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Abstract

In this paper, we will attempt to understand the role topology plays
in analyzing RNA secondary structures by providing an overview and
interpretation of the paper RNA Shape Space Topology. The main
problem that the authors of this paper are trying to solve is that of
defining a continuous and discontinuous transition between two RNA
secondary structures. To that end, they turn to topology. Once they
have defined a topology, they can then define functions that describe
the evolution of RNA secondary structures and have a rigorous idea of
what it means for those functions to be continuous and discontinuous.
The use of topology ultimately provides a sound mathematical ba-
sis for understanding and determining accessibility between secondary
structures.
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1 Correspondence Between Biological and
Topological Terms

First we must take care to define the terms used in the paper and to un-
derstand how they correspond to the usual concepts of topology. Before we
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begin that task, however, we will explain some terms and concepts which
may be unfamiliar to the non-biologist.

Definition 1.1. Secondary Structure
The secondary structure of an RNA molecule is simply the shape of the
molecule in 3-D space, rather than the placement of nucleotides or atoms in
relation to each other. An equivalent term is the phenotype.

Definition 1.2. Genotype
The genotype of an RNA molecule is the composition of the strand of RNA,
or more precisely the exact sequence of base pairs.

Definition 1.3. Neutral Set
The neutral set S(x) of a secondary structure x is the set of all RNA se-
quences

(
the sequence of nucleotides

)
capable of folding into x.

Definition 1.4. Shape Space
The shape space is the set of all RNA phenotypes produced by any possible
RNA genotype.

Definition 1.5. Boundary
The boundary of S(x) is denoted δS(x) and is the set of all point mutations
of elements of S(x). The union of S(y) and δS(x), or the set of all neighbors
of the neutral set of x that fold into y, is denoted D

(
y ← x

)
.

Note: “fold into” refers to the process by which secondary structures are
formed: a sequence of nucleotides gets folded into a certain shape.
“neighbors” refers to all sequences obtained by taking a single point muta-
tion of the sequences in the neutral set of x.

Definition 1.6. Accessibility
The phrase “x accessible from y,” where x and y are secondary structures,
means that if y undergoes a single point mutation in its genotype, it can ob-
tain the structure of x. It translates to the two structures being topologically
close.

Now that these terms have been defined, we may begin to identify how
they correspond to topological structures.

• The set the topology is on is the shape space V.

• The subbasis is given as the set N=
{
N
(
x
)
| x ∈ V

}
where

N
(
x
)

=
{
y ∈ V | y ← x

}
.

• The unique non-redundant basis is given as the set
B =

{
B
(
x
)
| x ∈ V

}
, where B

(
x
)

= ∩
w|x∈N(w)

N
(
w
)
.
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2 An Intuitive Understanding

Now that we have the necessary vocabulary, we will explore an intuitive
understanding of what accessibility means and what constructing an acces-
sibility topology means. Let’s say we have two structures, a “red” structure
and a “blue” structure. As explained in the definitions above, each of these
structures has a neutral set, or network, of sequences associated with it, a
“red” network and a “blue” network. This network is the set of all sequences
folding into the “red” or “blue” structure. Accessibility

(
say, accessibility

of blue from red
)

is the probability that if you chose a random point on
the red network, you would be able to take a single step and reach the blue
network. In this example, we can now define a neighborhood for “red.” All
we need to do is choose a threshold of accessibility. In other words, choose a
threshold value for the probability just discussed; if the probability is above
the threshold, then the “blue” structure is in the neighborhood of the “red”
structure. With a definition for neighborhood, we also have a pre-topology
and can arrive at a topological definition of continuity. 1

3 Rigor About the Basis and Subbasis

Before we go on, we must ensure that we are on sound mathematical foot-
ing. Since no proofs have been given in the paper that the given basis and
subbasis are indeed a basis and a subbasis, we will provide them here. For
our own satisfaction, we will also provide a proof that the finite topology
has a unique non-redundant basis

Theorem 1. B =
{
B
(
x
)

= ∩
w|x∈N(w)

N
(
w
)
| x ∈ V

}
is a basis of τ , the

topology on V.

