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Abstract. In this paper we explore the problem of domino tiling: tessellating

a region with 1x2 rectangular dominoes. First we address the question of

existence for domino tilings of rectangular grids. Then we count the number
of possible domino tilings when one exists.
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1. Introduction

Definition 1.1. (Domino) A domino is a rectangle formed by connecting two unit
squares along an edge.

Definition 1.2. (Domino Tiling) A domino tiling is a covering of a grid using
dominoes such that all dominoes are disjoint and contained inside the boundary of
the grid.

Tilings were originally studied in statistical mechanics as a model for molecules
on a lattice. Our dominoes become equivalent to dimers, which are two molecules
connected by a bond, and our grid becomes equivalent to a lattice. Arrangements
of dominoes on a lattice are useful because thermodynamical properties can be
calculated from the number of arrangements when there is a zero energy of mixing.
Domino tiling is also useful as a model for finding the free energy of a liquid, because
this calculation requires the number of ways that a volume of liquid can be divided
into certain sized ’cells,’ that are equivalent to our grid’s tiles.

Additionally, our grid can also be seen as equivalent to a particular bipartite
graph, as illustrated in the figure below. On the left we see a possible domino
tiling of a 2 × 3 grid, and on the right we see the equivalent graph, with vertices
representing tiles and edges representing dominoes.
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2 KASPER BORYS

Thus our primary goal of counting the number of domino tilings of a grid is
equivalent to finding the number of perfect matchings for the corresponding graph,
which we will actually use to find our expression for counting domino tilings.

Definition 1.3. (Matching) A matching of a graph G = (V,E) is a set of edges
such that no two edges share a common vertex. A perfect matching is a matching
where every vertex of the graph is incident to exactly one edge of the matching.

Remark 1.4. For the grids we examine in this paper, we will only orient dominoes
horizontally or vertically.

2. Rectangular Grids

Before we can attempt to count domino tilings of an m × n rectangle, we must
first see whether a tiling even exists.

Theorem 2.1. Let Q be an m × n grid. Then Q has a domino tiling if and only
if mn is even.

Proof. Suppose Q has a domino tiling. Let k be the number of dominoes this
tiling. Each domino occupies 2 unit squares. Thus the area of Q must be equal to
2k square units. Thus 2k = mn, so m is even or n is even, and thus mn is even.

Now suppose mn is even. Thus m is even or n is even. Without loss of generality,
suppose m is even. This means that Q has an even number of rows, so we can tile
each column with m

2 vertically aligned dominoes to create a domino tiling. �

Corollary 2.2. Let Q be an m× n grid. If Q has a domino tiling, then Q is tiled
by 1

2mn dominoes.

Proof. Suppose Q has a domino tiling. The number of dominoes must be the total
area, mn, divided by the area of each domino, i.e., 2 unit squares. Thus the number
of dominoes is 1

2mn, which we know is an integer because mn is even. �

Thus we are only interested in grids where m or n is even. However, while
existence of domino tilings is easy to verify, the number of tilings is much more
challenging to compute. Before we examine general grids, we address a specific
case: tilings of 2× n grids.

Theorem 2.3. Let Qn be a 2× n grid and let an be the number of domino tilings
for Qn. Then an is the (n+ 1)th Fibonacci number, where F1 = 1 and F2 = 1.

Proof. It is obvious that a1 = 1 as the only tiling for a 2 × 1 grid is one vertical
domino. a2 is also easy to compute. The only ways to tile a 2× 2 grid are to place
two dominoes both horizontally or both vertically. Thus a2 = 2.

We could compute a3 with relative ease as well, but instead we make an obser-
vation about the ways dominoes can be arranged in Qn. Because Qn has only two
rows, if a domino is placed horizontally in one row, another must be aligned with it
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in the other row. Staggering the dominoes would eventually lead to a lone square,
which cannot be tiled by a domino. As a result, we can observe the following
recurrence relation between tilings of Qn.

