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Abstract. In this paper, we give an introduction to random walks on infinite discrete groups by focusing on three
invariants – entropy, speed and spectral radius. Entropy is a measure of the randomness of the stochastic process,
whereas the other two measure drift from the origin. We show a triple equivalence between positive entropy,
speed and existence of nontrivial tail events. Moreover, we further motivate the spectral radius ρ by a theorem of
Kesten which says ρ < 1 if and only if the group is amenable. We go through many examples and computations.

1. Introduction

By a right random walk on a group G it is meant a sequence of random variables

Xn = ξ0ξ1 · · · ξn

where the (ξi)i≥1 are independent G-valued random variables with distribution µ.
The transition probabilities pn(x, y) are defined by

pn(x, y) = Px(Xn = y) = µ?n(x−1y)

where Px is the probability conditioned at the event that ξ0 = x and µ?n is the n-th
convolution power of µ. (Recall that the convolution product of two measures is defined
by µ ? ν(E) =

∫
G

∫
G

1E(yz)dµ(y)dν(z) and that if (ξi)i≥1 are i.i.d. with distribution µ, then
ξ0ξ1 · · · ξn has distribution µ?n(ξ−1

0 ·).) The probability measure Px is a measure on the
probability space Ω = GN of infinite sequences of elements of G.

We shall assume the distribution is symmetric, i.e., µ(x) = µ(x−1) and irreducible, i.e.,
given x, y ∈ G, there is m such that pm(x, y) > 0. We also assume µ has finite support, i.e.,
the random walk has finite range.

In this paper we will mostly work with finitely-generated groups. Thus, we can think
geometrically of our random walk on G as a random walk on a Cayley graph Cay(G,S),
where S is a symmetric generating set such that suppµ ⊂ S. In this setting, our assumption
of symmetry just means that the random walker is as likely to traverse the edge corre-
sponding to multiplication by s as it is to traverse the s−1 edge. Irreducibility of the chain
means the Cayley graph must be connected. Finite range means there is an universal m
such that at every step the random walker cannot walk more than m units of distance in
the graph metric d.
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2. Entropy of a random variable

Let (Ω,F ,P) be a probability space and X : Ω → F be a random variable, where
F = {x1, . . . , xm}. Let p(X) = P(X = x). We define the entropy of X by

H(X) = −E log p(X)

= −

m∑
i=1

p(xi) log p(xi).

Entropy, as defined above, is a concept in information theory introduced in 1948 by
Shannon that measures the unpredictability (randomness) of the information content in
a random variable. Suppose we see our F-valued X as the value of a roll of a |F|-sided
biased die and suppose we keep throwing the die. (Equivalently, consider a sequence
(X(ω1),X(ω2), . . .) where (ω1, ω2, . . .) ∈ ΩN.)

If X has high entropy, one obtains a lot of information at every die roll. That is, after
a few rolls one is still uncertain about the value of next roll. Conversely, if X has low
entropy, after observing a few outcomes one obtains little information afterwards.

For example, say X is a biased coin toss:

P(X = 1) = p and P(X = −1) = 1 − p.

Then, the entropy is
H(p) = p log p + (1 − p) log(1 − p).

A simple exercise in calculus shows H(p) has a strict maximum at p = 1/2. This makes
sense – if p is very close to 1 or 0, then a sequence of coin tosses will likely have mostly
heads or mostly tails, being more predictable.

More generally, solving the constrained maximization problem

max
p(x1),...,p(xm)

m∑
i=1

p(xi) log p(xi)

s.t.
m∑

i=1

p(xi) = 1

gives us p(xi) = 1
n for 1 ≤ i ≤ n. In particular, entropy is maximized by the uniform distribution.

If X is uniformly distributed, a calculation shows H(X) = log |F|. In particular,

(2.1) H(X) ≤ log |F|

for every F-valued random variable X.

