APPROXIMATION RESISTANCE AND LINEAR THRESHOLD
FUNCTIONS

RIDWAN SYED

ABSTRACT. In the boolean Max — k — CSP(f) problem we are given a predi-
cate f: {—1,1}* — {0,1}, a set of variables, and local constraints of the form
f(x1,...,x), where each z; is either a variable or negated variable. The goal
is to assign values to variables as to maximize the fraction of constraints which
evaluate to 1.

Many such problems are NP-Hard to solve exactly, and some are even NP-
Hard to approximate better than a random assignment. Such problems, or
rather their corresponding predicates f, are called approximation resistant.

Recently Khot et al. gave a characterization (assuming the Unique Games
Conjecture) of a modified notion of approximation resistance in terms of the
existence of a measure over a convex polytope corresponding to the predicate.
In this paper we discuss this characterization as well as the approximability of
linear threshold predicates (predicates of the form sgn(wizi + ... + wgzk)).
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1. CONSTRAINT SATISFACTION PROBLEMS AND HARDNESS OF APPROXIMATION

In this section we introduce the family of Constraint Satisfaction Problems,
and discuss hardness of approximation. Throughout this paper we will focus on
the Max — k — CSP(f) problem, where f is a Boolean function. Informally, in
the Boolean Max — k — CSP(f) problem we are given a k-bit Boolean function
f:{=1,1}* = {0,1} (often called a predicate), a set of variables, and a set of local
constraints of the form f(x1,...,x;) where each of the z; is a literal (variable or a
negated variable). The objective is to assign values to the variables such that the
fraction of constraints which simultaneously evaluate to 1 is maximized. We can
formalize instances of this problem as follows.
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Definition 1.1. Fix f: {—1,1}* — {0,1}. An instance of Max —k—CSP(f), I =
{N,m,v,s}, consists of N variables, m constraints, a matrix of labels v € [N]™**
and a matrix of signs s € {—1,1}">**. For convenience the m constraints of I can
be written as

f(5171zv1,1a ey 517161'“1,1@)

f(sm,lxvm,n ) vakmvm,k)
The objective is to assign values to the N variables so as to maximize the following
function:

1 m
Val(z) = pool Zf(si’lacvi’17 oy 8 kT 4, )
i=1

. We denote the optimal value for a given Max — k — CSP(f) problem as,
Opt(I) = maz,eq—1,1y~ Val(z)

Many well known combinatorial problems are in fact Max — k — CSP(f) for
some f and k.

Example 1.2. Let f:{—1,1}% — {0,1} be defined as f(z1, 2, x3) = 1 if and only
if at least one literal x; is 1. This function is precisely the or of 3 bits, so on any
instance I of Max —3 — CSP(f) we can write the ith constraint as

(si,l‘rvzq \ 84,28y, o \ si73‘rvi,3)'
This is precisely the problem of Max —3 — SAT.

In particular, this problem (like many problems in this family) is NP-Hard to
solve exactly. Assuming the widely believed conjecture that P # N P, this problem
cannot be solved exactly by an efficient algorithm. Therefore, it is interesting to
study the complexity of finding an approximate solution.

Definition 1.3. Let f be a k-bit Boolean function, and suppose that f(x) =1 for
exactly p inputs. Then, we say that f has density p(f) = 3%.

Definition 1.4. Fix a predicate f, and let a < 1. If P(I) is the output of an
algorithm P, such that for all instances I of Max — k — CSP(f), we have that

a - Opt(I) < P(I) < Opt(I),
we call P an a-approximation algorithm for f.

We call a the approximation ratio for the algorithm. We use a similar notion
for randomized algorithms.

Definition 1.5. Fix a predicate f, and let « < 1. If P(I) is the output of a
randomized algorithm P, such that for all instances I of Max — k — CSP(f), we
have that

o - Opt(I) < E[P(D)),
we call P a randomized a-approximation algorithm for f.

We are naturally concerned with finding efficient approximation algorithms, and
we present such an algorithm.

