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Abstract. In this paper we present a selection of fixed point theorems with

applications in nonlinear analysis. We begin with the Banach fixed point

theorem, which we use to prove the inverse and implicit mapping theorems and
the Picard-Lindelöf theorem for Banach spaces. We then prove in succession

the fixed point theorems of Brouwer, Schauder, and Schaeffer, after which we

conclude with two example applications for semilinear and quasilinear PDE.
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1. Introduction

We seek to provide a sampling of fixed point methods and their applications in
analysis. By fixed point, we mean the following:

Definition 1.1. Let X be a topological space and let T : X → X be a map. A
point x ∈ X is a fixed point if T (x) = x.

Fixed point theorems guarantee the existence of a fixed point under appropriate
conditions on the map T and the set X. Over the course of this paper we present
several major fixed point theorems and prove some fundamental results in analysis
by reducing nonlinear problems to fixed point problems. We assume knowledge of
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basic real analysis and linear algebra. Familiarity with select results from topology
and functional analysis is also helpful, but not required; outlines of the necessary
material can be found in the appendix.

Definition 1.2. A normed vector space X is a Banach space if the metric space
(X, d) is complete, where

d(x, y) = ‖x− y‖ for all x, y ∈ X.

The most common example of a Banach space is n-dimensional Euclidean space
Rn, where the norm |·| is given by the Euclidean distance. Another example is the
space of continuous real-valued functions C(X), where X is the domain and the
norm ‖·‖ is given by

‖f‖C(X) = max
x∈X
|f(x)| for f ∈ C(X).

2. Differential Calculus on Banach Spaces

2.1. Banach Fixed Point Theory.

Definition 2.1. Let (X, d) be a metric space and T : M ⊆ X → X be a map. We
say T is a contraction if, for all x, y ∈ M with x 6= y, there exists k ∈ (0, 1) such
that

d
(
T (x), T (y)

)
6 k d(x, y).

Theorem 2.2 (Banach’s Fixed Point Theorem). Let (X, d) be a complete
metric space and M ⊆ X be nonempty and closed. If a map T : M → M is a
contraction, then T has a unique fixed point x ∈M .

Proof. Note that closed subsets of complete metric spaces are also complete metric
spaces, so it is sufficient to consider the case M = X. Fix some point x0 ∈ X and
define a sequence {xn} by xn+1 = T (xn). Then

d(x2, x1) = d
(
(T (x1), T (x0)

)
6 k d(x1, x0)

for some k ∈ (0, 1). Continuing inductively gives

d(xn+1, xn) 6 kn d(x1, x0).

Thus, for n < m, we have

d(xn, xm) 6 d(xn, xn+1) + · · ·+ d(xm−1, dm)

6 (kn + kn+1 + · · ·+ km−1) d(x1, x0)

6
kn

1− k
d(x1, x0),

where we have made use of the triangle inequality and the properties of sums. Since
|k| < 1, kn/(1 − k) → 0 as n → ∞. Hence {xn} is Cauchy and has a limit x ∈ X
by completeness. Contraction maps are continuous, so it follows that

T (x) = lim
n→∞

T (xn) = lim
n→∞

xn+1 = x,

as desired.
To see that the fixed point x ∈ X is unique, suppose there is x′ 6= x in X such

that x′ is also a fixed point. Then d
(
T (x), T (x′)

)
= d(x, x′) since both T (x) = x and

T (x′) = x′. But d
(
T (x), T (x′)

)
< d(x, x′) since T is a contraction, a contradiction.

�
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Remark 2.3. Note that the requirement of d
(
T (x), T (y)

)
6 k d(x, y) for k ∈ (0, 1)

as opposed to d
(
T (x), T (y)

)
< d(x, y) is essential in the proof of theorem 2.2. When

we bound d(xn, xm) in the latter case we could set k = sup{d
(
T (x), T (y)

)
/d(x, y) :

x, y ∈ X}, but this might give k = 1, which breaks the limit.

When applicable, the Banach fixed point theorem is especially useful as it both
guarantees the existence and uniqueness of a fixed point. Unfortunately, the re-
quirement that our map be a contraction limits its utility. In later sections we
will prove fixed point theorems that have relaxed conditions on the mapping but
stronger conditions on the domain and codomain. These theorems only assert the
existence of a fixed point, however, not the uniqueness.

2.2. Inverse and Implicit Mapping Theorems. We now turn our attention to
two major theorems in analysis: the inverse and implicit mapping theorems. We
first need to generalize our notion of differentiability to a Banach space.

Definition 2.4. Let X and Y be Banach spaces, and U ⊆ X be an open set. A
map f : X → Y is Fréchet differentiable at x ∈ U if there exists a bounded linear
operator Df(x) : X → Y such that

lim
‖h‖X→0

‖f(x+ h)− f(x)− (Df(x))h‖
Y

‖h‖
X

= 0.

Such a map Df(x) is unique and is known as the Fréchet derivative at x. It’s
worth noting that bounded operator does not mean bounded in the general sense,
but rather that there exists M > 0 such that ‖Df(x)‖Y 6M‖x‖X for all x ∈ X. In
B(X,Y ), the space of bounded linear operators from X to Y , we define the norm
‖Df‖ to be the infimum of all such M . This norm makes B(X,Y ) a Banach space.
Furthermore, the elements of B(X,Y ) are all continuous mappings.

