
PROOFS OF THE FUNDAMENTAL THEOREM OF ALGEBRA

MATTHEW STEED

Abstract. The fundamental theorem of algebra states that a polynomial of
degree n ≥ 1 with complex coefficients has n complex roots, with possible

multiplicity. Throughout this paper, we use f to refer to the polynomial

f : C −→ C defined by f(z) = zn + an−1zn−1 + · · · + a0, with n ≥ 1. We
provide several proofs of the fundamental theorem of algebra using topology

and complex analysis. We also suppose that a0 6= 0. Otherwise, 0 itself is
a root. The first proof is a topological proof. The next three use complex

analysis.
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1. A Topological Proof

Let f be the previously defined polynomial. We first show that there exists at
least one root of f in the complex numbers. With one root we can use an inductive
argument to show that there are n roots, possibly with multiplicity greater than
one. Let I be the interval [0, 1]. For positive real numbers r and R, let γ : I −→ C
and Γ : I −→ C be paths in the complex plane defined by γ(x) = re2πix and
Γ(x) = Re2πix. These paths are circles of radius r and R. They are homotopic in
C, so their images f ◦γ and f ◦Γ are homotopic because polynomials are continuous.
To show that there is at least one root, we show that there are values of r and R
such that f ◦ γ and f ◦Γ are not homotopic in C \ {0}. This will be a contradiction
to what we have just shown, showing that 0 must lie in the image of f .

Let g1 : I −→ C and g2 : I −→ C be defined as g1(x) = 1 and g2(x) = e2πinx. We
show that there exist values of r and R such that both f ◦γ ' a0g1 and f ◦Γ ' a0g2,
and, moreover, that there exist homotopies between them that are nowhere zero.
We then show that a0g1 and a0g2 are not homotopic in C \ {0}, which will give our
desired contradiction.

The existence of the first homotopy follows from the continuity of f . Note that
f(0) = a0. Then, there exists δ > 0 such that if |z| < δ, then |f(z) − a0| < |a02 |.
Suppose that r < δ. If z is in the path γ, then |z| = r. Then |f(z) − a0| < |a02 |
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for z ∈ γ. By the reverse triangle inequality, ||f(z)| − |a0|| ≤ |f(z) − a0| < |a02 |.
Then, −|a02 | < |f(z)| − |a0| < |a02 |, and, adding |a0| to both sides, |a02 | < |f(z)| <
| 3a02 |. Consider the homotopy between f ◦ γ and a0g1, h : I × I −→ C, defined as
h(x, t) = (1− t)(f ◦ γ)(x) + a0t. If r < δ, then |h(x, t)| > 0, as shown below:

|h(x, t)| = |(1− t)(f ◦ γ)(x) + a0t|
= |(f ◦ γ)(x)− t((f ◦ γ)(x)− a0)|
≥ |(f ◦ γ)(x)| − t|(f ◦ γ)(x)− a0|

>
∣∣∣a0

2

∣∣∣− t ∣∣∣a0

2

∣∣∣
≥ 0

Thus, with r chosen small enough, f ◦ γ ' a0g1 with a nowhere zero homotopy.
To show that f ◦ Γ ' a0g2 with a nowhere zero homotopy, we first show that

f ◦ Γ ' Rng2 with a nowhere zero homotopy for large enough |R|. Then, we show
that Rng2 ' a0g2 with a nowhere zero homotopy.

