
AN OVERVIEW OF KNOT INVARIANTS
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ABSTRACT. The central question of knot theory is whether two knots are isotopic.
This question has a simple answer in the Reidemeister moves, a set of three op-
erations that preserve isotopy and can transform a knot into any isotopic knot.
While this characterizes isotopy, it is useless for proving inequivalence. Instead,
a number of quantities have been discovered that are isotopy invariant. While
these invariants are not perfect, they are powerful tools for distinguishing knots.
This paper will describe a number of such invariants, including the knot group,
some elementary invariants, and the Jones polynomial.
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1. INTRODUCTION

A large portion of knot theory is devoted to verifying whether or knot two knots
are isotopic. This paper provides an overview of several knot invariants used to
distinguish between knots that are not isotopic. The Reidemeister moves, a set
of diagrammatic operations that completely describe isotopy, are the first ingre-
dients to any discussion of isotopy invariants; they provide a simple way to show
that a quantity is invariant over isotopy. Next come two simpler invariants, cross-
ing number and tricolorability. Algebraic topology provides the next invariant:
the knot group, defined as the fundamental group of the knot complement. The
knot group will be defined, along with an algorithmic method to calculate it. Fi-
nally comes the Jones polynomial; discovered by Vaughn Jones, it provides an
invariant that is both powerful and easy to calculate. We finish with a brief de-
scription of the HOMFLY polynomial, a generalization of the Jones polynomial.
This paper assumes basic knowledge of algebraic topology, in particular the con-
cepts of homeomorphism, homotopy, and homotopy group. While by no means
comprehensive, this paper describes a number of intuitive, powerful, and useful
invariants.
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FIGURE 1. Examples of Knots: The Unknot, Trefoil Knot, and
Figure-Eight Knot

2. MATHEMATICAL KNOTS AND ISOTOPY

The concept behind a mathematical knot is simple: imagine taking a piece of
rope, tying a knot in it, and then sealing the ends together. Formally:

Definition 2.1. A knot is an embedding of the circle S 1 into R3.

Here, instead of a rope, we have the segment [0, 1]. It is allowed to wrap around
itself in R 3, and the points corresponding to 0 and 1 are then identified. A math-
ematical knot is sometimes represented as an embedding into the sphere S 3 in-
stead; the notions are equivalent.

Intuitively, two knots are equivalent if they can be transformed into the other
without untying the knot or self-intersection. We can make that notion mathe-
matically rigorous with the following definition.

Definition 2.2. An ambient isotopy mapping a knot K to a knot K ′ is a contin-
uous map H : R3 × I → R3 such that H0 is the identity map, for each t , Ht is a
homeomorphism from R3 to itself, and H1 ◦K = K ′.

Two knots K and K ′ are isotopic if there exists an ambient isotopy between
them.

It is easy to verify that this is an equivalence relation; this paper will use the
terms ‘isotopic’ and ‘equivalent’ interchangeably.

The trivial knot, the embedding K : S 1→R3 sending (x , y ) to (x , y , 0) is called
the unknot.

Definition 2.3. A n-component link is an embedding of n disjoint circles intoR3.

A knot is simply a 1-component link. The trivial example of a link, the em-
bedding K : Sn →R3 sending (x , y ) to (x , y , 0) where Sn is the union of n disjoint
circles, is called the n-component unlink.

These definitions can lead to problematic results. Consider the knot in Fig-
ure 2, where each circle represents some nontrivial knotted area with a segment
entering and leaving, decreasing in size exponentially. This is a perfectly valid
knot, but it has an infinite number of crossings. Many invariants are impossible
to compute on these kinds of knots. To avoid this pathology, we introduce the
idea of polygonal knots.

Definition 2.4. A polygonal knot is a knot that consists of the union of finitely
many line segments in R 3.



AN OVERVIEW OF KNOT INVARIANTS 3

FIGURE 2. A wild knot

Definition 2.5. A knot is tame if it is isotopic to a polygonal knot, and a link is
tame if all of its components are tame. A knot or link is wild if it is not tame.

FIGURE 3. A polygonal trefoil knot

For the rest of the paper we will only refer to tame knots.
While knots exist in three-dimensional space, it is useful to consider drawings,

as in Figure 1, of knots projected onto a plane. Note that it is impossible to do so
without overlapping arcs, unless the knot in question is the unknot.