Proposition 1.6. Fiz a k-bit Boolean predicate f. There exists a randomized
p(f)-approzimation algorithm for Max — k — CSP(f).
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Proof. Suppose we are given an instance of Max — k — CSP(f), I = {N,m,v, s}.
Independently assign each z; to 1 with probability 1/2 and —1 with probability
1/2. Then, the probability that any particular constraint evaluates to 1 is p(f).
So the expected contribution of each constraint to the total number of constraints
satisfied is p(f). Linearity of expectation and the observation that no more than
m constraints can be satisfied give the result. O

Although this algorithm achieves some positive approximation ratio, it is some-
what unsatisfying since the algorithm does not actually look at the instance of the
problem or take advantage of any properties of f. For many predicates, one can
achieve larger ratios using, for example semidefinite programming. However, for
some predicates f the ratio given by p(f) is in fact optimal i.e. it is NP-Hard to
approximate Max —k — CSP(f) by a larger ratio. We call such predicates approx-
imation resistant. We present an equivalent definition of approximation resistance.

Definition 1.7. Fix a k-bit Boolean predicate f. If for all positive € it is N P-hard
to distinguish between instances of Max — k — CSP(f) which are 1 — e satisfiable
and instances which are not satisfiable by more than p(f)+ ¢ fraction of constraints,
we say that f is approximation resistant.

2. Basic FOURIER ANALYSIS OF BOOLEAN FUNCTIONS

One of the most useful tools in the analysis of Boolean functions is the discrete
Fourier Transform, which we discuss in this section. We will show that any Boolean
function can be expressed uniquely as a multilinear polynomial, and we will prove
some useful facts about this representation.

Now, we consider the vector space of functions of the form f : {—1,1}" — R.
Observe that we can represent each f as a column vector by stacking its 2™ values
in lexicographic order of the corresponding input. In other words, the space of k-bit
Boolean functions is 2"-dimensional.

Definition 2.1. Let f,g: {—1,1}" — R. We define the inner product < -, - > as
<fg>=2"- 3 (f-9)@)=Eeng 110 [f(2) - 9(2)]
ze{—1,1}F
where - is the usual product over reals.

Next, we define the class of parity functions, which as we shall see forms an
orthonormal basis for the space of n-bit Boolean functions.

Definition 2.2. Let S C [n]. Then define the S-th parity function xs : {—1,1}" —

{=1,1} to be
xs(x) = H x;.
i€S
For the special case where S = ), xs(z) is defined to be identically 1.
The name parity functions comes from the fact that the value of xg(x) is deter-

mined by the parity of —1s appearing in S. Observe that there are 2" such parity
functions. We now show that these functions form an orthonormal set.
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Proposition 2.3. The set of functions {xs(z) | S C [n]} is orthonormal. Let
S,T C [n]. Then,
1 ifS=T

< X XT 2= { 0 otherwise

Proof. First, since the parity functions have range {—1,1} we have that
xs(z) - xr(z) = sz : H Ti
ies  ieT
i€SAT  ieSNT
I =
i€SAT
= xsar ().

If S and T are equal, we have

< X35, XT > = Epny_1,130 X5 () - X7 (7)]
= Epoq—1,13n [XxsaT()]

= Ex~{71,1}"[X®(95)}
=1.

Otherwise, we have,
< X5, XT > = Epg_1,130 X5 (%) - X7 (7)]
=Epui—1,137 [xsar(z)]

:Exw{—l,l}"[ H 74

1€ESAT
= J] Eoni-raynlai]
1€ESAT
=0

where the fourth equality follows from independence, and the last equality follows
from the fact that x; = —1 and z; = 1 are equally likely. ([l

Hence the 2™ parity functions form an orthonormal set. From orthogonlity we
have that the parity functions are in fact linearly independent. Since the space
of n-bit functions is 2 dimensional, it follows that the parity functions span the
space. Hence we can write any Boolean function as a multilinear polynomial:

fla)y="Y " f)xs@) =Y f(S]]=
SC|

SC[n] Cln] i€S

where each f(S) is a real constant. We refer to f(S) as the Fourier coefficient of f
on S. The following is an explicit formula for computing the Fourier coeflicients of

f.
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Proposition 2.4. Let f: {—1,1}" — R and let S C [n]. Then,
f(8) =< f,xs >=Esu_1,13n[f(2) - X5]-

Proof. We can represent f(z) as the polynomial 3 7, F(T)xr(x). Then,

<f7XS > =< Z f(T)XTaXS>

TC[n]
= Y A(T) <xr,xs >
TC[n]
= f(S) <xs,xs > + Y f(T) < xr,xs >
T#S
= /()

where the second equality follows from linearity of the inner product and the last
equality follows from orthonormality. O

Now, we prove a useful formula for computing the dot product of two arbitrary
Boolean functions. We refer to this formula as Plancherel’s Theorem.

