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Abstract. This paper will introduce expander graphs. Kolmogorov and

Barzdin’s proof on the three dimensional realization of networks will be dis-

cussed as one of the first examples of expander graphs. The last section will
discuss error correcting code as an application of expander graphs to computer

science.
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1. Expander Graphs: The discovery of Kolmogorov and Barzdin

In this section, we will introduce the concept of expander graphs and attempt
to provide an intuitive understanding of these graphs. As such, the definition will
be informal and we will proceed to define the aspects of expanders to formalize the
understanding. It is difficult to precisely define an expander graph because they are
defined within different branches of mathematics distinctly, so a common definition
is difficult to formulate.

Definition 1.1. An Expander graph is a sparsely populated graph that is well
connected.

Definition 1.2. A sparse graph is a graph in which the total number of edges is
few compared to the maximal number of edges.

Example 1.3. Consider a simple graph G with n vertices and 2 edges originating
from each vertex. There are 2n edges in this graph. If this graph was a complete
graph, every vertex connected to every other vertex, we would need n! edges. It is
clear that this graph is sparse since n! >> 2n. A similar graph is used in the next
section as the network that we are working with.

The next aspect of an expander graph is that it is well connected.

Definition 1.4. A graph G is connected if there exists a path between vertices α
and β, for all α, β ∈G
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2 JOEL SIEGEL

When we say that a graph has a high level of connectivity or that it is well
connected, we mean that to make this graph disconnected, we would need to remove
a sizable percentage of edges found in the graph.

Example 1.5. A tree T is a poorly connected graph. Removing any one edge from
T will render it disconnected. See the figure below.

•

•

• •

•

Figure 1. A simple tree.

Example 1.6. The figure below contains a bottleneck. If we remove the connection
between the two pentagons, the network is disconnected. We can remove other
points without it disconnecting the graph immediately, but that does not negate
the easily disconnected nature of the graph. Clearly, this type of graph is not well
connected either.

•
•
• •

•

•

•

• •

•

Figure 2. A basic bottleneck network.

Example 1.7. Figure 3 (found on the next page) is just one section of the previous
example. But this graph is well connected. There are multiple paths connecting
each point to another, so removing a few connections will not render the graph
disconnected.

The previous examples attempt to convey an intuitive sense of a well connected
graph, but we can make this concept more formal with the Cheeger Constant. This
constant is used to determine the level of connectivity of a network.
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•

Figure 3. A complete graph.

Definition 1.8. The Cheeger constant of a finite graph, G

(1.9) c(G) = min
A⊂V |A|≤|V |/2

|δA|
|A|

where the boundary of A is δA={(v,w)∈E : v∈A and w/∈A or v/∈A and w∈A}

The larger the Cheeger constant, the better connected the graph is. Additionally,
c(G) > 0 if and only if G is a connected graph.

Due to the nature of expander graphs, formalizing the definition gives rise
to three distinct perspectives of expanders. They are edge-expanders, vertex-
expanders, and spectral-expanders.

Definition 1.10 (Edge Expansion). Let G be a graph of n vertices. The edge
expansion of G is c(G), i.e. the smallest ratio of the boundary of A and A, where
A is any subset of G containing ≤ n/2 vertices.

The larger that number is, the better expansion based on the edges G will have.

Definition 1.11 (Vertex Expansion). Let G be a graph of n vertices. The vertex
isoperimetric number hout(G) is defined as

(1.12) hout(G) = min
0<|S|≤n/2

|δout(S)|
|S|

where δout is outer boundary of S, i.e. the set of vertices which have at least one
neighbor in S.

This definition is similar to the previous one, using the boundary as a measure of
the expansion of the graph. Instead of looking at the edges, we look at the vertices.

Definition 1.13 (Spectral Expansion). If G is a d-regular graph, we can create a
notion of expansion based on the spectral gap, where the spectral gap of G, s(G)
is defined as

(1.14) s(G) = λ1 − λ2
where λ1 is the largest eigenvalue and λ2 is the second largest eigenvalue of the
adjacency matrix of G.

We can further relate the spectral gap of a graph and the Cheeger constant with
Cheeger’s and Buser’s inequalities.