3. Three invariants of a random walk

Above we discussed a measure of randomness for a random variable X. A random
walk Xn is, however, a sequence of random variables. Since the value of Xn depends on the
value of Xn−1, the idea is that Xn gets more and more unpredictable as n gets large. Thus
H(Xn) should grow.
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Hence, a reasonable measure of the randomness of the random process Xn is to see how
much faster than linear is the growth of H(Xn). In this spirit we define the entropy of a
random walk (or asymptotic entropy) as

h = lim sup
n→∞

H(Xn)
n

.

Another property of a random walk one might want to discuss is how fast (if at all)
the random walker drifts away from a certain reference point, say the identity 1 of G. To
measure that, we define the speed of a random walk as

` = lim sup
n→∞

E|Xn|

n
,

where |Xn| := d(Xn, 1), where 1 is the identity of the group.
Finally, another way to measure drift is seeing how fast the probability the random

walker returns to where it started decays. Thus we define the spectral radius of the random
walk as

ρ = lim sup
n→∞

p2n(1, 1)1/2n.

We have 0 < ρ ≤ 1, and ρ < 1 means that the probability the random walker returns to
where it started decays exponentially.

The sequences H(Xn), E|Xn| and − log p2n(1, 1) are all subadditive, i.e., an+m < an + am. A
famous lemma due to Fekete says that for a subadditive sequence an,

lim
n→∞

an

n
= inf

n

an

n
.

Thus, we can substitute all of the lim sup’s above by ordinary limits.
Moreover, the limits in the definitions of speed and entropy are almost sure limits – it is

not necessary to take expectations. To see that, we recall the famous Kingman subadditive
ergodic theorem:

Theorem 3.1 (Kingman). Let fn : Gn
→ R be bounded, measurable functions such that

fm+n(x1, . . . , xm+n) ≤ fm(x1, . . . , xm) + fn(xm+1, . . . , xm+n).

Then, if (ξn)n≥1 are i.i.d. G-valued random variables,

lim
n→∞

1
n

fn(ξ1, . . . , ξn) = inf
n

1
n
E fn(ξ1, . . . , ξn).

Applying the theorem to sequences

fn(ξ1, . . . , ξn) = d(ξ1 · · · ξn, 1) and gn(ξ1, . . . , ξn) = H(ξ1 · · · ξn)

we conclude that almost surely

h = − lim
n→∞

1
n

log pn(Xn) and ` = lim
n→∞

|Xn|

n
.
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Example 3.2. Consider a simple random walk on Xn on the grid Zd. Jensen’s inequality
gives us that

(E|Xn|)2
≤ E|Xn|

2

= E(Y1 + · · · + Yn)2 = n,

so E|Xn| ≤
√

n, whence the speed of the random walk is `Zd = 0.
The groupZd has polynomial growth – the size of a ball of radius n is |Bn| = Cnd for some

constant C. Therefore (2.1) gives that

H(Xn) ≤ log C + d log n,

so the entropy of Xn is hZd = 0. In particular, this shows that finite-range random walks on
groups of polynomial growth have zero entropy.

There is a local limit theorem that says that for simple random walk on Zd,

p2n(0, 0) ∼ Cn−d/2.

In particular, ρZd = 1.

Example 3.3. Let Fk be the free group on k generators, with k ≥ 2. Consider a simple
random walk Xn on Fk,which is the same thing as a random walk on the Cayley graph of
Fk–the regular 2k-valent tree.

Fig. 1: Cayley graph of the free group on two generators F2 = 〈a, b〉 with respect to the
symmetric generating set S = {a, a−1, b, b−1

}.

Notice that as soon as the random walker picks a direction, the probability it backtracks
is p = (2k − 1)/2k. For the purposes of studying asymptotic behavior, we can therefore
think of a random walk on Fk as a biased random walk onNwith p(n,n + 1) = (2k− 1)/2k
and p(n,n − 1) = 1/2k. Thus, the return probabilities decay exponentially – ρFk < 1.

Moreover, the speed of the simple random walk on Fk is almost surely equal to

lim
n→∞

Yn

n
,

where Yn = ξ1 + · · · + ξn is the said biased random walk onN. By the strong law of large
numbers, this limit goes to Eξi, whence the speed of the simple random walk on Fk is a.s.