If we take a 2 × n grid, we can place either a single vertical domino or two
horizontal dominoes in the leftmost columns. When we place a vertical domino,
we are left with a Qn−1 grid, which we know has an−1 tilings. Similarly, when we
place horizontal dominoes, we are left with a Qn−2 grid, which has an−2 tilings.
Thus we get

an = an−1 + an−2

which is the same recurrence relation as for the Fibonacci sequence. Because a1
and a2 are the second and third Fibonacci numbers, respectively, they will generate
the rest of the Fibonacci sequence. �

We examine the 2 × n case not merely because it is a neat pattern to find, but
because it is easy to compute the nth Fibonacci number. Now we aim to find the
number of domino tilings for a general rectangular grid. This result was computed
independently by Kasteleyn and by Temperley and Fisher. Both proofs rely on
computations of Pfaffians of certain matrices.

Definition 2.4. (Pfaffian) Let A be a triangular array of numbers ai,j such that
1 ≤ i < j ≤ N and N is even. Let P be the set of permutations σ ∈ SN satisfying

σ1 < σ3 < . . . < σN−1 and σ1 < σ2;σ3 < σ4; . . . σN−1 < σN .

The Pfaffian Pf(A) =
∑
σ∈P

sgn(σ)aσ1,σ2
aσ3,σ4

. . . aσN−1,σN
. (∗)

Remark 2.5. Sometimes Pf(A) is defined the same way for skew-symmetric N×N
matrices. Additionally, we will use the important property [3] of Pfaffians that if

A is a skew-symmetric matrix, then Pf(A) =
√

detA .

Theorem 2.6. (Kasteleyn, 1961). Let Qm,n be an m× n grid with m even. Then

the number of domino tilings for Qm,n is

1
2m∏
k=1

n∏
l=1

2

√
cos2

kπ

m+ 1
+ cos2

lπ

n+ 1
.

Proof. As mentioned in the introduction, we can think of our grid as a graph, with
vertices representing the squares. If an edge belongs to a bipartite matching, then
it represents a domino covering two tiles. If we assign an ordered pair (i, j) with
1 ≤ i ≤ m and 1 ≤ j ≤ n to each vertex, then it becomes obvious that (i, j) is
connected to (i′, j′) if and only if |i−i′| = 1 and j = j′ or else i = i′ and |j−j′| = 1.

It will be useful for us to find a generating function for the number of domino
tilings of a grid. To do this, we will define a few variables: let h ≥ 0 be the number
of horizontal dominoes of a tiling and let v ≥ 0 be the number of vertical dominoes
of that tiling. Define the function g(h, v) to be the number of tilings with h vertical
dominoes and v vertical dominoes. We get our generating function

Zm,n(z, z′) =
∑
h,v

g(h, v)zhz′v

which is a polynomial in z, z′ where the sum ranges over h, v ≥ 0 satisfying 2(h +
v) = mn (which is necessary by Corollary 2.2 and ensures we have exactly enough
dominoes for a tiling). Our generating function counts the number of domino tilings
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for every valid combination of horizontal and vertical dominoes. Thus Zm,n(1, 1)
returns the total number of domino tilings for an m× n grid.

Before we proceed, we want a way to clearly represent configurations of dominoes.
We can use the ordered pairs assigned to each tile, but we need a way to establish
uniqueness. Currently we can say that (i, j) is connected to (i′, j′) or alternatively
that (i′, j′) is connected to (i, j), though both of these statements describe the same
edge. Thus we will create a numbering convention for our tiles, and then we will
create conditions based on this numbering so that we can describe each edge in just
one way. For each tile (i, j), we define a number p = (i− 1)n+ j. This number is
in fact unique to the tile, so we could even represent each tile only by its number
p. The figure below illustrates an example of this numbering convention for a 4× 4
grid. Notice that the numbers run uniquely from 1 to mn = 16.