(1.15)
s(G)

2
≤ c(G) ≤

√
2λ1s(G)
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We can utilize eigenvalues in this definition because the adjacency matrix of G
is symmetric. With the spectral theorem, we choose to order the eigenvalue such
that each subsequent eigenvalue is less than or equal to the previous one and we
know that the eigenvalues are bounded above by the degree of G and below by the
negative of the degree.

We can refine our definition of the spectral gap further because it is known that
λ1=d, the degree of G. Thus

(1.16) s(G) = d− λ2
Similar to the other notions described above, the larger this value, the better the
expander G is.

An example of a spectral expander is the Ramanujan graph, which will be dis-
cussed in section 3.

2. Kolmogorov and Barzdin’s proof on the Realization of Networks
in Three-Dimensional Space

As the story goes, Kolmogorov became interested in three dimensional real-
izations after learning about the structure and size of neuron networks. Neuron
networks have a volume on the order of (number of neurons)3/2 and the question
became if the evolved network was the smallest sized network possible.

This proof contains the first notion of expander graphs as it showed that most
random graphs are expanders. The term expander graphs was originally defined
by Pinsker in 1973 [5], 6 years after this proof was published. Contained in this
section, we see Kolmogorov and Barzdin construct a random graph with properties
equivalent to an expander and use some of those properties in their proof.

In this section, we will follow the proof of Kolmogorov and Barzdin [6] with
commentary and adjustments made for the sake of clarity. This proof is not original
to this paper.

Definition 2.1. A (d, n)-network is an oriented graph with n vertices, labeled
α1.α2, ..., αn with dn total edges and d edges incident to each vertex and one of
them is marked by the weight x1, another by the weight x2, etc., and the final one
by xd.

Definition 2.2. A (2,n)-network will be referred to as a network

Without essential loss of generality (for we are only dealing with values up to
order), we shall consider only networks.

Definition 2.3. The network A is realized in 3-Dimensional space if:

(1) For all α in A, there exists a φ(α) ∈ R3, where the point φ(α) is surrounded
by a ball of radius 1/2 and the ball shall be referred to as a φ-point. φ-points
cannot intersect with each other.

(2) to each edge p = (α, β) originating at α and ending at β, we create a
continuous cylinder of radius 1/2, Kp in R3, joining the points φ(α) and
φ(β). The curve will be called a conductor. Conductors cannot intersect
with each other unless they share a vertex and are within 1 of that vertex.

Suppose R is a realization of the network A in three-dimensional space.

Definition 2.4. The solid W contains R if all the φ-points and conductors in R are
contained within W and are located at a distance no less than 1 from its boundary.
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W enables us to analyze the volume (up to order) that a realization takes up.

Definition 2.5. By the volume of realization R, we shall mean the minimal volume
of a solid containing the realization R.

Definition 2.6. By the volume of the network A, V(A) we shall mean the minimal
volume of its realization in three-dimensional space. Given all possible realizations
of A, Ri, and their volumes of realization, Ui, we can determine which Ri will takes
up the smallest volume.

Theorem 2.7. (Estimate from above) For all networks A with n vertices we
have

(2.8) V (A) ≤ C1n
3/2

C1 is a certain constant not depending on n.

Definition 2.9. A network which has no more than two edges originating from
each vertex shall be called a network with bounded branching.

Theorem 2.10. Any network with n vertices may be realized in a sphere of radius
C
√
n, where C is a constant not dependent on n.

Theorem 2.10 is a stronger statement than Theorem 2.7 so a proof of Theorem
2.10 means Theorem 2.7 is true.

Proof. First, we shall prove this theorem by using a network with bounded branch-
ing. The network with bounded branching is comparable to a network with the
potential for missing edges.

Thus, suppose that A is a network with n vertices and bounded branching. Let
us show it can be realized in the parallelepiped ABCDA′B′C′D′, with side lengths
of order

√
n. Without loss of generality, we shall assume that

√
n is an integer.

This means we can create a sphere to encompass the parallelepiped with radius
C3
√
n, where C3 is some constant.