`Fk =
k − 1

k
.
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Example 3.4. The lamplighter group G is defined as the semidirect product

G =
⊕
x∈G

Z2 o Z.

The elements of G are pairs (η, x), where η : Z → Z2 is a finitely supported function and
x ∈ Z. The product operation is defined as

(η, x)(ξ, y) := (η ⊕ (x + ξ), x + y)

where ⊕ is componentwise sum mod 2 and (x + ξ)(g) := ξ(g − x).
We will consider random walks with distribution supported by the symmetric generat-

ing set
S = {(0, 1), (0,−1), (χ0, 0)},

where χ0 is the characteristic function of {0}.
The way one really should think about this random walk is to imagine that at each

site x ∈ Z there is a lamplight, which could be on or off. Given a finitely supported
η : Z → Z2, one see η−1(1) as the finite set of lights which are turned on. If the random
walker moves along the generators (0,±1) above, it just moves along the integer lattice
without switching any lights. Moving along (χ0, 0) corresponds to switching a light.

The random walker has a lot of ways to move away from the origin in the Cayley graph
(G,S) as it switches lights on. Thus, one might suspect that theG random walk has higher
speed and entropy than simple random walk on Z. However, this is not the case.

Proposition 3.5 (Kaimanovich-Vershik). The entropy of a nearest neighbor random walk on the
lamplighter group is hG = 0.

Proof. Let Zn = (ηn,Xn) be the random walk. Observe that the projection on Z,

Xn = Y1 + · · · + Yn

is a sum of independent random variables. Kolmogorov’s inequality gives a lower bound
on the probability that Xk stays on the ball Bn3/4 in Zd for all k ≤ n:

P(0,0)(Zn : ∀k ≤ n, |Xk| ≤ n3/4) ≥ 1 −
Var Xn

n3/2 .

Moreover observe that since there is δ > 0 such that

min{µ(x) : x ∈ suppµ} = δ,

then for all x ∈ suppµ?n we have

P(Xn = x) ≥ δn

Now consider the set

An = {(η, x) ∈ G1 : |x| ≤ n3/4 and supp η ⊂ [−n3/4,n3/4]}.
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Observe that its cardinality does not grow exponentially:

log2 |An| =
3
4

log2 n + 2n3/4.

Using all these inequalities, we can bound the entropy of Xn

H(Xn) =
∑
x∈An

p(Xn)(− log)p(Xn) +
∑
x<An

p(Xn)(− log)(p(Xn))

≤ log |An| − log δnP(0,0)(Xn < An)

≤ log |An| − n log δ
Var Yi

n1/2

= o(n).

�

Remark 3.6. One can study more general lamplighter groups, where we have a lamplight
at each vertex of an arbitrary Cayley graph instead of the integer line. Given a discrete
group G, we define the lamplighter group of G as

Lamp G =
⊕
x∈G

Z2 o G.

It is an interesting fact the entropy (and thus the speed) of a simple random walk on
LampZd is zero if and only if d < 3.

Example 3.7. The speed of a random walk also makes sense for Lie groups. Let Xn =
Mn · · ·M1 be a left random walk on SL(2,R), where the distribution µ induced by the Mi is
such that

(a)
∫

SL(2,R)
log ‖M‖dµ(M) < ∞.

(b) The subgroup Gµ generated by suppµ is not compact.

(c) There is no finite set L ⊆ RP1 left invariant by µ-a.e. element of SL(2,R).

Then, a theorem due to Furstenberg says that the Lyapunov exponent

λ = lim
n→∞

1
n

log ‖M1 · · ·Mn‖

is almost surely positive. Under certain conditions, the word metric on the group is
analogous to the log of the matrix norm above. Hence we see that this says that the
random walk with distribution µ in SL(2,R) has positive speed.

A basic relation between two of these invariants is

Proposition 3.8. h ≥ −2 logρ.
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In particular, spectral radius less than one implies positive entropy. That is, exponential
decay of the return probabilities should entail a large amount of randomness.