Proof. We need to show:

1. For arbitrary x ∈ V, there exists a basis element B
(
x
)

such that
x ∈ B

(
x
)

2. If x ∈ Bx1
(
x
)
∩ Bx2

(
x
)
, there exists a Bx3

(
x
)

such that x ∈ Bx3
(
x
)
,

which is contained in the intersection of Bx1
(
x
)

and Bx2
(
x
)

First show condition 1:
The basis element B

(
x
)

is the intersection of all N
(
w
)

that contain x, so
their intersection will contain x. Thus for any x, we simply choose a w such

1Walter Fontana, personal communication, July 29 2015

3



that x is in N
(
w
)

and then we have a B
(
x
)

that contains x. This makes
sense in the biological context because for any possible structure x, there
must exist some w such that x is accessible from w. This means it is possible
to simply choose a w such that x is in N

(
w
)
.

Now show condition 2:
To show this condition, we’ll first show that if x ∈ Bxi , where Bxi is a basis
element, then Bx ⊆ Bxi . (Note that we already know by definition of Bx
that x ∈ Bx)
If we take as given that x ∈ Bxi , it follows from the definition that:

x ∈ ∩
xi∈N(w)

N
(
w
)

So

x ∈ N
(
w
)

for arbitrary w such that xi ∈ N
(
w
)

Said another way, this means:

If xi ∈ N
(
x
)
, then x ∈ N

(
x
)

Which implies

the set
{
y | xi ∈ N

(
w
)}
⊆

{
w | x ∈ N

(
w
)}

So it follows that

∩
xi∈N(w)

N
(
w
)
⊆ ∩

x∈N(w)
N
(
w
)

By definition

Bx ⊆ Bxi

The rest of the proof follows. We know by the givens that x ∈ Bx1 , Bx2 . We
know there is always a set Bx that contains x; let Bx be the Bx3 mentioned
in the statement of the proof. Then we know from what we just proved that
because Bx ∈ Bx1 , Bx2 , there is a Bx3 containing x such that
Bx3 ∈ Bx1

(
x
)
∩ Bx2

(
x
)
. Note that this is true even if Bx1 or Bx2 is Bx.

Then we’d only have to show that Bx is contained in, for example, Bx1 .

Theorem 2. S =
{

N
(
x
)

: x ε V
}

is a subbasis
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Proof. We have to show that ∪
xεV

N
(
x
)

= V.

We know N
(
x
)

=
{
w ε V | w ← x

}
So N(x) is the set of all structures w

accessible from x. Since V is the set of all possible structures, all structures
in V must be accessible from some x, otherwise they wouldn’t be possible.
Once we take the union of N(x) for all x in V, we will have the set of V, since
all the elements in V will have been produced. Thus S is a subbasis.

Theorem 3. A finite topological space X has a unique non-redundant basis.

Proof. Suppose that B and B′ are non-redundant bases that give the same
topology. We will show that B ⊆ B′ and that B′ ⊆ B by symmetry, which
will show B = B′
Let U be an open set in B. We know U is open, so we can express U as

U = ∪
ViεB′

Vi for some sets Vi ∈ B′

We need to show U is contained in B′
If U isn’t contained in B′, then

Vi 6= U

The fact that Vi is open means

Vi = ∪
ujεB

uj

That means

uj ⊂ Vi ⊂ U

But

Vi 6= U, so uj 6= U

This contradicts the definition of non-redundant. Therefore

U ε B′ and so B ⊆ B′

By symmetry, we know

B′ ⊆ B

This means

B = B′

If any two non-redundant bases are equal, then there is only one non-
redundant basis.

5



4 The Fontana-Schuster Topology

The authors present different ideas of accessibility, but the one they give
the most credence to is the Fontana-Schuster topology.

The idea of accessibility upon which the Fontana-Schuster topology is
based has three possible scenarios of accessibility. A secondary structure y
is accessible from a secondary structure x if:

1. y was produced by x from shortening a stack of x

2. y was produced by x from lengthening a stack of x

3. y was produced by x by eliminating one stack of x

The “stack” of x merely refers to an actual stack of base pairs. Thus,
shortening a stack would be eliminating some base pairs and elongating it
would be adding some. The topology based on these conditions of accessi-
bility would be the one defined before, generated by the basis
B =

{
B
(
x
)
| x ε V

}
. However, the definition of N(x) is made more precise.