Suppose U is a set of points on the lower base ABCD of the form (i+2,2j,0),
i= 0, 1, ...,

√
n − 1; j = 0, 1, ...,

√
n − 1. Now, ∀α ∈ A ∃φ(α) ∈ U and ∀ arc p =

(α, β) ∈ A ∃ the polygonal line Kp(ζ), with the path φ(α), a, b, c, d, e, f, g, h, φ(β),
depending on the parameter ζ in the following way:

Suppose the coordinates of the points φ(α) and φ(β) are (i+2,j,0) and (i′+2,j′,0)
respectively, then the coordinates of the point h are (i′+2+t,j′,0) where t = 1 if the
arc has the weight x1 and t=-1 if the arc has the weight x2. The coordinates of the
point a and g are (i+2,j,2-1) and (i′+2+t,j′,2). The coordinates of the point b and
f are respectively (i+2,j+1,2-1) and (i′+2+t,j′+1,2). The coordinates of the point
c are (i,j+1,2-1). The coordinates of the point d and e are respectively (i,j′+1,2-1)
and (i′,j′+1,2).See figure 4 for a visualization.

Each point is at least one unit apart and we construct the first layer of our
realization of A.

Definition 2.11. Two arcs are related if they share identical abscissas, identical
ordinates, or both.
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Figure 4. This figure is found in Kolmogorov and Barzdin’s proof [6].

The number of related arcs in A to the arc p is no greater than 4
√
n due to the

nature of a bounded branching network.

The polygonal line Kp(ζ) has the following properties:

(1) If the arcs p=(α, β) and p′=(α′,β′) are not related, then the corresponding
polygonal lines Kp(ζ) and K ′p(ζ

′) ∀ values of ζ and ζ ′ are located at a
distance ≥ 1 from each other (excluding neighborhoods of radius 1 of the
point φ(α)(φ(β)) if α = β′ or β = α′).

(2) If the arcs p=(α, β) and p′=(α′,β′) are related, then the corresponding
polygonal lines Kp(ζ) and K ′p(ζ

′) have the property that whenever ζ 6=
ζ ′ these lines are located at a distance ≥ 1 from each other (excluding
neighborhoods of radius 1 of the point φ(α)(φ(β)) if α = β′ or β = α′).

Thus our polygonal lines can be considered conductors in the realization of A.

To prove that A can be realized in the parallelepiped, it suffices to show that the
parameters ζ for the arcs in A are natural numbers so that:

(1) These values for distinct related arcs are different.
(2) The corresponding polygonal lines are all inside the parallelepiped, i.e. i ≤

ζ ≤ 4
√
n

Such a choice for the parameter ζ is always possible because the number of arcs
related to any arc p is no greater than 4

√
n which is the number of admissible

distinct values of ζ.
And this shows that the statement is correct for networks with bounded branch-

ing. We can extend this to arbitrary networks because any network A with n vertices
may be reconstructed into a network A′ with bounded branching by adding no more
than 2n new vertices. As a result, we obtain a network A′ with bounded branching
and n′ ≤ 3n (We added up to 2n vertices, but now we limit the vertices to have
only 2 incident edges. The end result is the same, but the paths from one vertex
to another now passes through intermediary vertices) By the proved theorem, this

network may be realized in a sphere of radius C
√

(n′). In order to obtain the
realization of the network A′ in the sphere from the realization of the network A,
we must interpret the new vertices as branching points of polygonal lines joining
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the vertices found in A to other vertices in A. Thus we have created a realization
of a network which has volume ≈ C1n

3/2. �

Theorem 2.12. (Estimate from below) For almost all networks A with n ver-
tices we have

(2.13) V (A) ≥ C2n
3/2

C2 is a certain positive constant not depending on n

Suppose w is a certain partition of the vertices of the network A into three
ordered parts which are denoted respectively by w1, w2, w3.

Definition 2.14. An (ε, δ)-partition is a w partition of A if w1 contains [εn] vertices,
w2 contains [δn] vertices and w3 contains 1-[εn]-[δn] vertices.

The remainder of the proof will focus on the vertices in w1 and w3, ignoring
those in w2. Since all of these sets are of variable size, we can adjust the sizes to
account for all possible permutations on the edges between vertices.

Definition 2.15. By the degree of connectivity S(A,w) of the network A with
respect to the partition w, we shall mean the maximal number of non-incident arcs
(originating in w1 and terminating in w3) joining the vertices of w3 to the vertices
of w1.

The larger this value, the more edges and thus the more connected these two
sets are.