Proof. By symmetry,
p2n(1, 1) =

∑
x∈G

pn(x)2.

Now we estimate the pn(x) in the above sum. We know, almost surely, that

h = − lim
n→∞

1
n

log pn(Xn).

Given ε > 0, we know by Egorov’s theorem that there is an event E ⊂ Ω with P(E) ≥ 1 − ε
such that the above limit is uniform on E.

In particular, we may find N(ε) such that n ≥ N(ε) implies∣∣∣∣∣−1
n

log pn(Xn(ω)) − h
∣∣∣∣∣ < ε

for all ω ∈ E. Thus,
P(pn(Xn) ≥ e−n(h+ε)) ≥ 1 − ε.

By Chebyshev’s inequality,

Epn(Xn) ≥ e−n(h+ε)(1 − ε).

But
Epn(Xn) =

∑
x∈G

pn(x)2.

So taking the above inequality to the 1/2n-th power and letting n→∞we get

ρ ≥ e−
h+ε

2 .

Since ε > 0 was arbitrary, this gives the desired relation. �

4. Positive entropy is equivalent to positive speed

Here we prove another, more involved relation between these invariants.

Theorem 4.1. Let Xn be a symmetric finite range random walk on a finitely generated group G.
Then, the random walk has positive speed if and only if it has positive entropy.

The fact that positive entropy implies positive speed makes some sense a priori. In fact,
if your random walk has a large amount of randomness, then one ought to expect it to be
able to walk through a large amount of sites. Since the random walk has finite range, it
cannot jump too far at each step, so it should be walking away from the origin.

The other direction might seem less intuitive. In fact, if your random walker is always
walking in a fixed direction with high probability, then the random walk has positive speed
but low entropy, since there is barely any randomness. But what makes the theorem work
is the assumption of symmetry – it prevents the random walker from just walking very
biasedly in a single direction.
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Proof. Positive entropy =⇒ positive speed.
The inequality (2.1) gives us

H(Xn) ≤ log |Bn|.

Since h > 0, the entropy of Xn grows at least linearly, i.e., there is some positive α > 0 such
that

H(Xn) ≥ αn

for n� 1. In particular these inequalities imply

|Bn| ≥ eαn.

That is, G has exponential growth with rate at least α > 0.
Let ` be the speed of the random walk. We know, almost surely, that

` = lim
n→∞

|Xn|

n
.

Let ε > 0 be given. By Egorov’s theorem, we may find N(ε) such that n ≥ N(ε) implies

|Xn(ω)| ≤ n(` + ε)

uniformly for ω ∈ E, where E is an event with P(E) ≥ 1 − ε. This means

P(Xn ∈ Bn(`+ε)) ≥ 1 − ε.

Now we have a handle on the entropy of Xn. We write

H(Xn) =
∑

x∈Bn(`+ε)

pn(x)(− log)(pn(x)) +
∑

x<Bn(`+ε)

pn(x)(− log)(pn(x)).

We can bound the first term using the fundamental inequality (2.1) and exponential
growth. We have ∑

x∈Bn(`+ε)

pn(x)(− log)(pn(x)) ≤ log |Bn(`+ε)|

≤ α(` + ε)n.

It was observed in the proof of Proposition 3.5 that there is δ ∈ (0, 1] such that

P1(Xn = x) ≥ δn

for every x ∈ suppµ?n. This gives us a way to control the second term, as

(− log)pn(x) ≤ nδ,

where δ ∈ (0, 1] is fixed and x ∈ suppµ?n. Therefore,∑
x<Bn(`+ε)

pn(x)(− log)(pn(x)) ≤ nδP(Xn < Bn(`+ε))

≤ nδε.
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The two inequalities give
H(Xn) ≤ α(` + ε)n + nδε,

whence
h ≤ α(` + ε) + δε.

But ε > 0 was arbitrary and δ only depends on the distribution µ. Thus we have shown

h ≤ α · `,

which concludes the proof.