Definition 2.6. A projection of a knot or a link onto a plane is in regular position
if no point in the projection is shared by more than two arcs, and no arcs in the
image of the embedding lie tangent to each other.

The second condition is to ensure that every shared point is a genuine crossing.
These shared points will have different z coordinates in the preimage; that is,
one arc has a higher z coordinate and so passes ‘over’ the other in the preimage
of the projection. That arc forms the overcrossing, while the arc with a lower z
coordinate the undercrossing. The arc that passes under the crossing is drawn
with a gap, as in Figure1.

Definition 2.7. A knot diagram is a projection of a knot into a plane with arcs at
crossings differentiated into overcrossings and undercrossings. A link diagram is
a similar projection of a link.

Proposition 2.8. Every tame knot or link is isotopic to a knot or link that can be
projected into a regular position on the plane.

A full proof of this fact can be found in [3]; the general idea of the proof is to
take an isotopic polygonal knot, and show that the projections that fail to place
the knot in regular position are nowhere dense in the set of possible projections.
Thus there must exist a valid projection of the knot.
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3. REIDEMEISTER MOVES

The Reidemeister moves are a useful tool for showing that two knots are iso-
topic, and for proving that a quantity is isotopy-invariant. The Reidemeister moves
reduce the knot isotopy from a complicated topological problem to a diagram-
matic one, and enable easily verified proofs of knot isotopy. While they cannot
easily prove that two knots are not isotopic, they enable simple proofs that quan-
tities are isotopy invariant, and are thus critical to this paper.

Definition 3.1. The Reidemeister moves are a set of three types of local moves on
a link diagram, characterized as follows. They are illustrated in Figure 4.

Type 1: Twisting an arc.
Type 2: Passing one arc over or under another arc.
Type 3: Passing an arc over or under a crossing.

These moves are denoted R1, R2, and R3, respectively.

FIGURE 4. Type 1, Type 2, and Type 3 Reidemeister moves.

The importance of the Reidemeister moves lies in the following theorem:

Theorem 3.2. Two diagrams of links are isotopic if and only if one can be trans-
formed into the other by a finite sequence of Reidemeister moves.

It is easy to see that all of the Reidemeister moves preserve isotopy. The con-
verse is far less simple, and a proof can be found in Reidemeister’s book[1]; a
slightly easier proof for polygonal diagrams can be found in [4].

4. ELEMENTARY INVARIANTS

Elementary invariants are the simplest knot invariants, assigning a numerical
value to knots. This section will define two of them: the crossing number and tri-
colorability. These invariants are simple and not particularly powerful, but each
has uses; the crossing number is used to list and categorize knots, and to speak
of the relative complexity of a knot. Tricolorability is a fairly quick way to show
that a knot is nontrivial, since we will show that the unknot is not tricolorable.

Definition 4.1. The crossing number of a knot is the minimum number of cross-
ings in a diagram of any isotopic knot.

This is clearly an invariant, because for any knot diagram with the minimum
number of crossings for that knot, the Reidemeister moves will either preserve
the number of crossings or add more.

The crossing number is primarily useful for categorizing knots; tables that list
known knots are often organized by crossing number.

Definition 4.2. A knot is three-colorable, or tricolorable, if every knot diagram
of any isotopic knot admits a coloring of its arcs such that all of its arcs can be
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colored with three colors such that at every crossing, either all three colors meet
or only one color is used. To prevent trivial colorings, all colors must be used at
least once for a valid coloring.

FIGURE 5. A valid coloration of the trefoil knot

Theorem 4.3. Tricolorability is a knot invariant.

Proof. An example of the preservation of tricolorability is shown in Figure 6. We
see that R1 preserves tricolorability, since the new arc can be colored with the
same color as the arc it was formed out of. Likewise, R2 preserves tricolorability
as illustrated in Figure 6. There are several cases to show that R3 preserves tricol-
orability, based on the initial coloring; one is shown below, and the rest resolve
themselves similarly. �

FIGURE 6. Reidemeister moves preserve tricolorability

The only possible coloring of the basic diagram of the unknot is a trivial color-
ing using only one color; since tricolorability is an isotopy invariant, the unknot
is not tricolorable. This provides an easily verified way to distinguish a knot from
the unknot; if a three-coloring can be found, the knot is nontrivial.