Lemma 2.16. There exists 0< ε0 < 1, a0 > 0 and b0 > 0 such that for all ε ≤ ε0
and a ≤ a0 the degree of connectivity of almost all networks A with n vertices with
respect to any (ε, aε)-partition is no less than b0εn.

Remark 2.17. Referring back to our previous discussion of expander graphs, we can
see how this lemma ties in. It claims that nearly all networks are well connected, a
necessary part of our definition of expander graphs.

Instead of an (ε, δ)-partition, we have an (ε, aε)-partition, where aε is equivalent
for our purposes to δ. The key portion of this lemma is that there will be a minimum
(for most networks) degree of connectivity between all possible partitions of the
network.

Definition 2.18. By the degree of incidence, Z(A,w) of the network A with respect
to the partition w, we shall mean the number of vertices belonging to w3 from which
there are arcs going to vertices belonging to w1.

Since no more than two arcs can enter any one vertex, it follows that S(A,w)≤
1/2Z(A,w). Thus if we prove the degree of incidence is bounded, then S(A,w) must
have a similar lower bound and our lemma will be proven.

Proof of Lemma 2.16. We shall begin by constructing networks with n vertices
α1, α2, ..., αn. Next, there are 2n arcs such that precisely two arcs will be con-
nected to each vertex while the other end of each arc remains unconnected. The
free extremity of each arc is randomly, with equal probability 1/n, joined to one ver-
tex in the set (α1, ...αn). As a result, we obtain a network A with vertices α1, ..., αn.
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Suppose a certain (ε, δ)-partition w of the set (α1, ...αn) is fixed. Denote Pw(ε, δ,c, n)
as the probability of obtaining, as the result of the procedure described above, a
network which has a degree of incident with respect to w satisfying Z(A, w)<cn.
Denote P (ε, δ,c, n) as the probability of obtaining a network which has at least one
(ε, δ)-partition satisfying Z(A, w) <cn.

A successful outcome means there is not minimum level of connectivity for net-
works. Our end goal is for almost all partitions to fail. If P (ε, δ,c, n) goes to 0 as
n increases, then for most cases, the degree of connectivity will have a minimum
value.

Let us estimate Pw(ε, δ, c, n). Consider the following probabilistic model. There
are n boxes of which εn are white, δn are black and (1-ε− δ) are red. Consider the
sequence of trials W=s1, ..., s2εn consisting of random throws of 2εn balls into the
boxes. One trial is one throw of one ball. By a successful result of a trial, we mean
the event in which a white ball falls into an empty red box. Denote by P ’(ε, δ, c, n)
the probability that the number of successful outcomes in a series of trials W is
< cn.

The 2εn balls are analogous to the 2 edges originating from each vertex in the
w1 partition. We then see how many of those balls (or edges) enter the red boxes
(or w3 vertices). The number of balls entering the red box is compared to the fixed
value, cn. If the value is less than cn, the trial was successful, i.e. Z(A,w)< cn.
Clearly

(2.19) Pw(ε, δ, c, n) = P ′(ε, δ, c, n)

Our next step will be to estimate P ′(ε, δ, c, n). Now, the smallest probability of a
successful outcome is 1-3ε−δ, which is obtained when all other trials were successful.
If we assume that all the outcomes have that smallest probability, we can construct
P ′′(ε, δ,c,n) with the probability of each outcome as 1-3ε− δ. It is easy to see that

(2.20) P ′(ε, δ, c, n) < P ′′(ε, δ, c, n)

Let us now estimate P ′′w(ε, δ, c, n). Because this probability is a 2εn Bernoulli trial

(2.21) P ′′(ε, δ, c, n) =

cn∑
i=0

(
2εn

i

)
(1− 3ε− δ)i(3ε+ δ)2εn−i

Although it is not intuitively obvious based off of the equation alone, we do end
up discovering that P ′′(ε, δ, c, n) tends towards 0 as n approaches ∞. This portion
of the proof relies mainly on techniques which are beyond the scope of this paper,
but can be found in [6, 204]

Recalling the order of the probabilities:

(2.22) P ′′(ε, δ, c, n) > P ′(ε, δ, c, n) = Pw(ε, δ, c, n)

Which implies that as

(2.23) Pw(ε, δ, c, n)→ 0 as n→∞

Our lemma is proven. �

Remark 2.24. The random networks used in the previous proof are equivalent to
expander graphs and are indirectly proved to be as such in the conclusion of the
proof.
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Now we know that for most networks, (not all because we are dealing with limits
so there is a non-zero chance of a network not meeting the criteria) that there is a
minimum degree of connectivity for the network. Independent of which combination
of vertices we look at in a network A, there will be some minimum number of edges
connecting the selected subsets of vertices. Let us take into consideration the
following two circumstances:

(1) According to the definition of realization, the distance between any two
conductors corresponding to non-incident arcs is ≥ 1.