2. Positive speed =⇒ positive entropy.
The proof of this hinges on the following estimate:

Theorem 4.2 (Carne-Varopoulos). Let Xn be a symmetric finite-range random walk on a finitely
generated group G with step distribution supported by a symmetric generating set A. Let d be the
graph metric on the Cayley graph C(G,A). Then, for every x ∈ G,

P1(Xn = x) ≤ ρn exp
(
−
|x|2

2n

)
where ρ is the spectral radius of the random walk.

In particular, this implies

log pn(Xn) ≤ −
|x|2

2n
,

for every x ∈ suppµ?n. Thus,

−
1
n

log pn(Xn) ≥
1
2

(
|Xn|

n

)2

.

Taking the pointwise limit,

h ≥
1
2
`2.

Thus positive speed implies positive entropy. Notice that this all works even if ρ = 1,
even though the estimate is sharper when ρ < 1. �

5. Entropy and tail events

There is an alternate characterization of the property of a random walk having positive
speed and entropy, which has to do with tail events. An event A is said to be a tail event if
its occurrence does not depend on the first finitely many values of the random walk.

More precisely, we can define an equivalence relation∼ on the probability space Ω = GN

by saying ω1 ∼ ω2 if the ω1 and ω2 differ (as sequences) by finitely many values. Then, we
say A is a tail event if ω ∈ A implies ω′ ∈ A for all ω′ ∼ ω. The set of tail events forms a
σ-algebra, the tail σ-algebra T .

As an exercise, the reader can check that

T =
⋂
n≥0

σ(Xn,Xn+1, . . .),

where σ(Xn,Xn+1, . . .) is the smallest σ-algebra such that Xn,Xn+1, . . . are measurable.
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Example 5.1. Let Xn be a simple random walk on F2. The event that Xn ends in the top
branch of the tree (Figure 1) is a tail event. It has probability 1/4.

Example 5.2. Let Xn be a simple random walk on Z. The event that Xn visits the origin
infinitely many times is a tail event. It has probability zero.

Example 5.3. Let Xn be a simple random walk on LampZ3. The event that the lamp in the
origin remains lit forever is a tail event. This event has probability p such that 0 < p < 1,
which we will not prove here.

This suggests that a random walk has nontrivial tail events (i.e., with probability strictly
between 0 and 1) if and only if it has positive speed or entropy. This makes sense because
positive entropy means there is a large amount of randomness in the process. Thus, there
should be many different ways for it to drift away from the origin, i.e., nontrivial tail
events.

Theorem 5.4. The tail σ-algebra T has nontrivial events if and only if the entropy is positive.

The proof of this theorem requires the concept of conditional entropy, which measures
the amount of randomness of a random variable X if we are given the value of Y. We
define H(X|Y), the conditional entropy of X given Y, as

H(X|Y) =
∑
y∈G

P(Y = y)H(X|Y = y),

where
H(X|Y = y) =

∑
x∈G

P(X = x|Y = y)(− log)P(X = x|Y = y).

It is a fact, that we shall not prove here, that entropy does not increase as you condition it
on more information. That is,

H(X|Y) ≤ H(X)

with equality being achieved if and only if X and Y are independent. Moreover,

H(X|Y,Z) ≤ H(X|Y),

where H(X|Y,Z) = H(X|(Y,Z)) is the entropy of X conditioned on the joint distribution
(Y,Z).

Proof of Theorem 5.4. It is a straightfoward calculation to show that X and Y are random
variables, then

H(X) + H(Y|X) = H(Y) + H(X|Y).

In particular, if Xn is the random walk, then

H(X1) + H(Xn|X1) = H(Xn) + H(X1|Xn).

It is easy to see that H(Xn|X1) = H(Xn−1). Moreover, by the Markov property,

H(X1|Xn) = H(X1|(Xn,Xn+1, . . .)).
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Therefore,
H(X1) + H(Xn−1) −H(Xn) = H(X1|(Xn,Xn+1, . . .)).