Lemma 2.5. Let X and Y be Banach spaces and let U be an open convex subset of
X. If f : U → Y is a continuously Fréchet differentiable mapping and ‖Df(x)‖Y 6
M for all x ∈ U , then

‖f(x2)− f(x1)‖
Y
6M‖x2 − x1‖X

for all x1, x2 ∈ U .

Proof. Fix x1, x2 ∈ X and define γ : [0, 1]→ X by γ(t) := (1− t)x1 + tx2. We have

(f ◦ γ)′(t) = Df(γ(t))γ′(t).

Taking norms and applying the fundamental theorem of calculus then gives

‖f(x2)− f(x1)‖
Y

=

∥∥∥∥∫ 1

0

Df(γ(t))γ′(t) dt

∥∥∥∥
Y

=

∥∥∥∥∫ 1

0

Df(γ(t))(x2 − x1) dt

∥∥∥∥
Y

6 ‖x2 − x1‖X
∫ 1

0

‖Df(γ(t))‖Y dt 6M‖x2 − x1‖X .

�

Theorem 2.6 (Inverse Mapping Theorem). Let X be a Banach space and U ⊆
X be an open set containing a. If f : U → X is continuously Fréchet differentiable
and Df(a) is invertible, then there are open sets V containing a and W containing
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f(a) such that the restriction f : V →W has a differentiable inverse f−1 : W → V .
For y ∈W , the Fréchet derivative of f−1 is given by

Df−1(y) =
[
Df
(
f−1(y)

)]−1
.

Proof. We first show that f is injective on an open set V in its domain. This will
guarantee that f−1 exists on f(V ). Set A = Df(a). Since A is invertible, we may
associate with each y ∈ X a map T : U → X defined by

T (x) := x+A−1(y − f(x)).

Observe that f(x) = y if and only if x is a fixed point of T . Now

DT (x) = I −A−1Df(x) = A−1
(
Df(a)−Df(x)

)
,

which is clearly continuous on U as Df is continuous on U . Since DT (a) = 0
and DT is continuous, we can choose δ > 0 such that V := B(a; δ) ⊆ U and
‖DT (x)‖ 6 1/2 for all x ∈ V . By lemma 2.5, it follows that

(2.7) ‖T (x2)− T (x1)‖ 6 ‖x2 − x1‖/2 for all x1, x2 ∈ V .

Hence T can have at most one fixed point in V . Using our previous observation,
for each y ∈ X there is at most one x ∈ V such that f(x) = y, implying that f is
injective on V .

Next we show that W := f(V ) is open. Fix a point y0 ∈ W . Then there exists

x0 ∈ V such that f(x0) = y0. Choose r > 0 such that B(x0; r) ⊆ V , and consider
the open ball B(y0;λr) where λ := (2‖A−1‖)−1. We see that

‖T (x0)− x0‖ = ‖A−1(y − y0)‖ 6 ‖A−1‖ · ‖y − y0‖ < r/2.

Thus for all x ∈ B(x0; r), (2.7) implies

‖T (x)− x0‖ 6 ‖T (x)− T (x0)‖+ ‖T (x0)− x0‖
< ‖x− x0‖/2 + r/2 6 r.

Hence T (x) ∈ B(x0; r), so (2.7) shows that T : B(x0; r)→ B(x0; r) is a contraction

and the Banach fixed point theorem guarantees that there is an x ∈ B(x0; r) such

that T (x) = x. For this x, f(x) = y, which implies y ∈ f(B(x0; r)) ⊆ W . Our
choice of y0 was arbitrary, so each point in W is contained in some open ball that
is a subset W , as desired.

To show that f−1 : W → V is differentiable, pick y, (y + k) ∈ W . Then there
exists x, (x + h) ∈ V such that y = f(x) and y + k = f(x + h). We want to show
that

lim
‖k‖→0

‖f−1(y + k)− f−1(y)−Bk‖
‖k‖

= 0,

where B := [Df(x)]−1. Note that Df(a) is invertible for some point a in the open
set V , so we may assume Df(x) is invertible for x ∈ V . To prove the limit above,
we will first find a relation between ‖k‖ and ‖h‖. Using the same map T from
earlier,

T (x+ h)− T (x) = h+A−1
(
f(x)− f(x+ h)

)
= h−A−1k.

Taking the norm and applying equation (2.7) gives ‖h − A−1k‖ 6 ‖h‖/2. Hence
‖A−1k‖ > ‖h‖/2 and

(2.8) ‖h‖ 6 2‖A−1‖ · ‖k‖ = ‖k‖/λ.
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Thus ‖h‖ → 0 as ‖k‖ → 0. Moreover, since

f−1(y + k)− f−1(y)−Bk = h−Bk = −B
(
f(x+ h)− f(x)−Df(x)h

)
,

(2.8) implies∥∥f−1(y + k)− f−1(y)−Bk
∥∥

‖k‖
6
‖B‖
λ
·
∥∥f(x+ h)− f(x)−Df(x)h

∥∥
‖h‖

.

The right-hand side converges to 0 since f is differentiable, so the left-hand side
also converges to 0. Therefore f−1 : W → V is differentiable and

Df−1(y) = B =
[
Df
(
f−1(y)

)]−1
.