5. THE KNOT GROUP

Algebraic topology provides a useful tool for analyzing knots. The knot group,
the fundamental group of the knot’s complement, is a powerful invariant. The
Wirtinger Presentation of the knot group provides an algorithmic way to calculate
the knot group. Unfortunately, it can be very difficult to verify whether or not
the resulting groups of two different knots are isomorphic, so the knot group is
limited in its practical use. Nonetheless, it is a powerful invariant.

Definition 5.1. The knot group of a knot K is the fundamental group of the com-
plement of K ; that is, the knot group is π1(R3 \K ).
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Theorem 5.2. The knot group of the unknot is Z; similarly, the knot group of the
n-component unlink is the free group on n generators.

An intuitive sketch of the proof is as follows. Let U be the unknot. Loops in the
complement of U are trivial if they do not loop around U . Loops are homotopic
if they loop around U the same number of times in the same direction. Thus the
fundamental group of the complement of U is Z.

Similarly, for the n-component unlink, loops are homotopic if they loop around
each component the same number of times in the same direction. Thus each
component of the unlink serves as a generator for the knot group; since the links
are completely disjoint, there are no relations between these generators. Thus
the knot group of the n-component unlink is the free group on n generators.

Theorem 5.3. If K and K ′ are isotopic knots, they have isomorphic knot groups.

Proof. The isotopy taking K to K ′ provides a homeomorphism R3 \ K to R3 \
K ′. Since the knot complements are homeomorphic, they have isomorphic knot
groups. �

The Wirtinger presentation provides an algorithmic way of computing knot
groups. Choose an isotopic knot that can be projected into regular position, and
choose a base point for the fundamental group of the knot complement that lies
above it with respect to this projection. The generators for the Wirtinger presen-
tation are homotopy classes of loops from this point that pass around each arc,
while the relations are given by the crossings of the knot.

We give an orientation to the knot; we then orient the loops around it following
the right-hand rule, as shown below.

FIGURE 7. Orientation of loops around an arc

Loops around arcs with the same orientation are homotopic. Note the loop in
Figure 8. The loop shown, which passes under c and a , is equivalent to a loop
around b .

a

b
c

FIGURE 8. Relation given by a crossing

The corners of the loop in this diagram can be pulled up to the base point,
forming three loops: a loop backwards around c , a loop forwards around a , and
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a another loop around c with the forwards orientation. When these loops are
composed, we obtain a loop homotopic to the original loop in Figure 8, and thus
homotopic to a loop around b . This is expressed by the relation b = c a c −1. Note
that the convention used is for a b to signify first performing b and then a . The
direction of the arcs a and b are independent of this relation. If we reverse the
direction of these arcs as in Figure 9 the similar picture would give b −1 = c a−1c −1,
and thus the same relation b = c a c −1.

a

b
c

FIGURE 9. Relation given by a crossing with reversed arc direction

Thus the relation given by a crossing is b = c a c −1, where c separates a and b ,
and b is to the left of c relative to the orientation of c .

Example 5.4 (Wirtinger Presentation of a Trefoil Knot Group). Giving the trefoil
knot an orientation, we obtain the following diagram:

a

b

c

12

3

FIGURE 10. Calculating the knot group of a trefoil

We have three arcs, a , b , and c , which provide the generators for the group;
likewise there are three crossings, marked with circles and numbered, that pro-
vide the relations. From crossing 1, we get the following relation:

(5.5) b = c a c −1.

Likewise, from crossing 2, we get

(5.6) c = a b a−1.

And from crossing 3, we obtain

(5.7) a = b c b −1.



8 WILL ADKISSON

Thus the knot group of the trefoil is isomorphic to the group < a , b , c |a =
c b c −1, b = a c a−1, c = b a b −1 >.

However, we can simplify this further. From (5.6) and (5.7) we see that c a = a b
and c a = b c . From this we see a = b c b −1, which means that (5.5) follows from
(5.6) and (5.7) and thus can be omitted as a relation of the group. Returning to
the equation c a = a b , we apply (5.6) to obtain c a = a b = a c a c −1, and thus
c a c = a c a .

The relations on the group are completely encoded in (5.6) and (5.7), which
themselves are consequences of the relation c a c = a c a . Thus the knot group of
the trefoil is isomorphic to the group < a , b |b a b = a b a >.