For the first part, we make use of the fact that polynomials eventually behave
like their leading term. We can pick some real M such that if |z| > M , then
|z|n−j > 2n|aj | where aj is a coefficient in f and 0 ≤ j < n. Then, rearranging,
|zn|
2n > |ajzj |. By picking M large enough, we make this inequality true for all

0 ≤ j < n. Then, adding the ineqalities, |z
n|
2 > |an−1z

n−1| + · · · + |a1z| + |a0| ≥
|an−1z

n−1 + · · ·+ a1z + a0|. Then, with z > M ,

|f(z)| =
∣∣zn + an−1z

n−1 + · · ·+ a0

∣∣
≥ |zn| −

∣∣an−1z
n−1 + · · ·+ a0

∣∣
=

∣∣∣∣zn2
∣∣∣∣+

(∣∣∣∣zn2
∣∣∣∣− ∣∣an−1z

n−1 + · · ·+ a0

∣∣)
>

∣∣∣∣zn2
∣∣∣∣

Let |R| > M , and consider the homotopy h : I × I −→ C defined by h(x, t) =
(1− t)(f ◦ Γ)(x) + t(Rne2πinx). We show that h is nowhere zero:

|h(x, t)| = |(f ◦ Γ)(x)− t((f ◦ Γ)(x)−Rne2πinx)|
= |(Rne2πinx + · · ·+ a0)

− t(an−1R
n−1e2πi(n−1)x + · · ·+ a1Re

2πix + a0)|

>

∣∣∣∣Rn2
∣∣∣∣− ∣∣∣an−1R

n−1e2πi(n−1)x + · · ·+ a1Re
2πix + a0

∣∣∣
> 0

We now show that Rng2 ' a0g2 with a nowhere zero homotopy. Let Rn = R∗eiθ1 ,
and let a0 = a∗eiθ2 , where R∗ and a∗ are positive real numbers. Consider the
homotopy h : I× I −→ C defined by h(x, t) = ((1− t)R∗+ ta∗)ei((1−t)θ1+tθ2)e2πinx.

The function (1− t)R∗+ ta∗ has a zero at t = R∗

R∗−a∗ . If R∗ = a∗, then the function
is constant with no zero. If R∗ < a∗, then the zero is negative. If R∗ > a∗, then
the zero is greater than 1. In every case, t /∈ I when the function is zero. Thus,
the homotopy h is never 0, and, by running each homotopy at twice speed, we have
that f ◦ Γ ' a0g2 with a nowhere zero homotopy.
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We now consider the fundamental group π1(C \ {0}, a0), and we show that a0g1

and a0g2 belong to different elements of the group. We use the fact that the complex
plane is a covering space of C \ {0} and that the exponential function is a covering
map. Also, the paths a0g1 and a0g2 have unique liftings to paths in C beginning
at a0. We show that the endpoints of these paths are different. This is sufficient
to show that they belong to different equivalence classes in the fundamental group
[1].

Consider the covering map p : C −→ C \ {0} defined as p(z) = eiz. Let e0 be the
point in C such that a0 = eie0 . We consider liftings of a0g1 and a0g2 that begin
at a0 in C. They are ã0g1 : I −→ C, defined as ã0g1(x) = e0, and ã0g2 : I −→ C,
defined as ã0g2(x) = 2πnx + e0. As a check, (p ◦ ã0g1)(x) = eie0 = a0 = a0g1(x),
and (p ◦ ã0g2)(x) = ei(2πnx+e0) = a0e

2πinx = a0g2(x), as required. Also, note
that ã0g1(1) = e0 and that ã0g2(1) = 2πn + e0. Because n ≥ 1, the liftings have
different ending points, so the paths a0g1 and a0g2 are not homotopic in C\{0}. It
follows from the transitivity of homotopy relations that f ◦ γ and f ◦Γ are also not
homotopic in C \ {0}. This is a contradiction of the fact that they are homotopic.
Thus, the image of f must contain 0, so f has a root.

As mentioned previously, the existence of n roots follows from an inductive
argument once it is known that at least one root exists. Let P (z) = zn+an−1z

n−1+
· · ·+a0 be a polynomial of degree n. If z0 is a root of P , then P (z) = (z− z0)Q(z),
where Q is a polynomial of degree n−1. Because Q also has a root, we can continue
expanding in this manner until P is written as the product of n linear factors. Thus,
P has a total of n roots. This completes our first proof of the fundamental theorem
of algebra.