While N(x) is the set of all secondary structures y such that y is accessi-
ble from x as it was before, “accessible” now means that one of the three
conditions listed above is true.

A possible reason that this is considered more realistic is because the
Fontana-Schuster topology bears resemblance to other topologies based on
reasonable threshold values. In this paper, threshold values are set on
|D

(
y ← x

)
|. If the number of neighbors of x that fold into y is above a

certain limit, we can say x is accessible from y. This makes sense; if, say,
there was one neighbor of x that folded into y, it would certainly be unlikely
that x would ever change to y by a single point mutation. The fact that
the Fontana-Schuster topology gives similar results to threshold topologies
when reasonable values are chosen for thresholds indicates that it may more
accurately represent the accessibility relations in shape space than other
topologies presented in this paper.

A reasonable question at this point would be “so what?” Now that
we have identified a promising topology for modeling accessibility among
secondary structure, what will we do with it? We have a topology on V, so we
can define functions that map into V and determine if they are continuous.
The functions we will consider will be f , ϕ and θ. The first is the folding map
f . This function maps from the set of all RNA sequences to the shape space
V. The set of all sequences that map to a particular secondary structure u is
denoted as S(u). f is not injective, as there may be more than one element
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in S(u), but it is surjective. Clearly, every possible secondary structure u
must have at least one RNA strand that can be folded into that particular
shape. This function is important because once we have this function, we
can define a domain for it. The size of the domain in this case is the number
of RNA sequences that fold into a certain structure.

The second function, which is defined in the “Trajectories and Transi-
tions” section of the paper, is ϕ. It maps an interval

[
α, β

]
, where α = t0

< t1 < . . .< tm < tm+1 = β, in the real numbers to V. Certain properties
are also defined for the function:

1. ϕ is constant on every open interval from tk to tk+1 except on those
intervals including α and β. Those are of course half closed.

2. ϕ does not take any of these intervals to the same structure in V.

3. Any point tk within the interval
[
α, β

]
is taken to the same value by

ϕ as the interval is that preceded it or the interval that comes after it.

The biological concept this function represents is that of evolution over
time. Each element in the interval

[
α, β

]
represents a point in time, and so

each interval represents a different stage of evolution. This context makes the
first property of ϕ logical. Evolution works very slowly, so given a certain
finite interval of time, there would be no change in the RNA secondary
structure.

The second and third conditions are also easily comprehensible when
viewed through a biological lens. Clearly time intervals would be chosen
such that each interval represented a different stage in RNA evolution, so
none of the intervals would translate to the same RNA structure under ϕ.
The third condition is also necessary to make a plausible evolutionary model.
One singular point in time could not correspond to an entirely different RNA
structure than the intervals of time around it. This would mean that that
structure had lasted for an infinitesimally short period of time, which is not
plausible from an evolutionary standpoint.

The final function, θ, maps an interval
[
tk, tk+2

]
to a two value subset of

V
{
x,y

}
in such a way that θ(tk, tk+1) is equal to

{
x
}

while θ(tk+1, tk+2) is
equal to

{
y
}

. This function represents the concept of a transition between
two phenotypes. As such, a definition of continuity has been given for the
transition function, and this determines whether one phenotype is accessible
from another:
A transition from x to y is continuous if and only if:

1. x ε B(y) and y ε B(x)
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2. x ε B(y), y 6∈ B(x) and θ(t1) = y

3. x 6∈ B(y), y ε B(x) and θ(t1) = x

For a directed transition, the definition is much simpler. A directed
transition from x to y is continuous if and only if there is a directed edge
from x to y in the directed graph Y representing the topology. These two
functions combined are quite important and integral for a mathematical un-
derstanding of RNA evolution. They provide us with a way to precisely
define accessibility rather than relying on vague intuition. In this model, a
continuous transition from x to y means that y ← x. The converse, that
a discontinuous transition means that y is not accessible from x, is usually
but not always true. Occasionally, there are discontinuous evolutionary tra-
jectories, but these happen infrequently. Thus, these two functions provide
us at least with a way of definitively proving whether one structure could
have evolved from another. This is why topology is so important for the
study of evolution; it has the vocabulary to precisely define what “close”
or “accessible” means and the tools to determine whether two objects are
“close.”
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