�

Corollary 2.9 (Implicit Mapping Theorem). Let X and Y be Banach spaces
and f : X × Y → Y be a continuously Fréchet differentiable mapping. If there
is a point (a, b) ∈ X × Y such that f(a, b) = 0 and the map Dyf(a, b) defined by
y 7→ Df(a, b)(0, y) is an invertible mapping from Y to Y , then there are open sets
A ⊆ X containing a and B ⊆ Y containing b and a Fréchet differentiable function
g : A → B with the following property: for each x ∈ A there is a unique g(x) ∈ B
such that f(x, g(x)) = 0.

Proof. Define the map F : X×Y → X×Y by F (x, y) = (x, f(x, y)). Then DF (a, b)
is given by

DF (a, b) =

[
I 0

Dxf(a, b) Dyf(a, b)

]
,

which is an invertible map from X×Y to X×Y . By the inverse mapping theorem,
there is an open set W ⊆ X × Y containing F (a, b) = (a, 0) and an open set in
X × Y containing (a, b), which we may take to be of the form A × B, such that
F : A×B →W has a differentiable inverse F−1 : W → A×B. Clearly F−1 is of the
form F−1(x, y) = (x, k(x, y)) for some differentiable function k. Let π : X×Y → Y
be defined by π(x, y) := y. Then π ◦ F = f and

f(x, k(x, y)) = f ◦ F−1(x, y) = (π ◦ F ) ◦ F−1(x, y)

= π ◦ (F ◦ F−1)(x, y) = π(x, y) = y.

Thus f(x, k(x, 0)) = 0, so we define the map g : A→ B by g(x) := k(x, 0). �

Remark 2.10. Although we used the inverse mapping theorem in our proof of the
implicit mapping theorem, it is also possible to separately prove the implicit map-
ping theorem with fixed points, and then derive the inverse mapping theorem as a
corollary.

2.3. The Picard-Lindelöf Existence Theorem.

Definition 2.11. Let (X, dX) and (Y, dY ) be two metric spaces. A function f :
X → Y is said to be Lipschitz continuous on U ⊆ X if there exists a real constant
L > 0 such that, for all x1, x2 ∈ U ,

dY
(
f(x1), f(x2)

)
6 LdX(x1, x2)

For the next theorem, we adopt the notation C(I,X) to denote the set of con-
tinuous X-valued functions with domain I.
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Theorem 2.12 (Picard-Lindelöf). Let X be a Banach space with norm ‖·‖ and
x0 ∈ R and y0 ∈ X be given. Consider the initial value problem

y′ = f(x, y) y(x0) = y0.

Suppose f : R×X → X is continuous and bounded on some region

Q = {(x, y) : |x− x0| 6 a, ‖y − y0‖ 6 b} (a, b > 0)

and that f is Lipschitz continuous with respect to y on Q. Then there exists δ > 0
and a continuous function φ : [x0 − δ, x0 + δ]→ X such that y = φ(x) is a unique
solution to the initial value problem.

Proof. Since f is Lipschitz continuous with respect to y on Q, there exists L > 0
such that

‖f(x, y1)− f(x, y2)‖
X
6 L‖y1 − y2‖X for all (x, y1), (x, y2) ∈ Q;

since f is bounded on Q there exists K > 0 such that

sup
(x,y)∈Q

‖f(x, y)‖ 6 K.

We then define δ := min(a, b/K) and I := [x0 − δ, x0 + δ]. Now let Z := C(I,X)
be the Banach space with norm

‖y‖Z := max
x∈I
‖y(x)‖X .

Also consider the norm

‖y‖
Z′ := max

x∈I
e−L|x−x0|‖y(x)‖

X
.

Observe that, for all y ∈ Z,

e−Lδ‖y‖
Z
6 ‖y‖

Z′ 6 ‖y‖Z
so the two norms ‖·‖

Z
and ‖·‖

Z′ are equivalent—that is to say, they are within a
constant of each other. It follows that (Z, ‖·‖

Z′) is also a Banach space. Define
M := {y ∈ Z : ‖y − y0‖Z 6 b} and a map T : M ⊆ (Z, ‖·‖

Z′)→ (Z, ‖·‖
Z′) by

T
(
y(x)

)
= y0 +

∫ x

x0

f(t, y(t)) dt.

Our goal is to show that T and M satisfy the conditions of Banach’s fixed point
theorem.

We claim that M is closed. To see this, let {yn} ⊆ M such that yn → y in
(Z, ‖·‖

Z′). By the equivalence of norms, yn → y in (Z, ‖·‖
Z

). Since {yn} ⊆ M we
have ‖yn − y0‖Z 6 b for all n ∈ N and passing the limit as n → ∞, we find that
‖y − y0‖Z 6 b. Thus y ∈M and M is closed.

We now show that T : M →M . For y ∈M we have∥∥T (y)− y0

∥∥
Z

= max
x∈I

∥∥∥∥∫ x

x0

f(t, y(t)) dt

∥∥∥∥
X

6 max
x∈I

∫ x

x0

‖f(t, y(t))‖
X
dt

6 Kδ 6 K

(
b

K

)
= b.