�

2. A Similar Proof Using the Language of Complex Analysis

We now present a proof of the fundamental theorem of algebra that is similar
to the above but written in the language of complex analysis. We show that for a
large enough circle centered at the origin, the image of the circle will wrap around
the origin n times, but, under the assumption that the image of the polynomial lies
in C \ {0}, it does not wrap around the origin at all.

Consider a circle Γ = Re2πix, with x ∈ I and R chosen large enough that
|Rne2πixn| > |an−1R

(n−1)e2πix(n−1) + · · ·+ a0|. Then, using Rouche’s Theorem,

∫
f(Γ)

dz

z
=

∫
Γ

f ′(z)

f(z)
dz

=

∫
Γ

(zn)′

zn
dz

=

∫
Γ

n

z
dz

=

∫ 1

0

n

Re2πix
2πiRe2πixdx

=

∫ 1

0

2πindx

= 2πin
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We now show that under the assumption that f is never 0, the integral must be 0.
Polynomials are holomorphic functions, and the inverses of holomorphic functions
are holomorphic wherever the function is nonzero. If the image of f is contained
in C \ {0}, then 1

f is holomorphic everywhere. Also, f ′ is a polynomial of degree

n − 1, so it is holomorphic everywhere. Then, f ′

f is holomorphic everywhere. By

Cauchy’s integral theorem, the integral of f ′

f over a closed path is 0. Then,∫
Γ

f ′(z)

f(z)
dz =

∫
f(Γ)

dz

z

= 0

This is a contradiction, so the image of f must contain 0. Then, there is at
least one zero of f . The existence of n zeros, with possible multiplicity, follows by
induction as in the previous proof. �

3. A Proof Using the Maximum Modulus Principle

We now provide a proof of the fundamental theorem of algebra that makes use
of the maximum modulus principle, i.e., the modulus of a holomorphic function on
a connected, open set has no local maximum unless the function itself is constant.
Consider the disk of radius R centered at the origin such that |f(Reiθ)| > 1

2 |Re
iθ|n

and 1
2 |Re

iθ|n > |a0|. There exists an R that satisfies these conditions, as shown in
the first proof. Then, for z ≥ |R|, |f(z)| > |a0|. The function |f | is continuous and
the disk is compact, so, by the extreme value theorem, |f | has a minimum on the
disk. Call it a, and let α be a point such that f(α) = a. For any z on the boundary
of the disk, |f(z)| > |a0| ≥ a. Thus, the minimum is not achieved on the boundary.
It is achieved in the open disk of radius R centered at the origin.

Suppose that a 6= 0. Then, f is never 0, so the function 1
f is holomorphic. This

allows us to apply the maximum modulus principle to it. The open disk of radius
R is an open connected subset of C, and 1

a is a local maximum of the function | 1f |.
The maximum modulus principle then implies that | 1f | is constant. However, |f |
is then constant, but this is a contradiction because polynomials are not constant.
Thus, a = 0, and α is a root of f . The existence of n roots follows as it does in the
first proof.

4. A Proof Using Liouville’s Theorem

Liouville’s Theorem, i.e. that a bounded, entire function is constant, provides
a proof of the fundamental theorem of algebra that is very similar to the proof
using the maximum modulus principle. Consider the same disk of radius R used
in the previous proof. As above, there exists some α on the disk such that |f(α)|
is a minimum on the disk. We suppose again that f(α) 6= 0. For any z such
that |z| ≥ |R|, |f(z)| > |f(α)|, so | 1

f(α) | > |
1

f(z) |. Then, | 1
f(α) | is a maximum

of | 1f | over the whole complex plane. As above, | 1f | is holomorphic on all of C.

Then, by Liousville’s Theorem, | 1f | is constant, so |f | is constant. This is again a

contradiction, so f(α) = 0. There are again n roots, following from an induction
argument. [2]

�
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