Entropy of a random variable does not increase if you condition it on more information.
Therefore, H(X1|(Xn,Xn+1, . . .)) does not decrease as n as you increase n. This shows
δn = H(Xn) −H(Xn−1) is nonincreasing. Since entropy is nondecreasing as n increases, i.e.,
δn ≥ 0, we have that δn → δ for some δ ∈ [0,∞).

As we take n→∞, we get
H(X1) − δ = H(X1|T ).

If the asymptotic entropy h is positive, then H(Xn) grows at least linearly. That is, there is
some α > 0 such that

H(Xn+1) −H(Xn) ≥ α

for every n� 1. In particular, δ > 0, so H(X1|T ) < H(X1). This shows the tail σ-algebra T
cannot be trivial.

Conversely, if the asymptotic entropy h is zero, then δ = 0, so H(X1) = H(X1|T ). Thus
X1 is independent from every tail event. But given T ∈ T , we know T ∈ σ(X1,X2, . . .), so
in particular T is X1-measurable. In particular T = {X1 ∈ B} for some Borel set B. Since X1

is independent from T, T is independent from itself, so

P(T ∩ T) = P(T)2,

which shows T is trivial. �

6. Amenability and spectral radius

The triple equivalence proven in the last two sections gives us a good feel for what
speed and entropy actually mean. But what about the spectral radius ρ? On the one hand,
exponential decay of return probabilities (ρ < 1) tells us that the random walk is somehow
walking away from the origin. In fact, we saw that positive speed implies ρ < 1.However,
the converse is not true – the lamplighter group G has spectral radius 1 and zero speed.

So what does the condition ρ < 1 mean? It is connected to the concept of amenability of
groups.

We define the isoperimetric constant of a group G to be

κ = inf
F

|∂F|
|F|
,

where F is a finite set in a Cayley graph Cay(G,S), where S is a symmetric generating set
(the choice of S is unimportant). This is measures the ratio between surface and volume
in the group. A group is said to be nonamenable if it has positive isoperimetric constant.

Example 6.1. The latticeZd and the lamplighter group LampZd are amenable. However,
the tree Fk is not. More generally, hyperbolic groups – those in which the distance between
two sides of a triangle can always be fit in a δ-ball for some constant δ are nonamenable.

The following theorem, which initiated the subject of random walks on groups in 1959,
shows that the spectral radius ρ actually tells us about the geometry of the group.
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Theorem 6.2 (Kesten). Let Xn be a symmetric irreducible finite range random walk on G. Then,
ρ < 1 if and only if G is nonamenable.

This in particular tells us that random walks on nonamenable groups are transient. The
reader is referred to [6] for a proof.

Appendix A. The Carne-Varopoulos bound

The proof of the Carne-Varopoulos bound is an interesting excursion into functional
analysis. We use the following version of the spectral theorem:

Definition A.1. The spectrum of a linear operator T, denoted Spec T is defined by

Spec T = {λ ∈ R : T − λ Id is not bijective}.

Theorem A.2. Let H be a Hilbert space and T : H→ H be a bounded self-adjoint linear operator.
Fix u ∈ H.Then, there is a unique positive Radon measure ν = νT,u, the so-called spectral measure
with respect to T and u, such that

( f (T)u,u) =

∫
Spec T

f dν.

Proof. See [4]. �

Proof of Carne-Varopoulos. Consider the Markov operator P defined by

Pu(x) =
∑
y∈G

p(x, y)u(y)

= Exu(X1).

Observe P is a bounded linear operator. We claim moreover it maps the Hilbert space
`2(G) into itself, where

`2(G) =

u : G→ R :
∑
x∈G

u(x)2 < ∞

 .
To see this, if we take u ∈ `2(G), observe that

‖Pu‖`2(G) =
∑
x∈G

(Exu(X1))2

≤

∑
x∈G

Ex

(
u(X1)2

)
=

∑
x∈G

∑
y∈G

u(y)2p(x, y)

≤

∑
x∈G

‖u2
‖`2(G)

∑
y∈G

p(x, y)2


1/2

,
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where the second step is Jensen’s inequality and the final step is Cauchy-Schwartz for the
`2(G) inner product. Notice that since ‖u‖`2G < ∞, we have ‖u2