Theorem 2.5. Let f,g: {—1,1}" = R. Then,
< fg>= Y f(9)i(S)

SC[n]

Proof. We proceed as follows:

<fig>=< > f(S)xs, Y f(T)xr >

SC[n] TC[n]
= Y f(99T) < xsxr >
S,TCln]
= f )<xsixr >+ > f(9)IT) < xs, xr >
§=TCln S#TC[n]
= f( )9(S)
S

where the second equality follows from linearity of inner product and the last equal-
ity follows from orthonormality. O

A useful corrolary follows:

Corollary 2.6. Let f: {—1,1}" — R. Then,
<fif>= Eengorpnlf Zf2

5C[n]
Moreover, if f takes values in {—1,1} we have that 3 gc f2(S) =1.

This formula is referred to as Parseval’s Theorem.
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3. UNIQUE GAMES AND (STRONG) APPROXIMATION RESISTANCE

In this section we discuss the Unique Games Conjecture due to Khot, and some
of its connections to the theory of approximation resistance.

Definition 3.1. An instance of Unique Games, T = (G(V, E), [n],{mcle € E}),
consists of a directed graph G, a set of labels [n], and a set of permutations (also
called constraints) {m.|e € E} of [n]. A labelling of the graph is a function L :
[V] — [n]. We say that an edge e = (u,v) € E is satisfied by the labelling L if
(meo L)(u) = L(v). The goal is to produce a labelling function L so as to maximize
the following objective function:

ﬁHe = (u,v) € E : (meoL)(u) = L(v)}

. We denote the maximum value of the above objective function as OPT(Z).

Conjecture 3.2. For all 0 < § < 1, there exists N, such that for instances of
Unique Games I = (G(V, E), [N],{wc|e € E}) it is NP-Hard to distinguish between
the cases where OPT(Z) > 1—4§ and 6 > OPT(ZI).

Remark 3.3. If a decision problem is NP-Hard assuming the Unique Games Con-
jecture, we say that the problem is UG-Hard

Recall that a predicate f is approximation resistant if it is NP-Hard to distinguish
the case where an instance of Max —k— CSP(f) is more than 1 — e satisfiable from
the case of being no more than p(f) + € satisfiable. We can obtain many strong
results for approximation resistance by relaxing the hardness condition to UG-
Hardness. The following result of Austrin and Mossel gives a sufficient condition
for approximation resistance under the Unique Games Conjecture.

Theorem 3.4. Let f be a predicate on k variables, and suppose there exists a
probability distribution p over {—1,1}* such that,

Procp[f(z) =1] =1,
for all i € [k],
Epnplzi] =0,
and for alli,j € [k] where i # j,
EwNu[xixj] = EJUNH['TZ']E@ENM [5].
Then, the Unique Games Conjecture implies that f is approximation resistant.

Thus, a sufficient condition for approximation resistance is the existence of a
balanced, pairwise independent distribution over satisfying assignments. It would
be interesting to obtain a necessary and sufficient condition for approximation resis-
tance. A recent work of Khot, Tulsiani, and Worah gives a necessary and sufficient
condition for a special case of approximation resistance called strong approximation
resistance.

Definition 3.5. Fix a k-bit Boolean predicate f and let ¢ > 0. If it is N P-hard
to distinguish between the case where an instance of Max — k — CSP(f)is 1 —e€
satisfiable from the case where for all assignments z, |p(f) — val(z)| < € we say f
is strongly approximation resistant.
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Where approximation resistance corresponds to intractibility of beating a ran-
dom assignment, strong approximation resistance corresponds to the intractibility
of differing from a random assignment in either direction. Moreover, strong ap-
proximation resistance implies approximation resistance. In addition, for odd
predicates, i.e. those predicates for which f(—z) = 1 — f(x), the two notions are
in fact equivalent. This follows from the observation that any assignment which
satisfies fewer than % — € constraints can be negated (by switching the signs of
each coordinate) to yield an assignment which satisfies more than %—i— € constraints.