We conclude T (y) ∈M , as desired.
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Finally, we show that T is a contraction. Using the Lipschitz continuity of f in
y yields

‖T (y1)− T (y2)‖
Z′ = max

x∈I
e−L|x−x0|

∥∥∥∥∫ x

x0

(
f(t, y1(t))− f(t, y2(t))

)
dt

∥∥∥∥
X

6 max
x∈I

e−L|x−x0|
∫ x

x0

L‖y1(t)− y2(t)‖
X
dt

We multiply the integrand by e−L|t−x0|eL|t−x0|. Since

‖y1(t)− y2(t)‖
X
e−L|t−x0| 6 ‖y1 − y2‖Z′ ,

the inequality above becomes

‖T (y1)− T (y2)‖
Z′ 6 L‖y1 − y2‖Z′ max

x∈I
e−L|x−x0|

∫ x

x0

eL|t−x0| dt

= L‖y1 − y2‖Z′ max
x∈I

e−L|x−x0| 1

L

(
eL|x−x0| − 1

)
6
(
1− e−Lδ

)
‖y1 − y2‖Z′ .

Therefore T is a contraction on M in (Z, ‖·‖
Z′) with contractive factor 1 − e−Lδ.

Banach’s fixed point theorem then implies the existence of a unique fixed point
φ ∈ C(I,X), which is the unique solution to the initial value problem. �

3. Topological Fixed Point Theory

3.1. Brouwer Fixed Point Theory.

Notation 3.1. Denote the unit ball in Rn by Bn := B(0; 1) = {x ∈ Rn : |x| 6 1}
and the unit sphere (the boundary of the unit ball) by Sn−1 := {x ∈ Rn : |x| =
1} = ∂Bn.

Definition 3.2. Let A be a subset of a topological space X. A retraction is a map
r : X → A such that r(x) = x for all x ∈ A. If there exists a retraction from X to
A, we say A is a retract of X.

Lemma 3.3 (No-Retraction Theorem). There is no continuous retraction r :
Bn → Sn−1.

Intuitively, it is not difficult to see why this lemma holds. If we fix every point
on the surface of the sphere, there is no function that continuously “makes room”
for every mapped point from the interior of the sphere. Proving the no-retraction
theorem for n-dimensional space, however, is not as trivial as it might seem. The
most common methods make use of tools far out of the scope of this paper, so we
will simply assume lemma 3.3. Proofs using algebraic topology can be found in
both [3] and [4].

Theorem 3.4 (Brouwer’s Fixed Point Theorem). Every continuous map T :
Bn → Bn has a fixed point.

Proof. Suppose there exists a map T : Bn → Bn with no fixed points. Construct
the map r : Bn → Sn−1 by extending a ray along the path from x to T (x) and
defining r(x) to be the intersection of the ray with the sphere Sn−1 (see Figure 1).
The map r is well-defined since x 6= T (x) for any x ∈ Bn, and continuous since T
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is continuous. Moreover, r(x) = x for all x ∈ Sn−1, so r is a retraction from Bn to
Sn−1. But this contradicts lemma 3.3, which says that no such retraction exists.
Hence T must have a fixed point. �

x

T (x)

r(x)

Figure 1. The map r for n = 2.

Corollary 3.5. Let K be a nonempty, compact and convex subset of Rn. Every
continuous map T : K → K has a fixed point.

The general idea behind corollary 3.5 is that K is homeomorphic to the closed
unit ball Bn. For a detailed proof, see [1], [5], or [8].

3.2. Ascoli-Arzelà Theory.

Definition 3.6. Let ε > 0. A subset S of a metric space X is an ε-net of X if

X ⊆
⋃
x∈S

B(x; ε).

A metric space X is said to be totally bounded if there is a finite ε-net for all ε > 0.

Definition 3.7. A subset S of a metric space X is precompact if S is compact.

Definition 3.8. Let X and Y be Banach spaces. A map f : X → Y is compact if
f(S) is precompact in Y whenever S ⊆ X is bounded.

We state, but do not prove, the well-known Heine-Borel theorem, which we will
use later in our proof of the Ascoli-Arzelà theorem.

Theorem 3.9 (Heine-Borel). A subset S of a metric space X is compact if and
only if it is complete and totally bounded.

Corollary 3.10. A totally bounded subset S of a complete metric space X is pre-
compact.

Proof. If S is totally bounded, then so is its closure S. A closed subset of a complete
metric space is itself a complete metric space, so S is compact by theorem 3.9. �

Definition 3.11. A subset A ⊆ C(X) is equicontinuous at x ∈ X if, given ε > 0,
there exists δx > 0 such that

d(x, y) < δx implies |f(x)− f(y)| < ε for all f ∈ A.

If A is equicontinuous at each point x ∈ X, then we simply say that A is equicon-
tinuous.

Theorem 3.12 (Ascoli-Arzelà). Let X be a compact metric space. If A is an
equicontinuous, bounded subset of C(X), then A is precompact.
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Proof. Let ε > 0. Since A is equicontinuous, for every x ∈ X there exists δx > 0
such that |f(x) − f(y)| < ε/4 for any f ∈ A and y such that d(x, y) < δx. The
collection {B(x; δx)}x∈X is an open cover of the compact metric space X, so we
can extract a finite subcover, which we denote {B(xj ; δj)} for j = 1, . . . , n. Thus
the equicontinuity of A gives

|f(x)− f(xj)| < ε/4 for all x ∈ B(xj ; δj) and f ∈ A.

The set A is bounded, so the set F := {f(xj) : 1 6 j 6 n, f ∈ A} is bounded as
well. A bounded subset of R is totally bounded, so there are points y1, . . . , ym ∈ R
such that

F ⊆
m⋃
i=1

B(yi; ε/4).

For any map k : {1, . . . , n} → {1, . . . ,m}, define

Ak := {f ∈ A : f(xj) ∈ B(yk(j); ε/4), j = 1, . . . , n}.