Now we create conditions for ordering tiles based on their p numbers:

p1 < p3 < . . . < pmn−1(2.7)

p1 < p2 ; p3 < p4 ; . . . ; pmn−1 < pmn.(2.8)

This allows us to uniquely write a configuration C = |p1, p2|p3, p4| . . . |pmn−1, pmn|
as our conditions forbid a configuration such as C = |p3, p4|p2, p1| . . .. Additionally,
we define a ”standard configuration”:

C0 = |(1, 1), (1, 2)|(1, 3), (1, 4)| . . . |(m− 1, n), (m,n)|.

Also notice that our conditions for configurations resemble the conditions for permu-
tations used in computing a Pfaffian. These configurations will become important
in our next step, where we attempt to design a triangular array such that every non-
zero term in the Pfaffian corresponds to a configuration, and every configuration
corresponds to a non-zero term of the Pfaffian.

Our goal now is to create a triangular array (or skew-symmetric matrix), D, such
that the Pfaffian of this array is equal to our generating function Zm,n(z, z′). We
want to design D such that each non-zero term in the Pfaffian of D corresponds
to a configuration C, and every configuration C corresponds to a non-zero term
of the Pfaffian of D. This way, the number of terms in the Pfaffian of D is the
number domino tiling of Qm,n. This suggests making D a weighted mn × mn
adjacency matrix. First we can define Dp,p′ = 0 if p and p′ are not connected. As
a result, each term of the Pfaffian with a pair of unconnected vertices becomes 0,
as it cannot correspond to a domino tiling. By the definition of a Pfaffian, each
term is multiplied by the sign of its respective permutation in the sum (∗). Because
we wish to find the number of non-zero terms, we want to make all the coefficients
in (∗) positive so that their summation returns the desired result. Thus we want
non-zero terms whose permutation has an even sign to be 1 and non-zero terms
whose permutation has an odd sign to be −1. For the purpose of our generating
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functions, we also wish to weight horizontal and vertical connections with z and z′,
respectively, though this is not particularly important for this paper as our ultimate
goal is to set z = z′ = 1.

In order to examine the parity of a configuration, we use the following tech-
nique. We draw our vertices and then use dotted lines as the edges of our stan-
dard configuration, C0. Then we can draw solid lines in the diagram to represent
some configuration, C. An example of this process below is taken from Kasteleyn.

One vertex of our graph cannot have multiple solid edges attached to it because
that would represent overlapping dominoes. Thus we can observe that the solid and
dotted lines of our diagram either directly overlap or else they form closed polygons.
Furthermore, if we were to cyclically shift all the solid edges in each polygon, we
would notice that our configuration actually returns to the standard configuration.
Now we wish to prove a lemma about these polygons.

Lemma 2.9. Let C be a configuration corresponding to some permutation σ that
satisfies conditions (2.7) and (2.8). Each polygon in C contributes a factor of −1
to sgn(σ).

Proof. Consider a configuration C that has at least one polygon. By definition, the
polygon must be enclosed by a cycle of dotted and solid lines. If we take a starting
point and travel along the cycle, then for any column in the polygon, we travel
“forward” along dotted lines the same amount of times as we travel “backward”
along them. In the same way, for any row, we travel “forward” along dotted lines
the same amount of times as “backward”.

Now we aim to express the permutation of C as the product of several rear-
rangements and reversals. To illustrate this more clearly, we consider the square
p1p3p2p4 in Kasteleyn’s diagram.

Firstly, the order of our dotted lines in C0 will be increasing based on the ordering
we established. To make it cyclic, we will need to reverse some number of pairs of
vertices. We call this number r. For our square, the dotted lines are represented by
p1p2p3p4, and we must reverse 1 pair of vertices to make it cyclic and get p1p2p4p3.
Now we can travel “forward” from p1 to p2, and “backward” from p4 to p3.