Unfortunately, a different diagram of the trefoil knot could have many more
crossings and appear much more complicated. The Wirtinger presentations of
the two knot groups will be isomorphic, but that need not be obvious from the
presentations themselves. So while the knot group is easy to calculate, the diffi-
culty in verifying that the presentations are isomorphic limits its usefulness. As
an alternative, we turn to knot polynomials.

6. KNOT POLYNOMIALS

An important subset of knot invariants assign a polynomial to knots. Knot
polynomials have the advantage of being relatively easy to compute and, unlike
with the knot group, it is easy to verify whether the the results of two such compu-
tations are the same. This section will define the Jones polynomial and describe
several of its properties, as well as touching upon the more recent HOMFLY knot
polynomial.

The Kauffman bracket polynomial is based around the smoothing of crossings
in knot diagrams. For the rest of this section, we will consider knot diagrams that
are identical outside of a small region, usually only encompassing a single cross-
ing. To represent this we will draw the differing areas inside a dotted circle.

A crossing L of a link diagram can be smoothed in two ways, resulting in the
diagrams LA and LB in Figure 11. The smoothing taking L to LA will be referred
to as method A for smoothing a crossing; likewise, method B takes L to LB . The
crossing can also be inverted, as shown by L ′.

L L ′ LA LB

FIGURE 11. Smoothing of a crossing

Definition 6.1. The Kauffman bracket polynomial of a link diagram L , denoted
〈L〉, is the unique1 polynomial that satisfies the following axioms:

1We will justify this momentarily.
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(1) 〈L〉= a 〈LA〉+a−1〈LB 〉
(2) 〈L ∪O 〉= (−a 2−a−2)〈L〉, where O is the basic diagram of the unknot.
(3) 〈O 〉 = 1.

Note that O refers to an unknot that has no crossings with the rest of the dia-
gram.

Theorem 6.2. There exists a unique polynomial that satisfies the axioms of the
Kauffman bracket.

Proof. To show this, we will define the polynomial explicitly.
Let L be a link diagram with n crossings.
A state of L is a diagram obtained from L by smoothing each of its crossings

by method A or B. A diagram L thus has 2n states. Let α(s ) be the number of
crossings in a state s smoothed by method A; likewise, let β (s ) be the number of
crossings of s smoothed by method B . Let γ(s ) be the number of disjoint unknots
in s . The bracket polynomial looks at all possible smoothings of every crossing,
so our explicit definition will take the sum over all states of L .

Each state is reached by n smoothings, either by method A or B . Each time a
crossing is smoothed by method A, by Axiom 1 we see that the term representing
that state gains a coefficient of a in the sum; likewise, a smoothing by method B
gives the term of coefficient of a−1. Thus a state s contributes aα(s )−β (s )〈s 〉.

Each state will have no crossings, and will consist entirely of γ(s ) disjoint un-
knots. Thus for a state s , 〈s 〉= (−a 2−a−2)γ(s )−1 by Axioms 2 and 3. From this, we
see that each state s provides the term aα(s )−β (s )(−a 2−a−2)γ(s )−1 to the sum.

Taking the sum over all such states, we obtain the following equation:

(6.3) 〈L〉=
∑

s

aα(s )−β (s )(−a 2−a−2)γ(s )−1

We must now check that this polynomial satisfies all of the axioms; that is, that
the axioms are consistent.

To check Axiom 1, consider a diagram L , along with LA and LB denoting smooth-
ings of L at a specific crossing. Let sA denote a state of L smoothed by method A
at that crossing, and sB a state smoothed by method B . Since those are the only
available methods of smoothing, we have sA + sB = s . From (6.3) we obtain

〈LA〉=
∑

sA

aα(sA )−β (sA )−1(−a 2−a−2)γ(sA )−1

and
〈LB 〉=
∑

sA

aα(sA )−β (sB )+1(−a 2−a−2)γ(sB )−1.

Thus we have

a 〈LA〉+a−1〈LB 〉=
∑

sA

aα(sA )−β (sA )(−a 2−a−2)γ(sA )−1+
∑

sB

aα(sB )−β (sB )(−a 2−a−2)γ(sB )−1

Since sA + sB = s , we have

a 〈LA〉+a−1〈LB 〉=
∑

s

aα(s )−β (s )(−a 2−a−2)γ(s )−1.

