorphic to a sphere and χ(S) = 2. If not, we
take a closed curve which does not separate S and thicken it to get a cylinder. Now
we cut along the boundary of the cylinder and remove it. Call this removed part
A. Let B = S \A. The reader can verify

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B).

The reader can also check we have χ(A) = 0 by finding a triangulation of A. Hence
χ(S) does not change after we remove the cylinder. Next we fill in the two holes
obtained from cutting away A to obtain a new surface that we call S1. Clearly, we
can obtain a triangulation of S1 by adding two faces to any triangulation of S. So
we have χ(S1) = χ(S) + 2.

Now we ask if every closed curve separates S1. If yes, then χ(S1) = 2 and S1 is
homeomorphic to a sphere. This means χ(S) = 0. Moreover, S is homeomorphic to
T1. To see this, we reverse the cutting and gluing process just performed. In other
words, if we take out two discs from the surface of a sphere and glue in a cylinder,
we have added a handle to our surface, so the new surface is homeomorphic to the
genus 1 torus. This is perhaps better explained in the figure below.
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If, on the other hand, every closed curve does not separate S1, then we take a
non-separating curve, thicken it to get a cylinder, remove the cylinder, and fill in
the two holes. We get a new surface S2 with χ(S2) = χ(S1) + 2.

We can continue cutting along non-separating curves and filling in the holes, each
time increasing the resulting surface’s Euler characteristic by 2. We can repeat this
process a finite number of times g to get a surface Sg with χ(Sg) = 2. This is clear
since Theorem 4.5 implies χ(S) is finite for any compact surface S.

Then 2 = χ(Sg) = χ(Sg−1) + 2 = χ(Sg−2) + 2 + 2. Continuing to substitute in
this manner, we get

2 = χ(Sg) = χ(S) + 2g,

which can be rearranged to give

χ(S) = 2− 2g.

We are left to show S ∼= Tg. Note that to obtain Sg from S we removed g cylinders
and filled in 2g circles. Now, remove 2g circles from Sg and add g handles, as we
did for the case g = 1. �

6. Singularities of Vector Fields

In this section, we will show how the Gaussian curvature and Euler characteristic
of a surface relate to the tangent vector fields that can be defined on the surface.

Definition 6.1. If σ(u, v) : U → R3 is a surface patch on S and (u, v) are coordi-
nates on U , then

V = α(u, v)σu + β(u, v)σv

is called a smooth tangent vector field on S, where α and β are smooth functions.

Definition 6.2. If V is a smooth tangent vector field on S, a point p ∈ S for which
V = 0 at p is called a stationary point.

Definition 6.3. Let p be a stationary point of V contained in a surface patch
σ : U → R3 of S. Assume p is the only other stationary point of V in the region
σ(U). Let ξ be a nowhere vanishing smooth tangent vector field on σ(U) (such as
σu or σv). The multiplicity of a stationary point p of the tangent vector field V is
given by

µ(p) =
1

2π

∫ l(γ)

0

dψ

ds
ds,

where γ(s) is any positively-oriented unit-speed simple closed curve of length l(γ)

in σ(U) with p in its interior and ψ(S) the oriented angle ξ̂V at the point γ(s).
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We have ξ̂V only defined up to multiples of 2π, but we can choose ψ(s) to be a
smooth function of s (for a proof see [2], Section 4-4, Lemma 1). Using arguments
similar to those in the proof in Theorem 3.5, it can be shown that µ(p) is an integer
and that it does not depend on the choice of curve γ.

Lemma 6.4. The multiplicity µ(p) is independent of the choice of reference vector
field ξ.

Proof. Take ξ and ξ̃ to be two nowhere vanishing smooth vector fields on σ(U).

Let ψ = ξ̂V and ψ̃ =
̂̃
ξV. Let θ = ψ̃ − ψ. We want to show

(6.5)

∫ l(γ)

0

θ̇ ds = 0,

but θ is only defined up to multiples of 2π. To avoid this ambiguity, we work with
the function

ρ =
ξ · ξ̃
‖ξ · ξ̃‖

= cos θ.

Let β be the curve in U such that γ(s) = σ(β(s)). We then have∫ l(γ)

0

θ̇ ds =

∫ l(γ)

0

ρ̇√
1− ρ2

ds

=

∫
β

ρu du+ ρv dv√
1− ρ2

=

∫
int(β)

(
∂

∂u

(
ρv√

1− ρ2

)
− ∂

∂v

(
ρu√

1− ρ2

))
du dv,

where the last equality is due to Green’s theorem. The reader can check that

∂

∂u

(
ρv√

1− ρ2

)
=

∂

∂v

(
ρu√

1− ρ2

)
=
ρuv(1− ρ2) + ρρuρv

(1− ρ2)3/2
,

which shows the integral vanishes. �

The function µ is well-defined for any point of V. If we wish to evaluate µ(p),
for p which is not a stationary point, then by the above lemma we can take our
non-vanishing reference vector field ξ to be V. Then µ(p) = 0 since ψ(s) = 0 for
all s.