Secondly, we need to rearrange 2r horizontal lines so that our travel along them
also follows a cyclic order. A square is too small to demonstrate an example of
this, but we can see it with a 1 × 3 rectangle. So far, we have reversed 2 pairs of
vertices to get go from p1p2p3p4p5p6p7p8 to p1p2p3p4p6p5p8p7. However, this does
not cyclically form a rectangle. We need to rearrange our 4 pairs of vertices to form
rectangle p1p2p3p4p8p7p6p5, shown in the following figure.
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Thirdly, we need to cyclically shift the 4r vertices in our permutation so it
actually represents our polygon. With our square, we do not want to connect p1
to p2 and p4 to p3. We shift the 4 vertices and connect p2 to p4 and p3 to p1 with
solid lines, so we have the square p2p4p3p1.

Next we want to satisfy conditions (2.7) and (2.8). For this step, we must look
at two vertices at a time and compare their p numbering. We must reverse r pairs
of vertices to satisfy condition (2.8). If we look at our square, we have p2 connected
to p4 and p3 connected to p1. However, condition (2.8) requires p1 < p3, so we
must reverse this 1 pair of vertices to get the square p2p4p1p3.

Finally, to satisfy condition (2.7), we must us rearrange 2r pairs of vertices. As
we can see in our square, we have p2 < p1, so we must rearrange 2 pairs of vertices
so that p1 < p2. Thus we go from square p2p4p1p3 to p1p3p2p4.

Now we compute how a polygon affects the parity of our permutation. Reversing
the vertices within a pair contributes a factor of −1. We did this r times in the first
step, and r times in the fourth step. Rearranging pairs, as in the second and fifth
steps, contributes a factor of 1. Cyclically permuting, as in step three, contributes
a factor of (−1)4r−1. Thus the total contribution of a polygon to the parity of a
permutation is (−1)r(−1)r(1)(1)(−1)4r−1 = (−1)6r−1 = −1 because 6r − 1 must
be odd. Finally, if there are multiple polygons, then the permutations described for
each polygon can be performed for one polygon at a time. Therefore each polygon
will contribute a factor of −1 to sgn(σ). �

Now we make an observation about the number of squares contained in a polygon.
Let us first break it up into horizontal strips. If we move along a side of a strip,
a horizontal solid line must be proceeded by a horizontal dotted line (there are no
vertical dotted lines). For the same reason, it must be preceeded by one as well.
Thus if there are k solid lines on one side, there must be k + 1 dotted lines, and
thus an odd number of unit squares contained in the row. Because the dotted lines
are all aligned in the columns, there is no way to construct a polygon made of an
even number of strips; it would either require a vertical dotted line or a dotted line
in a column that has none. Because the number of squares in each strip and the
number of strips are both odd, the number of squares contained in each polygon is
odd.

Now we can assign coefficients for our array D. Because each polygon contains
an odd number of squares, we can choose signs for Dp,p′ in such a way that an odd
number of lines around each square has a negative sign. Because the standard con-
figuration C0 has a positive sign and is composed entirely of horizontal connections,
we must attribute a negative sign to vertical connections. To ensure that one side
of each square has a negative sign, we will make every other vertical connection
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negative. Formally, this gives us the following set of conditions for our coefficients:

D(i,j),(i+1,j) = z for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ n(2.10)

D(i,j),(i,j+1) = (−1)iz′ for 1 ≤ i ≤ m and 1 ≤ j ≤ n− 1(2.11)

As established earlier, Dp,p′ = 0 in all other cases.
From here, we wish to extend our triangular array into a skew-symmetric matrix.

We simply do this by applying the definition for skew-symmetry:
D(i,j),(i′,j′) = −D(i′,j′),(i,j). Now that we have our skew-symmetric matrix D, we
attempt to diagonalize it so that we can find its determinant and thus its Pfaffian.

Definition 2.12. (Kronecker product) Let A be an n× n matrix and let B be an
m×m matrix. The Kronecker product A⊗ B is an mn×mn matrix that can be
written in block form as 

a1,1B a1,2B . . . a1,nB
a2,1B a2,2B . . . a2,nB

...
... . . .

...
an,1B an,2B . . . an,nB


Remark 2.13. We will use several properties [4] of Kronecker products.