Note that there are only finitely many sets Ak since there are a finite number of
maps k. Also, each f ∈ A belongs to one of the sets Ak. If we take f, g ∈ Ak and
x ∈ X, then x ∈ B(xj ; δj) for some j and

|f(x)− g(x)| 6 |f(x)− f(xj)|+ |f(xj)− yk(j)|
+ |yk(j) − g(xj)|+ |g(xj)− g(x)| < ε.

Hence diam(Ak) 6 ε and A can be covered by finitely many sets of diameter less
than ε. The set A is totally bounded, so we conclude A is precompact by corollary
3.10. �

3.3. Schauder Fixed Point Theory.

Definition 3.13. Let X be a normed vector space and F = {x1, x2, . . . , xn} a
finite subset of X. Then conv(F ), the convex hull of F , is defined by

conv(F ) =
{∑n

j=1 tjxj :
∑n
j=1 tj = 1, tj > 0

}
.

For future applications, we will need a more general definition to handle the case
in which F is infinite:

Definition 3.14. Let X be a normed vector space and F a subset of X. The
convex hull conv(F ) is the intersection of all convex sets S ⊆ X such that F ⊆ S.

Proposition 3.15. Definitions 3.13 and 3.14 are equivalent for finite sets.

Lemma 3.16 (Schauder Projection Lemma). Let K be a compact subset of a
normed vector space X, with metric d induced by the norm ‖·‖. Given ε > 0, there
exists a finite subset F ⊆ X and a map P : K → conv(F ) such that d(P (x), x) < ε
for all x ∈ K. This map is called the Schauder projection.

Proof. Take a finite ε-net for the compact set K to obtain a set F = {x1, . . . , xn}.
For i = 1, . . . , n, define functions φi : K → R by

φi(x) :=

{
ε− d(x, xi) if x ∈ B(xi; ε)

0 otherwise.
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We see that φi is strictly positive on B(xi; ε) and vanishes elsewhere. Therefore∑n
i=1 φi(x) > 0 for all x ∈ K. We define the Schauder projection P : K → conv(F )

by

P (x) =

n∑
i=1

φi(x)

φ(x)
xi where φ(x) =

n∑
i=1

φi(x).

The map P is continuous since all the φi are. Moreover,

d(P (x), x) =

∥∥∥∥∥
n∑
i=1

φi(x)

φ(x)
xi −

n∑
i=1

φi(x)

φ(x)
x

∥∥∥∥∥ =

∥∥∥∥∥
n∑
i=1

φi(x)

φ(x)
(xi − x)

∥∥∥∥∥
6

n∑
i=1

φi(x)

φ(x)
‖xi − x‖ <

n∑
i=1

φi(x)

φ(x)
ε = ε

because φi(x) = 0 if ‖xi − x‖ > ε. �

Theorem 3.17 (Schauder’s Fixed Point Theorem). Let X be a Banach space
and let M ⊆ X be nonempty, convex, and closed. If T : M → M is compact, then
T has a fixed point.

Proof. Let K denote the closure of T (M) which, by hypothesis, is compact. For
each natural number n, let Fn be a finite 1

n -net for K and let Pn : K → conv(Fn) be
the corresponding Schauder projection. The convexity ofM implies that conv(Fn) ⊆
K; define Tn : conv(Fn)→ conv(Fn) by Tn := (Pn ◦T )|conv(Fn). Corollary 3.5 guar-
antees that Tn has fixed points. For each n ∈ N, we choose one such fixed point of
Tn and call it xn. Since K is compact {xn} has a convergent subsequence, which
we denote {xn′}. This sequence converges to some x ∈ K as n′ → ∞, which we
claim is the desired fixed point. From lemma 3.16 we obtain

d(T (x), xn′) 6 d(T (x), T (xn′)) + d(T (xn′), Tn′(xn′))→ 0 as n′ →∞
since T is continuous and d(T (xn′), Tn′(xn′)) = d(T (xn′), xn′) < 1/n′. Thus {xn′}
converges to both x and T (x). Limits are unique, so T (x) = x, as desired. �

In practice, it is often awkward to apply Schauder’s fixed point theorem as one
needs to find an appropriate set M—and such a set is rarely obvious. This gives rise
to an alternative formulation, known as Schaeffer’s fixed point theorem, in which
we do not have to identify an explicit convex, compact set.

Theorem 3.18 (Schaeffer’s Fixed Point Theorem). Let X be a Banach space
and T : X → X be a continuous and compact mapping. If the set

{x ∈ X : x = λT (x) for some λ ∈ [0, 1]}
is bounded, then T has a fixed point.

Proof. By hypothesis, we can choose a constant M so large that

‖x‖ < M if x = λT (x) for some λ ∈ [0, 1].

Define a retraction r : X → B(0;M) by

r(x) =

{
x if ‖x‖ 6M
(M/‖x‖)x if ‖x‖ > M

and observe that the composition (r ◦ T ) : B(0;M) → B(0;M) is compact since
T is compact. Let K denote the closed convex hull of (r ◦ T )(B(0;M)). The set
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K is convex by definition, and the compactness of r ◦ T implies K is compact. By
Schauder’s fixed point theorem, there exists a fixed point x ∈ K of the restriction
(r ◦ T )|K : K → K. We claim that x is also a fixed point of T . To show this, it is
sufficient to prove that T (x) ∈ K. Suppose not. Then ‖T (x)‖ > M and

(3.19) x = r(T (x)) =
M

‖T (x)‖
T (x),

which implies

‖x‖ =

∥∥∥∥ M

‖T (x)‖
T (x)

∥∥∥∥ = M.

