PROOFS OF THE FUNDAMENTAL THEOREM OF ALGEBRA

MATTHEW STEED

ABSTRACT. The fundamental theorem of algebra states that a polynomial of
degree n > 1 with complex coefficients has n complex roots, with possible
multiplicity. Throughout this paper, we use f to refer to the polynomial
f: C — C defined by f(z) = 2" + an—12""' + - + ag, with n > 1. We
provide several proofs of the fundamental theorem of algebra using topology
and complex analysis. We also suppose that ag # 0. Otherwise, 0 itself is
a root. The first proof is a topological proof. The next three use complex
analysis.

CONTENTS
1. A Topological Proof 1
2. A Similar Proof Using the Language of Complex Analysis 3
3. A Proof Using the Maximum Modulus Principle 4
4. A Proof Using Liouville’s Theorem 4
Acknowledgments 5
References 5

1. A TorPOLOGICAL PROOF

Let f be the previously defined polynomial. We first show that there exists at
least one root of f in the complex numbers. With one root we can use an inductive
argument to show that there are n roots, possibly with multiplicity greater than
one. Let I be the interval [0, 1]. For positive real numbers r and R, let v: [ — C
and ' : I — C be paths in the complex plane defined by v(z) = re* ™ and
['(z) = Re®™*. These paths are circles of radius r and R. They are homotopic in
C, so their images fovy and fol are homotopic because polynomials are continuous.
To show that there is at least one root, we show that there are values of r and R
such that fov and foT are not homotopic in C\ {0}. This will be a contradiction
to what we have just shown, showing that 0 must lie in the image of f.

Let g1 : I — Cand g5 : I — C be defined as g;(z) = 1 and go(x) = 2™"%. We
show that there exist values of r and R such that both foy >~ agg; and fol' ~ aggs,
and, moreover, that there exist homotopies between them that are nowhere zero.
We then show that agg: and aggs are not homotopic in C\ {0}, which will give our
desired contradiction.

The existence of the first homotopy follows from the continuity of f. Note that
f(0) = ag. Then, there exists § > 0 such that if [2] < 0, then |f(2) —ao| < [F].
Suppose that r < §. If z is in the path «, then |z| = r. Then |f(2) — ao| < |4
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for z € 7. By the reverse triangle inequality, ||f(2)| — |ao|| < [f(2) — aol < [%4].
Then, —|%| < [f(2)] — |ao] < |% |, and, adding |ag| to both sides, |4 | < [f(2)] <
\&#| Consider the homotopy between f o~ and aggy, h: I x I — C, defined as
hzx,t) = (1 —t)(f oy)(z) + aot. If r < 6, then |h(z,t)| > 0, as shown below:

[h(z,t)] = [(1 = t)(f o 7)(x) + aot|
= |(f ov)(z) — t((f o 7)(x) — ao)|
> |(fov)(@)] —t|(f o v)(x) — aol
>|3]-13
>0

Thus, with r chosen small enough, f o~ ~ agg; with a nowhere zero homotopy.

To show that f oI ~ apge with a nowhere zero homotopy, we first show that
foT ~ R"gy with a nowhere zero homotopy for large enough |R|. Then, we show
that R"gs ~ aggs with a nowhere zero homotopy.

For the first part, we make use of the fact that polynomials eventually behave
like their leading term. We can pick some real M such that if |z|] > M, then
|2|"=7 > 2n|a;| where a; is a coefficient in f and 0 < j < n. Then, rearranging,
\;nl
0 < j < n. Then, adding the ineqalities, @ > |an—12""H + -+ |arz| + |ag| >
lan_12""t + -+ a1z + ag|. Then, with z > M,

F)] = 2"+ an 12" £+ ag

> 2" = an—12""" + -+ agl

> |ajzj|. By picking M large enough, we make this inequality true for all

n n

_ < z n—1

_74_ ?_’an—lz _|_..._|_a0|
Zn

)

Let |R| > M, and consider the homotopy h : I x I — C defined by h(xz,t) =
(1 —t)(f o) (z) + t(R"e* "®). We show that h is nowhere zero:
[h(z, )| = |(f o T)(z) — t((f o T)(w) — R"e*™™7)|
— |(Rne27rinm +"'+G»0)

_ t(anianfle%ri(nfl)m N alRe%ria: + a0)|

L
2
>0

> _ anian—le%ri(n—l)w 4ot a1R627ria: + ap

We now show that R™gs ~ aggs with a nowhere zero homotopy. Let R" = R*e?1,
and let ay = a*e’’?, where R* and a* are positive real numbers. Consider the
homotopy h : I x I — C defined by h(xz,t) = ((1 —t)R* +ta*)e (1101 +102) 2mine,
The function (1 —¢)R*+ta* has a zero at t = R*Rija*. If R* = a*, then the function
is constant with no zero. If R* < a*, then the zero is negative. If R* > a*, then
the zero is greater than 1. In every case, t ¢ I when the function is zero. Thus,
the homotopy h is never 0, and, by running each homotopy at twice speed, we have
that f oI >~ agge with a nowhere zero homotopy.
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We now consider the fundamental group 71 (C \ {0}, ag), and we show that agg;
and aggs belong to different elements of the group. We use the fact that the complex
plane is a covering space of C\ {0} and that the exponential function is a covering
map. Also, the paths agg; and aggs have unique liftings to paths in C beginning
at agp. We show that the endpoints of these paths are different. This is sufficient
to show that they belong to different equivalence classes in the fundamental group

[1].