(1) (A+B)⊗C = (A⊗C) + (B ⊗C) and A⊗ (B +C) = (A⊗B) + (A⊗C).
(2) (A⊗B)(C ⊗D) = (AC)⊗ (BD).
(3) If λ is a scalar, then (λA)⊗B = λ(A⊗B) = A⊗ (λB).
(4) If A and B are invertible, then (A⊗B)−1 = A−1 ⊗B−1.

We can actually take D and decompose it into the sum of two mn×mn matrices.
Recall our conditions for coefficients of D. Condition (2.10) gives us z(In ⊗ Qm)
where In is the n× n identity matrix and

Q =



0 1 0 0 . . . 0 0
−1 0 1 0 . . . 0 0
0 −1 0 1 . . . 0 0
...

...
...

... . . .
...

...
0 0 0 0 . . . 0 1
0 0 0 0 . . . −1 0


.

Similarly, condition (2.11) gives us z′(Qn ⊗ Fm) where

F =



−1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 −1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . −1 0
0 0 0 . . . 0 1


.

Thus D = z(In ⊗Qm) + z′(Qn ⊗ Fm). Now we wish to transform D in such a way
that we can easily compute the determinant. We begin by finding the eigenvectors
of Q, and use these to create a matrix U . Thus we have entries of U and U−1:

(2.14) Un(l,l′) =
( 2

n+ 1

) 1
2

il sin
( ll′π

n+ 1

)
,
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(2.15) U−1n(l,l′) =
( 2

n+ 1

) 1
2

(−i)l
′
sin
( ll′π

n+ 1

)
.

Note that here i is the square root of −1 rather than a counter variable. Because
Un is formed from eigenvectors of Qn, the transformation Q′n = U−1n QnUn will
diagonalize Qn, and furthermore the diagonal elements of Q′n will be the eigenvalues
of Qn. In the same way, we can obtain Q′m = U−1m QmUm. The transformation of
Qn will not affect In because it is the identity matrix. To see how transformation
of Qm affects Fm, we make a few observations.

Let ei be the ith standard basis vector (all 0 entries with a 1 in the ith position)
and let ui be the ith column vector of Um. We start with the fact that Umei = ui.
Because the u are the eigenvectors of Qm, we get

QmUmei = Qmui = λiui,

where λi is the eigenvalue corresponding to ui. Multiplying by U−1m , we get

U−1m QmUmei = U−1m (λiui) = λi(U
−1
m ui) = λiei.

We know from (2.14) that the entries of uk′ have the form ik sin( kk
′π

m+1 ), where k

is the row number (we briefly ignore the ( 2
m+1 )

1
2 coefficient). Multiplying by Fm

makes these entries take the form (−i)k sin( kk
′π

m+1 ). Let j = m+ 1− k′. We see that
uj takes the form

ik sin(
k(m+ 1− k′)π

m+ 1
),

which can be simplified to

ik sin(kπ − kk′π

m+ 1
) = −(−i)k sin(

kk′π

m+ 1
).

Thus we see that Fmuk′ = −um+1−k′ . From our earlier result, we have−um+1−k′ =
−Umem+1−k′ , which means that (U−1m FmUm)ek′ = −em+1−k′ . Thus U−1m FmUm,
which we shall call F ′m, takes an anti-diagonal form where all the entries of the
anti-diagonal are −1.

Now we can let V = Un ⊗ Um and take the transformation D′ = V −1DV to
attempt to diagonalize D. Applying the property that (A ⊗ B)−1 = A−1 ⊗ B−1,
we get

D′ = V −1DV = (U−1n ⊗ U−1m )(z(In ⊗Qm) + z′(Qn ⊗ Fm))(Un ⊗ Um).

Distributing matrix multiplication and moving the scalars expands to

D′ = z(U−1n ⊗ U−1m )(In ⊗Qm)(Un ⊗ Um) + z′(U−1n ⊗ U−1m )(Qn ⊗ Fm))(Un ⊗ Um).