On the other hand, M/‖T (x)‖ ∈ (0, 1), so our choice of M and (3.19) also imply
‖x‖ < M , a contradiction. �

3.4. The Cauchy-Peano Existence Theorem. We now revisit the ODE exam-
ple from section 2.3. Armed with the Schauder fixed point theorem, we can relax
the assumption of Lipschitz continuity to regular continuity.

Theorem 3.20 (Cauchy-Peano). Let (x0, y0) ∈ R × X be given. Consider the
initial value problem

y′ = f(x, y) y(x0) = y0.

Suppose f : Q ⊆ R×X → X is continuous and bounded on some region

Q = {(x, y) : |x− x0| 6 a, ‖y − y0‖ 6 b} (a, b > 0).

Then there exists δ > 0 and a continuous function φ : [x0 − δ, x0 + δ] → X such
that y = φ(x) is a (not necessarily unique) solution to the initial value problem.

Proof. Let K := max(x,y)∈Q‖f(x, y)‖X and define δ := min(a, b/K). We also define
sets

I := [x0 − δ, x0 + δ] and M := {y ∈ Z : ‖y − y0‖Z 6 b},
where Z is the Banach space C(I,X) with norm ‖y‖

Z
= maxx∈I‖y(x)‖

X
. The set

M is nonempty, convex, closed, and bounded; if we define the map T : M → Z by

T (y(x)) := y0 +

∫ x

x0

f(t, y(t)) dt

we have

‖T (y)− y0‖Z 6 max
x∈I

∥∥∥∥∫ x

x0

f(t, y(t)) dt

∥∥∥∥
X

6 δK 6 b.

Thus T (M) ⊆M .
Next we show that T is continuous. Let {yn} ⊆ M be such that yn → y in M .

Then

‖T (yn)− T (y)‖
Z

= max
x∈I
‖T (yn(x))− T (y(x))‖

X

= max
x∈I

∥∥∥∥∫ x

x0

[
f(t, yn(t))− f(t, y(t))

]
dt

∥∥∥∥
X

6
∫ x0+δ

x0−δ
‖f(t, yn(t))− f(t, y(t))‖

X
dt.
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Observe that f is uniformly continuous since f is continuous on a compact interval,
so we may pass to the limit as n→∞ to obtain

lim
n→∞

‖T (yn)− T (y)‖Z 6
∫ x0+δ

x0−δ
lim
n→∞

‖f(t, yn(t))− f(t, y(t))‖X dt = 0.

Hence T (yn) → T (y) in T (M), so T is indeed continuous. T (S) is equicontinuous
for every bounded set S ⊆M because

sup
y∈S
‖T (y(x1))− T (y(x2))‖

X
6 K|x1 − x2| → 0 as |x1 − x2| → 0.

Moreover, T (S) is bounded since

sup
y∈S
‖T (y(x))‖

X
= sup

y∈S

∥∥∥∥y0 +

∫ x

x0

f(t, y(t)), dt

∥∥∥∥
X

6 ‖y0‖X + b.

Thus T (S) is precompact by the Ascoli-Arzelà theorem for each bounded S ⊆ M ,
so T is a compact map. Schauder’s fixed point theorem then implies T has a fixed
point φ ∈ M . By our choice of T , the map φ : I → X is a continuous solution to
our initial value problem. �

4. Example Applications in Nonlinear PDE

4.1. Some Results in Functional Analysis. Before beginning our study of
partial differential equations, we first need some prerequisite facts about Lp and
Sobolev spaces. Readers unfamiliar with Lp and Sobolev spaces should consult the
appendix for an outline of their definitions. It should be noted that we restrict our
treatment to smooth, bounded subsets Ω ⊆ Rn, and that all the integrals appearing
in this section and the appendix are Lebesgue integrals.

Theorem 4.1 (Dominated Convergence Theorem). Let Ω ⊆ Rn be open,
p ∈ [1,∞), and {fn} a sequence of measurable functions with domain Ω. Suppose
{fn} converges pointwise almost everywhere to f and is dominated by some function
g ∈ Lp(Ω), i.e., |fn(x)| 6 g(x) for each n ∈ N and x ∈ Ω \N where N is a set of
measure 0. Then each fn as well as f is in Lp(Ω) and fn → f in Lp.

Corollary 4.2. Given f ∈ C(R) such that |f(t)| 6 a(1 + |t|) where a > 0, the map
u 7→ f(u) is continuous from L2(Ω) to L2(Ω).

Definition 4.3. Define the gradient ∇ of a function f : Rn → R to be

∇f :=

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
,

provided all the partial derivatives exist.

Definition 4.4. The Laplacian ∆ of a function f : Rn → R is given by

∆f :=

n∑
i=1

∂2f

∂x2
i

,

provided all the second-order unmixed partial derivatives exist.

Proposition 4.5. Let g ∈ H−1(Ω) and µ ∈ [0,∞). Then there exists a unique
v ∈ H1

0 (Ω) such that −∆v + µv = g in D′(Ω) and this v is the unique solution to
the variational problem∫

Ω

∇v · ∇w dx+ µ

∫
Ω

vw dx = 〈g, w〉 for all w ∈ H1
0 (Ω).
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Furthermore, the map g 7→ v is continuous from H−1(Ω) to H1
0 (Ω).