By Equation 6.3, we then have a 〈LA〉+a−1〈LB , and thus Axiom 1 is satisfied.
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Adding a disjoint unknot to a diagram L will result in each state having an ad-
ditional disjoint unknot, so we obtain

〈L ∪O 〉=
∑

s

aα(s )−β (s )(−a 2−a−2)γ(s ).

Distributing, we can see that 〈L ∪O 〉 = (−a 2 − a−2)〈L〉, so Axiom 2 is satisfied.
Finally, 〈O 〉= (−a 2−a−2)0 = 1, so Axiom 3 is satisfied.

This polynomial was created directly from the axioms with no element of choice,
and satisfies all of them, so it is unique. �

Theorem 6.4. The Kauffman bracket polynomial is invariant over the second and
third Reidemeister moves, but not the first Reidemeister move.

Proof. Consider a diagram containing the following crossings: . When

we smooth the top crossing, by Axiom 1 we get:

〈 〉= a 〈 〉+a−1〈 〉

Smoothing the bottom crossing,

= (a 2+a−2)〈 〉+ 〈 〉+ 〈 〉

Applying Axiom 3,

= ((a 2+a−2) + (−a 2−a−2))〈 〉+ 〈 〉= 〈 〉

Thus the bracket polynomial is invariant over the second Reidemeister move.

Now consider the two diagrams connected by R3: and . Smooth-

ing the central crossing point of each, we find

〈 〉= a 〈 〉+a−1〈 〉

and

〈 〉= a 〈 〉+a−1〈 〉

Consider the second terms of each equation. We can see 〈 〉= 〈 〉,

since the two diagrams have identical crossings.
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Since the bracket polynomial is invariant over R2, we can connect the first
terms:

〈 〉= 〈 〉= 〈 〉

Thus,

〈 〉= 〈 〉

and so the bracket polynomial is invariant over the third Reidemeister move.
However, the same is not true for the first Reidemeister move, because the first

Reidemeister move will create a new curl on a diagram L . By Axiom 1, this will
change the polynomial from 〈L〉 to p (−a 2 − a−2)〈L〉 + p−1〈L〉, where we define
p =±1, depending on the orientation of the curl. Thus we have (−a±3)〈L〉.

�

In order to render this polynomial invariant over R1, we need some way of ac-
counting for these curls. We do this by giving the diagrams orientation.

(A) Positive crossing (B) Negative crossing

FIGURE 12. Signs given to crossings

Definition 6.5. To each oriented crossing we assign a positive or negative sign,
as shown in Figure 12. Let w+ be the number of positive crossings and w− be the
number of negative crossings. The writhe number of a link diagram D , denoted
w (D ), is defined by the equation w (D ) =w+−w−.

Definition 6.6. We define the normalized bracket polynomial of an oriented link
diagram D as

X (D ) = (−a 3)−w (D )〈|D |〉
where |D | is the unoriented diagram corresponding to D .

Theorem 6.7. The normalized bracket is an invariant of oriented link diagrams.

Proof. Since the bracket is invariant under R2 and R3, and neither move changes
the writhe number, the normalized bracket is invariant under R2 and R3. Apply-
ing R1 will multiply the bracket polynomial by −a±3; however, it will also change
the writhe number by ±1, which will exactly cancel this new multiplier. Since
the normalized bracket is invariant under the Reidemeister moves, it is invariant
under isotopy. �

Definition 6.8. A Conway triple is a set of three knots, differing as shown in Figure
13. A skein relation is an expression relating the different terms of a Conway triple.
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FIGURE 13. A Conway Triple

The normalized bracket polynomial satisfies a skein relation that aids in com-
putation. Consider a Conway triple. Without loss of generality, we can assume
that the writhe of the diagram outside of the crossing is 0, allowing us to obtain
the following writhe numbers:

w ( ) = 1

w ( ) =−1

and

w ( ) = 0

.
Let KA and KB be these crossings smoothed by methods A and B , respectively.

By Axiom 1, we have that

X ( ) = (−a )−3(a 〈KA〉+a−1〈KB 〉) =−a−2〈KA〉−a−4〈KB 〉.

Likewise,

X ( ) =−a 2〈KA〉−a 4〈KB 〉

and

X ( ) = 〈KA〉.