Before we can state the Khot et al. characterization of strong approximation
resistance some definitions are in order.

Definition 3.6. Let y be a probability distribution over {—1,1}*. We define the
symmetric matrix of first and second moments ¢ (p) € REFDX*+1) a5 follows:

fOT 1 S [k]v C(M)O,Z = ]E:cw,u[xi]
for distinct 7,5 € [k], ((1)i,; = Eanplziz;]

and all diagonal entries are 1.

Definition 3.7. Let f be a predicate on k variables. Define C(f) = {((u)
Proulf(z) =1] =1}

Definition 3.8. Let S C [k]. Then define ¢° to be the projection of ¢ to the
coordinates indexed by {0} U S. Let m : S — S be a permutation. Define (*™ be
¢% with rows and columns permuted by 7. Finally, let b € {—1,1}!5 be a vector of
signs. Define ¢%™ = ¢57 o ((1 b)(1 b)T) where o is the entrywise product of two
matrices.

Definition 3.9. Let A be a probability measure on k£ + 1 x k£ + 1 real matrices,
S C [k], 7 : S — S be a permutation, and b € {—1,1}®l. Denote by A7 the
measure on |S|+ 1 x |S| + 1 matrices obtained by randomly sampling a matrix ¢
according to the measure A and then selecting ¢%™?.

Recall that any predicate f : {—1,1}* — {0,1} can be written as the multilinear
polynomial scw f (8) [l;cs zi- We are now ready to state the characterization.

Theorem 3.10. Let f be a predicate on k variables. Then, f is strongly approx-
imation resistant if and only if there exists a probability measure A supported on
C(f) such that for all t € [k] the following function vanishes identically

DI DD D O I

|S|=t m:S—=Sbe{-1,1}t

Notice that this characterization is in some sense a generalization of the sufficient
condition obtained by Austrin and Mossel. The condition that satisfying assign-
ments of f support a balanced pairwise independent distribution is equivalent to
I € C(f). Then we can simply take A(I) = 1. There are several open questions
regarding this characterization.

Question 3.11. Is the characterization recursive?

Question 3.12. When a A satisfying the characterization exists, is it always
finitely supported?
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Question 3.13. Can the characterization take simpler form for explicit families
of predicates?

More concretely, it would be interesting to apply the characterization on balanced
linear threshold functions. It is currently open whether or not there exists an
approximation resistant linear threshold predicate. Perhaps the characterization
takes simpler form for these predicates.

4. LINEAR THRESHOLD FUNCTIONS

We now turn to majority and majority-like predicates, the so-called linear thresh-
old functions. We will explore approximability results for a particular class of such
functions, and discuss a possible candidate for approximation resistance. Unless
stated otherwise, we will consider functions f: {—1,1}¥ — {—1,1}.

Definition 4.1. Define L : {—1, 1}’C — Ras L(x) = wo + w21 + wexs + ... + wi Tk,
where each w; € R. We shall often refer to these w;’s as weights. Let f : {—1,1}* —
{—1,1} be such that f(z) = sgn(L(z)). Then we say that f is a linear threshold
function. For definiteness, in the case that L(x) = 0, we define f(z) = 1.

Example 4.2. Let k be odd, and let L(x) be such that wy = 0, and wq = we = ... =
wy = 1. Then, f(z) = sgn(L(z)) is 1 if and only if a majority of the coordinates of
x are equal to 1. For this reason this linear threshold function is called the majority
on k variables and is denoted as Maji(z). Notice that it is not necessary for the
weights to all be equal to 1. In fact, any positive constant will suffice.

Remark 4.3. A linear threshold function f(z) can be represented as the sign of
infinitely many different functions, L(x). This follows from the observation that
scaling the weights of L(z) by a positive real constant will not change the value of
f(z) on any of the inputs. Furthermore, observe that we can add small constants
to each weight without changing the value of f(z). Consequently given a linear
threshold function f(z) = sgn(L(z)), we can find L'(z) with all integer weights
such that f(z) = sgn(L(x)).

Remark 4.4. In our discussion, we will only consider predicates with integer weights.
For additional simplicity, we consider functions with non-negative weights, and in
particular we require that wy = 0. Additionally, we will restrict our predicates
to those for which L(xz) # 0 for all inputs. Now, assuming these restrictions,
observe that for every input x, L(—z) = —L(z). So, for all predicates we consider,
f(=z) = —f(x), or in other words, f is odd. We also adopt the convention of
writing the weights in non-decreasing order.