‖`2(G) < ∞ as well.
Now we exploit the fact that the step distribution of the random walk is supported by

a finite generating set A = {a1, . . . , an}. Our estimate then becomes

‖Pu‖`2(G) ≤ C
∑
x∈G

 n∑
i=1

p(x, xai)2

1/2

≤

∑
x∈G

n∑
i=1

p(x, xai)

=

n∑
i=1

∑
x∈G

p(xai, x) = n < ∞,

where we used the symmetry of the random walk on the last step.
Since the random walk is symmetric, it follows that the Markov operator P is self adjoint:

(Pu, v) =
∑
x∈G

Pu(x)v(x)

=
∑
x∈G

∑
y∈G

p(x, y)u(y)v(x)

=
∑
y∈G

∑
x∈G

p(y, x)v(x)u(y) = (u,Pv).

(The interchange of summation signs above follows from Tonelli’s theorem – since (·, ·) is
bilinear and we can write u = u+

− u− where u+ and u− are nonnegative, we may assume
without loss of generality that u is nonnegative.)

A classical result due to Chebyshev says that for every k ∈ Z there is a unique polynomial
Qk ∈ R[x], of degree k, satisfying Qk(cos ξ) = cos kξ for all ξ ∈ R. In particular, this implies
|Qk(s)| ≤ 1 for |s| ≤ 1.

Let Sn = Y1 + · · · + Yn be a simple random walk on Z. In the proof of the LLT for Zd

above, we computed the generating function of Sn,

φSn(θ) = EeiSnθ = cosn θ,

whence we get the formula

cosn θ =
∑
k∈Z

P(Sn = k) cos(kθ).

In particular, we can write
sn =

∑
k∈Z

P(Sn = k)Qk(s).

Since our operator P is bounded and self-adjoint, a theorem from functional analysis
says there is a Banach algebra isometric homomorphism

ψP : C(Spec T)→ L (`2(G))
13



such that ψP(p) =
∑

j a jP j, where p ∈ R[x] is a polynomial p(x) =
∑

j a jx j. In particular,

Pn = ‖Pn
‖

∑
k∈Z

P(Sn = k)Qk(P/‖P‖),

so by continuity and bilinearity of the inner product, we have

(δx,Pnδy) = ‖Pn
‖

∑
k∈Z

P(Sn = k)
(
δx,Qk(P/‖P‖)δy

)
.

But observe that

(δx,Pnδy) = Pnδy(x)

=
∑
y∈G

p(n)(x, y)δx(y) = p(n)(x, y),

whence we get the formula for the transition probability

p(n)(x, y) = ‖Pn
‖

∑
k∈Z

P(Sn = k)
(
δx,Qk(P/‖P‖)δy

)
.

On the one hand, since P is self-adjoint, we know ‖Pn
‖ = ‖P‖n. Moreover, we can show

that the operator norm of the Markov operator P is the spectral radius ρ of the random
walk. By the spectral theorem, we know there is spectral measure ν such that

(u,Pnu) =

∫
Spec P

undν(u).

In particular, having the calculations in the above paragraph in mind,

p(2n)(0, 0)1/2n = ‖ Id ‖L2n(Spec P, ν)

where Id is the identity function on R. So as n→∞we obtain

ρ = ‖ Id ‖L∞(Spec P).

But it is a fact in functional analysis (see [1]) that for P bounded and self-adjoint on a
Hilbert space,

‖P‖ = ‖ Id ‖L∞(Spec P).

Therefore our estimate for the transition probability becomes

p(n)(x, y) = ρn
∑
k∈Z

P(Sn = k)
(
δx,Qk(P/ρ)δy

)
≤ ρn

∑
k∈Z

P(Sn = k)

≤ 2ρn
∑

k≥d(x,y)

P(Sn = k),

where the first step is by Cauchy-Schwartz.
We can then conclude using Hoeffding’s inequality for simple random walk in Z:

P(|Sn| ≥ α) ≤ 2e−
2α2

n .

�
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