Thus we get

a 4X ( ) =−a 2〈KA〉− 〈KB 〉

and
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a−4X ( ) =−a−2〈KA〉− 〈KB 〉.

Taking their difference,

a 4X ( )−a−4X ( ) = (a−2−a 2)X (KA)

and thus

a 4X ( )−a−4X ( ) = (a−2−a 2)X ( ).

Definition 6.9. A change of variable q = a−4 in the normalized bracket polyno-
mial gives the Jones polynomial, V (K ).

Since the normalized bracket polynomial was an invariant of oriented link di-
agrams, the Jones polynomial is as well. This change makes calculations with
the skein relation slightly nicer, since skein relations are the primary method of
computing the Jones polynomial. With this variable change we have the follow-
ing skein relation for the Jones polynomial:

q−1V ( )−q V ( ) = (q 1/2−q−1/2)V ( ).

Note that the Jones polynomial is an invariant of oriented link diagrams, and
is in general not independent of orientation. The exception to this is in the case
of knots, where we have the following statement:

Theorem 6.10. The Jones polynomial of a knot diagram is invariant over orienta-
tion changes.

Proof. The Kauffman bracket polynomial is independent of orientation; in fact,
the only part of the polynomial that the orientation affects is the writhe number.
A knot has only one component, so reverse the orientation of the knot will re-
verse the orientation of both arcs at every crossing. Thus a crossing with writhe
1 will have the orientation of both the overcrossing and undercrossing switched;
rotating the crossing reveals that the writhe hasn’t actually changed. Likewise for
crossings of writhe −1. �

Note that this does not hold for arbitrary link diagrams, because link diagrams
can undergo orientation changes that don’t invert the orientation of every cross-
ing.

Thus it is meaningful to speak of the Jones polynomial of a knot without spec-
ifying orientation, while the same is not true of links.

Remark 6.11. The unknot is trivial; that is, V (O ) = 1.

A useful application of the Jones polynomial is detecting knots that are not
isotopic to their mirror images.
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Definition 6.12. The mirror image of a knot is the composition r ◦K , where r is
a reflection in R3.

A knot is called amphicheiral if it is isotopic to its mirror image.

Theorem 6.13. The figure-eight knot is amphicheiral.

FIGURE 14. Amphicheirality of the Figure-Eight knot

Proof. We begin with a simple figure-8 knot, as shown in Figure 14. We slide the
top arc sideways by a planar isotopy. Next we rotate the leftmost arc around be-
hind the rest of the diagram, onto the arc represented by a dotted line. This oper-
ation is a repeated application of R1. A simple rotation results in a mirror image
of the original knot. Since this mirror image was created solely through planar
isotopy, R1, and R3, it is isotopic to the original knot. �

Not all knots are amphicheiral, however, and the Jones polynomial is a useful
tool for detecting chirality.

Theorem 6.14. The Jones polynomial of the mirror image of a knot K is the Jones
polynomial of K , with q replaced by q−1.

Proof. Let K ′ be the mirror image of K . In K ′, every crossing L is replaced with
L ′, as in Figure 11. To smooth the crossing, we need to find an angle at which
the crossing L ′ locally appears like the original crossing L . To do this, we rotate
the crossing (and the whole knot diagram) right by 90 degrees. Smoothing the
crossing by each method can occur as normal; once the crossing is smoothed,
we rotate back 90 degrees. Thus a crossing smoothed by method A will, from
the original angle, appear as LB ; likewise, a crossing smoothed by method B will
appear as LA . The states of the diagram are the same, but since the results of each
of the smoothing methods are switched, the numbers of each type of crossings
will be switched as well. Thus the Kauffman bracket polynomial for K ′ is that of
K , with a replaced with a−1. Likewise, the mirror image will switch the sign of
the writhe number, so the normalization term becomes (−a 3)−w (K ′) = (−a 3)w (K ) =
(−a−3)−w (K ). Substituting q for a 4 gives us that the Jones polynomial of K ′ is the
Jones polynomial of K with q replaced by q−1. �

Example 6.15. As an example, we will compute the Jones polynomial of a trefoil
knot.

Using the skein relation shown above, we have

V ( ) = q 2V ( ) +q (q 1/2−q−1/2)V ( )
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= q 2V ( ) +q (q 1/2−q−1/2)V ( )

by isotopy.