Recall that any boolean function f(x) can be represented as a multilinear poly-
nomial of the form, f(z) = > gc(y F(S) - [licgwi- The following theorem, due
to Chow, states that a linear threshold function is completely determined by its
Fourier coefficients on the empty and unit sets.

Theorem 4.5. Let f(z): {—1,1}* — {~1,1} be a linear threshold function, and
let g(z) : {—1,1}* — {—1,1} be such that f(S) = §(S) for |S| < 2. Then for all z,
f(x) = g(x).

Proof. Let f(z) = sgn(L(z)). Observe that we can perturb the weights of L(z)
such that L(z) # 0 on all inputs, without changing the value of f(z). So without
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loss of generality we assume L(z) is always non-zero. Since the Fourier coeficients
of L(x) are nonzero only on the empty and unit size sets, by Plancherel’s Theorem

we have that o
> F(S)L(S) = Egg1yelf (@) L(2))-
|S|<2

Similarly, we have that

Z Q(S)E(S) = Ex~{71,1}k[9<$)L($)]-

|S]<2

Since, f(S) = §(S) on empty and unit sets, we have that Epoqo1,yx[f(2)L(7)] =
Eyq—1,13xlg(x)L(z)]. Now, since f(z) = sgn(L(x)), f(x)L(z) = |L(x)|, and since
g(z) is boolean valued, we have that f(z)L(xz) > g(x)L(z). But since these two
functions are equal in expectation and non-zero, we have that f(x) = g(z). ]

The Fourier coefficients of a function on empty and unit sets are often called
the function’s Chow parameters. It is currently unknown how to construct a linear
threshold function f(x) exactly from its Chow parameters. A naive approach to
this problem would be to simply use the Chow parameters themselves as weights.
Indeed this method does work for several functions, including Maj(z). It is not
hard to show that this does not work in general.

Example 4.6. Consider the linear threshold function on 5 variables, f(z) =
sgn(z1 + o+ 23+ 24+ 325). The Chow parameters of this function are f({i}) = :
for 1 <i <4 and f({5}) = %. The function we obtain by plugging in these param-
eters as weights (after scaling) is f/(z) = sgn(x1 + x2 + 3 + x4 + Tx5). However,

£(1,1,1,1,—1) = 1 while f/(1,1,1,1,-1) = —1.

The functions for which the Chow parameters yield the correct weights, re-
ferred to in the literature as Chow-robust functions, present an interesting class of
functions for which to explore approximability. As we shall see, the optimization
problem Max — CSP(f) for Chow-robust f is in fact nontrivially approximable.
Before proceeding we note (but do not prove) a useful fact about the Chow param-
eters of Majority functions.

Fact 4.7. Let f : {—1,1}* — {~1,1} be the Majority function on k wvariables.

Then, for each i € [k], f({i}) = 2" (g) = @(ﬁ)

Recall that for an instance of Max — CSP(f) on k variables, m constraints,
and with matrices v € [N]™** s € {—1,1}™*F the objective function we wish to
maximize is the advantage of an assignment x which we can write as:

1 m
Ad’U(SL’) = E Z f(si,ll'viyla 23] Si,kxvi,k)'
=1

We call this function Adv(x) rather than Val(x) to emphasize that we’ve switched
notation to the range of f being in {—1,1}. We have restricted ourselves to odd
predicates, so for a random assignment any constraint is satisfied with probability
%. By linearity of expectation, we can thus expect to satisfy half of all constraints.
In other words, E,.;_11}+[Adv(x)] = 0. Using Fourier expansion we can re-write

the advantage as:
Adv(z) = Z (S) - H ;)
SC[N],|S|<k i€S
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where ¢(S) is simply f(S) scaled to reflect the signs of s and the exact choice of
variables in each constraint in the instance. In 2005 Hast gave a general algorithm
which achieves a positive advantage (and thus a non-trivial approximation) when-
ever the coefficients of linear terms of the above objective function are non-zero. A
recent paper by Cheraghchi et al. gave a modified version of the algorithm for odd
predicates, which we present below. First we prove a technical lemma bounding
the sum of the coefficients ¢(S).