This is a special case of the Lax-Milgram theorem; consult [2] for a proof.

Corollary 4.6. The map g 7→ (−∆ + µId)
−1g = v is continuous from L2(Ω) to

H1
0 (Ω), i.e.,

‖v‖H1
0 (Ω) 6 C‖g‖L2(Ω)

where C is a constant dependent on Ω.

Proof. Simply note that L2(Ω) continuously embeds into H−1(Ω) and apply propo-
sition 4.5. �

Theorem 4.7 (Poincaré’s Inequality). For p ∈ [1,∞) and u ∈ W 1,p
0 , there

exists a constant C dependent on Ω and p such that

‖u‖Lp(Ω) 6 C‖∇u‖Lp(Ω).

Corollary 4.8. A norm can be defined on H1
0 (Ω) by

‖u‖H1
0 (Ω) = ‖∇u‖L2(Ω)

for u ∈ H1
0 (Ω). This norm is equivalent to the standard norm on H1(Ω) as described

in proposition A.9.

We finally have all the tools we need to solve some PDEs.

4.2. Semilinear Elliptic Equations. In this section we study semilinear partial
differential equations of the form

(4.9)
−∆u = f(u) in Ω

u = 0 on ∂Ω.

where Ω ⊆ Rn is open, bounded and smooth and f : R→ R is a given function.

Theorem 4.10. Let Ω ⊆ Rn be an open, bounded and smooth domain and f ∈
C(R) be a given bounded function. Then the boundary value problem (4.9) has a
weak solution u ∈ H1

0 (Ω), i.e., the following formulation holds:∫
Ω

∇u · ∇φdx =

∫
Ω

f(u)φdx.

Sketch of proof. Define a map T : L2(Ω) → L2(Ω) by u 7→ (−∆)−1(f(u)). Our
strategy is to show that T satisfies the hypotheses of Schauder’s fixed point theorem,
which will then yield the desired weak solution.

Step 1: T is continuous. Corollary 4.2 shows that u 7→ f(u) is continuous from
L2(Ω) to itself; corollary 4.6 shows that (−∆)−1 is continuous from L2(Ω) into
H1

0 (Ω), which is continuously embedded in L2(Ω) by proposition A.8.
Step 2: Find a closed non-empty bounded convex set M such that T : M →M .

Given u ∈ L2(Ω), T (u) satisfies

(4.11)

∫
Ω

∇T (u) · ∇T (u) dx =

∫
Ω

f(u)T (u) dx 6 a|Ω|‖T (u)‖L2(Ω)

by the Cauchy-Schwarz inequality. Using Poincaré’s inequality then gives

‖T (u)‖2L2(Ω) 6 C‖∇T (u)‖2L2(Ω) 6 a|Ω|C‖T (u)‖L2(Ω)

for some constant C. Set r = a|Ω|C and choose M := {u ∈ L2(Ω) : ‖u‖L2(Ω) 6 r}.
Hence T : M →M .
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Step 3: T is compact. Using Poincaré’s inequality on the right-hand side of
(4.11), we obtain

‖∇T (u)‖2L2(Ω) 6 K‖∇T (u)‖L2(Ω)

for some constant K. Thus ‖∇Tu‖L2(Ω) 6 K, which implies Tu is bounded in

H1(Ω) by corollary 4.8, and since the embedding of H1(Ω) into L2(Ω) is compact,
T is compact.

Step 4: Apply Schauder’s fixed point theorem to conclude T has a fixed point u ∈
M . By our choice of solution operator, this u lies in the Sobolev space H1

0 (Ω). �

4.3. Quasilinear Elliptic Equations. Lastly, we consider a quasilinear partial
differential equation of the form

(4.12)
−∆u+ g(∇u) + µu = 0 in Ω

u = 0 on ∂Ω.

where Ω ⊆ Rn is an open, bounded and smooth domain and g : Rn → R is smooth
and Lipschitz continuous.

Theorem 4.13. Let Ω ⊆ Rn be open, bounded and smooth and g : Rn → R be
smooth and Lipschitz continuous. If µ > 0 is sufficiently large, then there exists a
function u ∈ H2(Ω) ∩H1

0 (Ω) such that u is a weak solution of the boundary value
problem (4.12).

Sketch of proof. Given u ∈ H1
0 (Ω), set f(u) := −g(∇u). Since g is Lipschitz con-

tinuous, it can be shown to satisfy the growth condition

|g(t)| 6 C(1 + |t|)

for some constant C and all t ∈ Rn. Therefore f(u) ∈ L2(Ω). By proposition 4.5,
there exists a w ∈ H1

0 (Ω) that is a weak solution of the linear problem

(4.14)
−∆w + µw = f(u) in Ω

w = 0 on ∂Ω.

By the elliptic regularity theorem (see [2]), we have w ∈ H2(Ω) and the estimate

‖w‖H2(Ω) 6 K‖f‖L2(Ω)

for some constant K. We now write T (u) = w whenever w is derived from u via our
definition of f and (4.14). Our strategy is to show that T satisfies the hypotheses
of Schaeffer’s fixed point theorem, which will yield our desired weak solution.

Step 1: T : H1
0 (Ω)→ H1

0 (Ω) is continuous and compact. Let un → u in H1
0 (Ω).