Consider the covering map p : C — C\ {0} defined as p(z) = e?*. Let ey be the
point in C such that ay = e**°. We consider liftings of apg: and apgs that begin
at ag in C. They are agg; : I — C, defined as agg1(x) = eg, and agge : I — C,
defined as agga(z) = 2mnx + eg. As a check, (p o apgy)(x) = €' = ag = aggi (),
and (p o agge)(x) = '@mmeteo) — qoe2™nT — gogy(2), as required. Also, note
that apg1(1) = eg and that agg2(1) = 27nn + eg. Because n > 1, the liftings have
different ending points, so the paths apg; and aggz are not homotopic in C\ {0}. Tt
follows from the transitivity of homotopy relations that f o~ and f oI are also not
homotopic in C\ {0}. This is a contradiction of the fact that they are homotopic.
Thus, the image of f must contain 0, so f has a root.

As mentioned previously, the existence of n roots follows from an inductive
argument once it is known that at least one root exists. Let P(z) = 2" +a, 12" 1+
-+-+ag be a polynomial of degree n. If zg is a root of P, then P(2) = (2 — 29)Q(2),
where @) is a polynomial of degree n—1. Because @) also has a root, we can continue
expanding in this manner until P is written as the product of n linear factors. Thus,
P has a total of n roots. This completes our first proof of the fundamental theorem
of algebra.

U

2. A SIMILAR PROOF USING THE LANGUAGE OF COMPLEX ANALYSIS

We now present a proof of the fundamental theorem of algebra that is similar
to the above but written in the language of complex analysis. We show that for a
large enough circle centered at the origin, the image of the circle will wrap around
the origin n times, but, under the assumption that the image of the polynomial lies
in C\ {0}, it does not wrap around the origin at all.

Consider a circle I' = Re?"™® with x € I and R chosen large enough that
|R"e2™#"| > |a, 1 RM~Ve2me(=1) 1 ... 4 g4|. Then, using Rouche’s Theorem,

/f(r) T/ fﬁ((;) o
(="

:/7@
r 2"

1
n . .
= TszReQ”“dx
0 Re TiT

1
= / 2mindx
0

= 2min
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We now show that under the assumption that f is never 0, the integral must be 0.
Polynomials are holomorphic functions, and the inverses of holomorphic functions
are holomorphic wherever the function is nonzero. If the image of f is contained
in C\ {0}, then % is holomorphic everywhere. Also, f’ is a polynomial of degree
n — 1, so it is holomorphic everywhere. Then, f7’ is holomorphic everywhere. By

Cauchy’s integral theorem, the integral of fT/ over a closed path is 0. Then,

/. J;/((;) = /m =
=0

This is a contradiction, so the image of f must contain 0. Then, there is at
least one zero of f. The existence of n zeros, with possible multiplicity, follows by
induction as in the previous proof. [

3. A ProoOF USING THE MAXIMUM MODULUS PRINCIPLE

We now provide a proof of the fundamental theorem of algebra that makes use
of the maximum modulus principle, i.e., the modulus of a holomorphic function on
a connected, open set has no local maximum unless the function itself is constant.
Consider the disk of radius R centered at the origin such that | f(Re'?)| > |Re'?|"
and 1|Re®|™ > |ag|. There exists an R that satisfies these conditions, as shown in
the first proof. Then, for z > |R|, |f(2)| > |ag|. The function |f| is continuous and
the disk is compact, so, by the extreme value theorem, |f| has a minimum on the
disk. Call it a, and let « be a point such that f(«) = a. For any z on the boundary
of the disk, |f(2)| > |ao| > a. Thus, the minimum is not achieved on the boundary.
It is achieved in the open disk of radius R centered at the origin.

Suppose that a # 0. Then, f is never 0, so the function % is holomorphic. This
allows us to apply the maximum modulus principle to it. The open disk of radius
R is an open connected subset of C, and < is a local maximum of the function |%|
The maximum modulus principle then implies that |%| is constant. However, |f|
is then constant, but this is a contradiction because polynomials are not constant.
Thus, a = 0, and « is a root of f. The existence of n roots follows as it does in the
first proof.

4. A Proor USING LIOUVILLE’S THEOREM

Liouville’s Theorem, i.e. that a bounded, entire function is constant, provides
a proof of the fundamental theorem of algebra that is very similar to the proof
using the maximum modulus principle. Consider the same disk of radius R used
in the previous proof. As above, there exists some « on the disk such that |f(«)]
is a minimum on the disk. We suppose again that f(a) # 0. For any z such
that |z| > |R]|, |f(2)] > |f(@)], so |ﬁ| > \ﬁ\ Then, |ﬁ| is a maximum
of |%| over the whole complex plane. As above, |%| is holomorphic on all of C.
Then, by Liousville’s Theorem, \%\ is constant, so |f]| is constant. This is again a
contradiction, so f(a) = 0. There are again n roots, following from an induction

argument. [2]
O
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