Lemma 4.8. Let f : {—1,1}* — {—1,1}, and let I be an instance of Max —
CSP(f) with objective function

Adv(z) = Z e(S) - H Z;

SCINT,|S|<n ies

1/2

Proof. Let n < k. Clearly, |¢(S)| < |f(S)|. Thus, we have

where the second inequlity follows from Cauchy-Schwarz and the third inequality
follws from Parseval’s theorem. O

Theorem 4.9. Let f : {—1,1}F — {—1,1} be an odd function, and let I be an
instance of Max — k — CSP(f) with objective function

Adv(z) = Z e(S) - H x;.

SCINY,|S|<n ics

If Zle le({i})| > «, then there exists a polynomial time algorithm which outputs
an assignment © such that E[Adv(z)] > ;‘:%.

Proof. Let B = o!/?(2k%/4)~1. Set each x; independently and randomly such that
Prlz; = 1] = § + 2D Clearly, Ele({i})z:] = Ble({i})] and [E[[];cq ]| =
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B!81. Thus we have that

E[Adv(z)] = E] Z e(S) - H ;)

SC[N],|S|<n €S
k
=E[)_c({i})ai] +E[Y_ o(S) [] il
i=1 1S]>3 i€s
k
> 6 le{ipl = Y B85e(s)]
=1 |S1>3

k i\ /2
> _ n
> fa ;::36 (n) :
where the first inequality follows from the fact that ¢(S) = 0 on sets of size 2. Now,

since v < 1, 8 < (2vk)~'. Thus, Zn S(B2k)" < BOK3 D00 ) 5= < 285K, Then by
Cauchy-Schwarz,

nzk‘?), . (fb) : (zk: %n (i) )1/2(Zk:(62k)")1/2

n=3 n=3

IN

1
< (1 + E)n/2(2ﬁ6k3)1/2
< 3ﬂ3 k’3/2
where the second inequality follows from Y% _; 1" (¥) = (14+1)*. Hence, E[Adv(z)] >
Ba—363K%/2 = &% O

We can apply this theorem to the majority function as follows.

Corollary 4.10. Let f( ) = Maji(xz). Suppose I is an instance of Max — k —
CSP(f) which is (1 — k+1) -satisfiable. Then in polynomial time, we can produce

an assignment x € {—1,1}* for which E[Adv(x)] = Q(1k53/2),

Remark 4.11. Note that we could have assumed I is 1 — € satisfiable, but we use
the notation above for analytic convenience.

Proof. Let xx be the ass1gnment which maximizes the number of satisfied con-
straints. Then clearly, Z Lc({iP)ax; < El | le({i})]. Note that all the non-zero
Chow parameters are equal to some constant f({i}). Any satisfied constraint must
add at least f({i}) to Zle le({i})|, while any unsatisfiable constraint subtracts at
most nf({i}). Hence,

k
2 letibl 2 (4= ) - ok = (- D))
. The result now follows from Theorem 1.8 and the fact that f({z}) = @(ﬁ) 0

We can also extend this result to the previously mentioned Chow-robust predi-
cates. We refine our definition of Chow-robustness with an explicit bound.

Definition 4.12. Let f(x) be an odd linear threshold function, and let v > 0. We
say that f(z) is y-robust if for all satisfying assignments =, v > Zle FHi)z;
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Clearly a function is Chow-robust if and only if there exists positive « such that
f () is y-robust. We obtain the following approximation for Chow-robust functions.

Corollary 4.13. Let f(x) be vy-robust, and let I be an instance of Max — k —

CSP(f) which is 1— #ﬁﬂ{ﬁ) satisfiable, with 6 < 1. Then in polynomial time,
/
we can produce an assignment x € {—1,1}* for which E[Adv(x)] = %.
Proof. For any assignment x, we have that
k k 1ok
Z len| > Z CnTn = m ZZf({J})Sle”
n=1 n=1 =1 j=1
. . _ 5oy Cents . . *

. Since [ is 1 L FGD satisfiable, for the optimal assignment z*, we have
that ZJ 1 f({]})swxl >~ for at least 1 — m fraction of constraints.