Applying (A⊗B)(C ⊗D) = (AC)⊗ (BD) twice, we get

D′ = z(U−1n In ⊗ U−1m Qm)(Un ⊗ Um) + z′(U−1n Qn ⊗ U−1m Fm)(Un ⊗ Um),

D′ = z(U−1n InUn ⊗ U−1m QmUm) + z′(U−1n QnUn ⊗ U−1m FmUm).

By substitution, we finally have

D′ = z(In ⊗Q′m) + z′(Q′n ⊗ F ′m).

The entries of D′ take the form

D′(k,l),(k′,l′) = 2izδk,k′δl,l′ cos
kπ

m+ 1
− 2iz′δk+k′,m+1δl,l′ cos

lπ

n+ 1
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where δij is the Kronecker delta, which is 0 when i 6= j and 1 when i = j. Currently,
D′ has m ×m blocks along the diagonal where the nonzero elements form a cross
shape, with 0 entries everywhere else. We can bring this into block diagonal form
without disturbing the determinant.

First, we take any of our m ×m “crosses”. We can index our entries based on
the corner they start from, as seen below.

a1 0 0 . . . 0 0 b1
0 a2 0 . . . 0 b2 0
0 0 a3 . . . b3 0 0
...

...
...

...
...

...
0 0 c3 . . . d3 0 0
0 c2 0 . . . 0 d2 0
c1 0 0 . . . 0 0 d1


.

Each swap of two adjacent rows or columns changes the sign of the determinant by
a factor of −1. We can use m − 2 column swaps to move the mth column where
the second was, and to shift the second through (m− 1)th columns right. Since m
is even, this will not affect the determinant.

a1 b1 0 0 . . . 0 0
0 0 a2 0 . . . 0 b2
0 0 0 a3 . . . b3 0
...

...
...

...
...

...
0 0 0 c3 . . . d3 0
0 0 c2 0 . . . 0 d2
c1 d1 0 0 . . . 0 0


.

In the same way, we can make m− 2 row swaps to move the bottom row where the
second was, and shift the second through (m− 1)th rows downwards.

a1 b1 0 0 . . . 0 0
c1 d1 0 0 . . . 0 0
0 0 a2 0 . . . 0 b2
0 0 0 a3 . . . b3 0
...

...
...

...
...

...
0 0 0 c3 . . . d3 0
0 0 c2 0 . . . 0 d2


.

As we can see, we have created a 2×2 block in the top-left corner, with a (m−2)×
(m−2) “cross” of the same form as the original in the opposite corner. Inductively,
we can continue producing 2×2 blocks along the diagonal until we run out of entries
in the m×m block. Furthermore, we can repeat this process for every other m×m
block until D′ is a block diagonal matrix.

As D′ is a block diagonal matrix composed of 2 × 2 blocks, our determinant
becomes easy to compute because it is equal to the product of the determinants of
each 2× 2 block. This gives us:

detD = detD′ =

1
2m∏
k=1

n∏
l=1

det

 2iz cos
kπ

m+ 1
−2iz′ cos

lπ

n+ 1

−2iz′ cos
lπ

n+ 1
−2iz cos

kπ

m+ 1

 .
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Which simplifies to:

detD =

1
2m∏
k=1

n∏
l=1

4
(
z2 cos2

kπ

m+ 1
+ z′2 cos2

lπ

n+ 1

)
.

We established earlier that Zm,n(z, z′) =
√

detD. Thus we get:

Zm,n(z, z′) =

1
2m∏
k=1

n∏
l=1

2

√
z2 cos2

kπ

m+ 1
+ z′2 cos2

lπ

n+ 1
.

Evaluating Zm,n(1, 1) gives us the total number of domino tilings. Therefore, the
total number of domino tilings for an m× n grid is:

Zm,n(1, 1) =

1
2m∏
k=1

n∏
l=1

2

√
cos2

kπ

m+ 1
+ cos2

lπ

n+ 1
.

�
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