By our growth condition we have

‖T (u)‖H2(Ω) 6 L(‖u‖H1
0 (Ω) + 1),

for some constant L, so it follows that

sup
n∈N
‖wn‖H2(Ω) <∞,

where wn := T (un). Thus there is a subsequence {wn′} and a function w ∈ H1
0 (Ω)

such that wn′ → w in H1
0 (Ω). Now∫

Ω

∇wn′ · ∇v dx+ µ

∫
Ω

wn′v dx = −
∫

Ω

g(∇un′)v dx
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for each v ∈ H1
0 (Ω). Consequently using the continuity imposed by our growth

condition yields ∫
Ω

∇w · ∇v dx+ µ

∫
Ω

wv dx = −
∫

Ω

g(∇u)v dx

for each v ∈ H1
0 (Ω). Thus w = T (u).

We have shown T (un)→ T (u) in H1
0 (Ω), so T is continuous. A similar argument

shows that T is compact, since if {un} is bounded in H1
0 (Ω), the growth condition

asserts that {T (un)} is bounded in H2(Ω). The space H2(Ω) embeds compactly
into H1

0 (Ω), so {T (un)} possesses a convergent subsequence in H1
0 (Ω).

Step 2: For sufficiently large µ > 0, the set

M := {u ∈ H1
0 (Ω) : u = λT (u) for some λ ∈ [0, 1]}

is bounded in H1
0 (Ω). Assume u ∈ H1

0 (Ω) and u = λT (u) for some λ ∈ [0, 1]. Then
u/λ = T (u); or, in other words, u ∈ H2(Ω) ∩H1

0 (Ω) and

−∆u+ µu = −λg(∇u) almost everywhere in Ω.

Multiply this identity by u and integrate over Ω to compute∫
Ω

|∇u|2 dx+ µ

∫
Ω

|u|2 dx = −
∫

Ω

λg(∇u)u dx 6
∫

Ω

C(|∇u|+ 1)|u| dx.

Applying the inequality ab 6 a2/(2ε) + εb2/2 for an appropriate choice of ε > 0 to
the right-hand side, we see that∫

Ω

|∇u|2 dx+ µ

∫
Ω

|u|2 dx 6 1

2

∫
Ω

|∇u|2 dx+B

∫
Ω

(|u|2 + 1) dx

for some constant B. We then subtract terms to obtain
1

2

∫
Ω

|∇u|2 dx+ (µ−B)

∫
Ω

|u|2 dx 6 B|Ω|

As noted in proposition A.9, the left-hand side is of the same form as the norm on
H1

0 (Ω). Thus if µ > 0 is large, we have ‖u‖H1
0 (Ω) 6 R, for some constant R that

does not depend on λ ∈ [0, 1].
Step 3: Applying Schaeffer’s fixed point theorem in the space X = H1

0 (Ω), we
conclude T has a fixed point u ∈ H1

0 (Ω)∩H2(Ω), which in turn solves our boundary
value problem (4.12). �

Appendix: Lp and Sobolev Spaces

Definition A.1. Let p ∈ (0,∞) and Ω ⊆ Rn. If f : Ω → R is a measurable
function, then we define

‖f‖Lp(Ω) :=

(∫
Ω

|f(x)|p dx
)1/p

.

The space Lp(Ω) is defined to be

Lp(Ω) := {f : Ω→ R : ‖f‖Lp(Ω) <∞}.

Definition A.2. The support of a real-valued function f with domain Ω is given
by

supp(f) := {x ∈ Ω : f(x) 6= 0}.
A function f is said to have compact support if its support is compact; for Ω ⊆ Rn,
the support is compact if and only if it is bounded.
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Notation A.3. Let C∞(Ω) by the set of infinitely differentiable real-valued func-
tions with domain Ω. Denote the set of all C∞ functions with compact support by
C∞0 (Ω).

Definition A.4. Let Ω ⊆ Rn be open and connected. Let α := (α1, . . . , αn) be a
multi-index1. For any φ ∈ C∞(Rn), define the differential operator Dα by

Dαφ :=

(
∂

∂x1

)α1
(

∂

∂x2

)α2

· · ·
(

∂

∂xn

)αn

φ.

Now let f : Ω → R be given. Then g : Ω → R is the α-weak derivative of f for
some multi-index α, if for each φ ∈ C∞0 (Ω), the following formula holds:∫

Ω

f(x)Dαφ(x) dx = (−1)|α|
∫

Ω

g(x)φ(x) dx

where |α| = |α1|+ · · ·+ |αn|.

Definition A.5. A Sobolev space W k,p(Ω) consists of all locally integrable func-
tions2 u : Ω→ R such that for each multi-index α with |α| 6 k, Dαu exists in the
weak sense and belongs to Lp(Ω).

Proposition A.6. The Sobolev space W k,p(Ω) is a Banach space.

Notations A.7. Denote the closure of C∞0 (Ω) in W k,p(Ω) by W k,p
0 (Ω). For p =

2 we usually write W k,p(Ω) = Hk(Ω). The space of bounded linear maps f :
H1

0 (Ω)→ R is denoted by H−1(Ω).

Proposition A.8. The Sobolev space H1
0 (Ω) embeds continuously into L2(Ω).

Proposition A.9. H1(Ω) is a Hilbert space with inner product

〈f, g〉 =

∫
Ω

∇f · ∇g dx+

∫
Ω

fg dx
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1an n-tuple of non-negative integers
2integrable on any compact subset of its domain
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