For the unsatisfied Constraints, ijl f({j})smxzj > 72;?:1 f({j}). Thus we
have that,

L

Cnn

|SP1H3 E'M?T

k
Z ({7 })sijau

_ 0y
7+Z?:1f({j})) 'y—f—zj 1f{J} Z {3}

=(1-10)y.

We apply Theorem 4.8 to finish the proof. (I

Thus, we have that the family of Chow-robust linear threshold functions is ap-
proximable. It would be interesting to find a linear threshold function which is
in fact approximation resistant, and if they exist, it would be of interesting to
find distributions on weights for which there is a high probability of approximation
resistance.

Definition 4.14. Let W C N be finite, and let p be a probability distribution over
W. Let wi,...,wg be chosen independently from W according to . Then, we say
f(x) = sgn(wizy + ... + wpay) is a p-random linear threshold function.

The simplest such distribution to study is when the weights are chosen from the
uniform distribution over [m], where m is an integer. In our discussion, for conve-
nience, we will restrict m to be odd. Before determining whether linear threshold
functions sampled from such a distribution are with high probability approximation
resistant, it is useful to check that we are unlikely to get good approximations using
Hast’s algorithm. The only known predicates which can be nontrivially approxi-
mated using Hast’s algorithm are the Chow robust predicates. Therefore we would
like to show that for large values of ~, we are unlikely to sample a y-robust predi-
cate. Towards that end we prove Proposition 4.15, which gives a tradeoff between
~ and the probability of sampling a y-robust predicate.
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Lemma 4.15. Let p be the uniform distribution over [m] for some even positive
integer m. If f is p-random,

(k—sVk—2)/2

Privi, f{iy) < 2t (o

)] >1- ke t°/2

where 0 < s < Vk.

Proof. First, we write f(x) = sgn(wix1 + ... + wgxy), where the weights are writ-
ten in nondecreasing order. We can upperbound f({k}) as follows. Let g(z) =
sgn(wjz; + wjt1241 + ... wpxy), where the weights Z = {wj, ..., wy } are precisely
those which are greater than 7. Clearly g({k}) > f({k}), since the fraction of
weights on xj, is higher in g than in f. The influence of xy in g, is maximized when
wj = ... =wr_1 = 5 + 1 and w, = m. Clearly such a predicate is equivalent to
hz) = sgn(z; + ... + Tx—1 + 22), and moreover the influence of z;, in h is

2Majyz) ({k}) = 22~ (21122 (E:; - ﬂ 2@

F{RY) < 2Majyz ({k}).
Now, since the probability that any given weight is in Z is 1/2, E[|Z]] = £. Then
by Chernoff’s inequality we have that

Pr(|Z| < (k—sVE) /2] < e /2
where 0 < s < Vk. Hence,

Hence

(k—svVk —2)/2

Prif({k}) > 2%~ ko2 ((k; —svk —2)/4

)1 = Prl|Z] < (k- V)2

< e/

S}nce all other weights w; are smaller than wy, the above inequalities hold for all
f({3}). Finally, applying the union bound inequality gives the result. O

Now, we give the main result.

Proposition 4.16. Let u be the uniform distribution over [m] for some even pos-

itive integer m. Fix v > 227(k75ﬂ)/2(§::2£:2§421

Pr(f is not vy — robust] > 1 — ke_82/2, where 0 < s < Vk.

). Then, if f is p-random,

Proof. Recall that if f were y-robust, on satisfying assignments Zi;l F{iDzs >,
and on all others Zle F{iD)e; <.

Now, consider the assignment of  which sets all coordinates to 1. On this assign-
ment the sum Zle f({i})z; is positive. We can negate the assignments of each
coordinate in some arbitrary order, and at each step we will reduce the value of
this sum. After negating some coordinate j, the sum becomes negative. However,
for f to be y-robust negating such a coordinate must reduce the sum from greater
than or equal to v to less than or equal to . In this case, f({]}) > ~. However,
by Lemma 4.14, the probability that f({j}) < v is at least 1 — ke=s"/2. Hence
Pr(f is not v — robust] > 1 — ke=s"/2. O
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Thus, as we increase the size of v it becomes exponentially less likely that we
sample a y-robust predicate. In fact, in practice it is unlikely that we draw a ~-
robust predicate for any size . We take this as a ”sanity-check” that it is not
obvious that randomly sampled predicates yield large (or any) approximation.
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