As previously stated, V ( ) = 1. Now it remains to compute V ( ).

The link is isotopic to , as can be seen by vertically rotating the

right component 180 degrees. Thus we have V ( ) =V ( ).

Thus,

V ( ) = q 2V ( ) +q (q 1/2−q−1/2)V ( ).

The Jones polynomial of the n-component unlink is (−q 1/2−q−1/2)n−1, so V ( ) =

(−q 1/2−q−1/2). Therefore,

V ( ) = q 2(−q 1/2−q−1/2) +q (q 1/2−q−1/2) =−q 5/2−q 1/2.

Thus we have

V ( ) = q 2+q (q 1/2−q−1/2)(−q 5/2−q 1/2) =−q 4+q 3+q .

The Jones polynomial of the mirror image of this knot is thus V (T ′) = −q−4 +
q−3+q−1. Clearly, the two are not equal. Thus the trefoil knot is not amphicheiral.
With this in mind, we will show that this method is consistent with the earlier
claim that the figure-eight knot is amphicheiral by calculating its Jones polyno-
mial and that of its mirror image.

Example 6.16. As before, we use the skein relation, obtaining

V ( ) = q 2V ( ) +q (q 1/2−q−1/2)V ( )

= q 2V ( ) +q (q 1/2−q−1/2)V ( )

The calculation of V ( )need not be done explicitly; it suffices to notice

that is the mirror image of , and so V ( ) = −q−5/2 −

q−1/2. Thus,
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V ( ) = q 2+q (q 1/2−q−1/2)(−q−5/2−q−1/2) = q 2+q−2−q −q−1+1

Notice that substituting q−1 for q returns exactly the same expression, so the
Jones polynomial does not detect chirality. This does not constitute a proof of
amphicheirality, however; Figure 15 is a chiral knot with Jones polynomial V (K ) =
t 3+ t −3− t 2− t −2+ t + t −1−1.

FIGURE 15. A chiral knot with symmetric Jones polynomial

Looking at the computation, one sees that the Jones polynomial of a knot is
built off of the Jones polynomials of other, smaller knots. Computing the Jones
polynomial of a knot is vastly simplified if the polynomials of the knots created
through the skein relations are already known. This motivates a formal way of
constructing large knots out of other knots.

FIGURE 16. Adding a trefoil and a figure-eight knot

Definition 6.17. The connected sum of two knots K and K ′, denoted K #K ′, is
formed by attaching the knots with respect to the orientation of each knot. See
Figure 16 for an example. This is done by removing a small arc on each knot, then
gluing the knots together by their boundary, respecting orientation.

As an example of knot addition, consider the square knot and the granny knot,
as seen in Figure 17. The square knot is the sum of a trefoil knot and its reflection;
the granny knot is the sum of a trefoil knot to itself.

This idea of a connected sum can be used to aid computation as follows:

Theorem 6.18. Let K1 and K2 be knots. Then V (K1#K2) =V (K1)V (K2)

Proof. Computing the Jones polynomial of a knot sum follows the same proce-
dure as computing the polynomial of K1, except that when K1 would be reduced
to the unknot in the computation of V (K1), here it is instead reduced to K2. Thus
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FIGURE 17. The Square Knot and the Granny Knot

the Jones polynomial of K1#K2 is the Jones polynomial of K1 with an added coef-
ficient of V (K2) on each term. A factoring gives the desired result. �

Several more knot polynomials have been discovered, including a variant of
the Jones polynomial in two variables. One of the most powerful is the HOMFLY
polynomial, named after the initials of a number of mathematicians who discov-
ered the polynomial more or less simultaneously[2].

Definition 6.19. The HOMFLY polynomial P of a link diagram L is defined as the
polynomial in variables x , y , and z satisfying the following axioms:

a) x P ( ) + y P ( ) + z P ( ) = 0

b) P (L ) = 1 if L is the unknot.

A proof of the existence and uniqueness of this polynomial is beyond the scope
of this paper, but can be found in the original paper detailing the polynomial [2].

The HOMFLY polynomial is a generalization of the Jones polynomial and sev-
eral other polynomials. In particular, the Jones polynomial of a link diagram is
the HOMFLY polynomial evaluated at (t ,−t −1, t 1/2− t −1/2).
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