Example 6.6. Consider the vector field in R2 given by V(x, y) = (−y, x), which
has a stationary point at the origin. In the figure below we show some integral
curves of V. This means the curve’s tangent vector at (x, y) is given by V(x, y).
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Take γ(t) = (cos t, sin t) and ξ = (1, 0) everywhere. At t = 0, the vector field is
pointing straight down, and at t = π/2, it points to the right. So it is clear that
it makes one counter-clockwise rotation as t runs from 0 to 2π. So µ(0) = +1,
which means the vector field makes one rotation in the positive direction (counter-
clockwise). We can compute this from Definition 6.3. With γ and ξ as specified
above, we have ψ(s) = s− π/2, so

µ(0) =
1

2π

∫ 2π

0

ψ̇ ds = 1.

Example 6.7. Let V(x, y) = (x2 − y2,−2xy) which has a stationary point at the
origin. Some integral curves are shown below.

Take γ and ξ as in the previous example. From looking at the picture, we can
see the vector field rotates 4π in the clockwise direction when going around once
counter-clockwise on γ, so µ(0) = −2. We leave it to the reader to compute this
from the definition.

We can now use the Gauss-Bonnet theorem to prove the Poincaré-Hopf theorem.

Theorem 6.8 (Poincaré-Hopf). Let V be a smooth tangent vector field on a com-
pact surface S with finitely many stationary points p1, ...pn. Then

n∑
i=1

µ(pi) = χ(S).

The quantity on the left is called the index of V.

Proof. For each i, take γi to be a simple closed curve in a surface patch σi containing
pi in its interior. Choose the γi so that their interiors are disjoint. Let S′ denote the
part of S outside the interiors of the γi. Triangulate S′ with curvilinear polygons
Γj . Note that some of the edges of these polygons will be segments of the curves
γi. Furthermore, a positive orientation of the Γj induces a negative orientation on
the γi.

Now we can regard the Γj along with the γi and their interiors as a triangulation
of S. By the Gauss-Bonnet theorem,∫

S′
K dA+

n∑
i=1

∫
int(γi)

K dA = 2πχ(S).

Next we choose an orthonormal basis {F1, F2} of the tangent plane of S on each
patch σi. We can do this by taking F1 = (σi)u and F2 = N × F1, for instance. As
in the proof of Theorem 3.5, we have

(6.9)

∫
int(γi)

K dA =

∫ l(γi)

0

F1 · Ḟ2 ds.
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On S′, choose a smooth orthonormal basis {E1, E2} of the tangent plane by letting
E1 = V/‖V‖ and E2 = E1 × N . The definition of E1 makes sense since by
construction all the stationary points of V are not in S′. As in the proof of Theorem
3.5, we have ∫

S′
K dA =

∑
j

∫ l(Γj)

0

E1 · Ė2 ds.

Any common edge of two curvilinear polygons is traversed once in each direction,
so its contributions to the sum on the right hand side cancel out. Thus, the only
contribution is from the integrals along the γi, giving

(6.10)

∫
S′
K dA = −

n∑
i=1

∫ l(γi)

0

E1 · Ė2 ds,

where the negative sign is in light of the comment about orientation made in the
first paragraph of the proof. Combining (6.9) and (6.10), we obtain

2πχ(S) =

∫
S

K dA =

n∑
i=1

∫ l(γi)

0

F1 · Ḟ2 − E1 · Ė2 ds.

As in the proof of Theorem 3.5, we have

F1 · Ḟ2 = φ̇− κg, E1 · Ė2 = θ̇ − κg,

where κg is the geodesic curvature of γi, θ and φ are the oriented angles Ê1γ̇i and

F̂1γ̇i respectively. Letting ψ = φ− θ, we have

(6.11) 2πχ =

n∑
i=1

∫ l(γi)

0

dψ

ds
ds.

Note that ψ is the oriented angle F̂1E1. Noting that E1 is parallel to V and calling
F1 our reference vector field, we see that ψ is precisely as in Definition 6.3. Dividing
both sides of (6.11) by 2π concludes the proof. �

This is a remarkable result, because it seems as though the index should depend
on V but instead it depends only on the topology of S. This theorem allows us to
compute the Euler characteristic of a surface by considering the singularities of any
smooth tangent vector field on the surface. Perhaps more interestingly, it allows us
to say something about the shape of a surface on which we can define certain kinds
of vector fields.

Corollary 6.12 (Hairy Ball Theorem). There does not exist a smooth nowhere
vanishing tangent vector field on a sphere.

Corollary 6.13. If S admits a smooth nowhere vanishing tangent vector field, then
S is homeomorphic to T1.
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