(2) According to Lemma 2.16, almost all networks with n vertices are such
that any ε0n vertices are joined to the remaining vertices by at least b0ε0n
non-incident arcs.

This implies the validity of the following lemma.

Lemma 2.25. Almost all networks A with n vertices posses the following property:
for any realization of the A in R3, there are less than εn points in any parallelepiped
of surface area L ≤1/2b0ε0n.

The direct consequence of this lemma is that most network′s realization are
sparse. It also implies that there is a certain minimum space needed to contain all
n vertices.

Remark 2.26. With that, we have shown that almost all networks (in this proof)
are sparse, well connected graphs, i.e. they are expanders. For almost any random
graphs of any size n, we can construct them so that they have a fixed amount of
sparsity and connectivity.

Proof of Estimate from Below. Suppose u and s are certain numbers (their values
will be chosen later). Suppose A is a certain network with n vertices for which we
have the assertions of the previous Lemmas (almost all networks are such). Suppose
further that the network A is realized in three-dimensional space and let T be a
certain parallelepiped whose regular edges are of length ≥ su

√
n and which contains

all the φ points and conductors arising for the given realization of the network A.
Then:

(1) By means of the planes z = iu
√
n (i=0,1,2) let us divide the parallelepiped

T into parallel slices of thickness u
√

(n). For our purposes, let us assume
that the dimensions of T are lus

√
n, where l is an integer such that we

have exactly ls slices. Let us number the slices in the direction of the z
axis, using the numbers 1,2,...(thus the lowest slice will be denoted with the
number 1, and the next one will be 2, and so on). We then divide the slices
into groups A1, A2, ..., As; in Ai we choose the slices such that the slices
number (1,2,...,ls) mod i =0. Each Ai contains l slices. Then, from all of
these parts let us choose the one which contains the smallest number of
φ-points. Suppose it is the partition Az. It is easy to see that Az contains
no more than n/s φ-points (the best case for the smallest number of points
is if all points were split between the partitions, i.e. n/s points). Slices
belonging to Az will be called distinguished.

(2) By means of the planes y = iu
√
n (i=0,1,2) let us partition the paral-

lelepiped T into parallel slices, then construct a partition B1, B2, , Bs sim-
ilar to the one in (1) and let us call the slices belonging to the part By
containing the least number of φ-points distinguished.



10 JOEL SIEGEL

(3) By means of the planes x = iu
√
n (i=0,1,2) let us partition the paral-

lelepiped T into parallel slices, then construct a partition C1, C2, , Cs sim-
ilar to the one in (1) and let us call the slices belonging to the part Cx
containing the least number of φ-points distinguished.

It follows from the above that the distinguished slices of the parallelepiped T
contain no more than 3n/s φ-points since at most, each axial directions set of
distinguished slices contain ≤ n/s points, the union of the three directions must be
≤ to 3n/s.

Now, let us suppose that the numbers u and s are such that the cubes bounded
by distinguished slices have a surface area no greater than 1/2b0ε0n (here we mean
each cube separately). Refer to the figure 5 for a 2 dimensional example.

Figure 5. The red and blue represent the distinguished slices that
are acting as borders for the rest of the slices, the white squares.

According to Lemma 2.25, each of these cubes contain less than ε0n points. Now,
if the non-distinguished slices contain greater than ε0n φ-points, we see that

(2.27) number of undistinguished points ≥ n− 3n/s ≥ ε0n

Next, we create a subset, G, of the set of all cubes. Using equation 2.27, the fact
that the total number of undistinguished points is greater than ε0n and each cube
contains less than ε0 points means we can find a set G such that

(2.28) 1/2ε0n ≤ number of points in G ≤ ε0n

Suppose further that the number s is such that the distinguished slices contain
no more than a0ε0n/2 φ-points, i.e. let s satisfy the inequality

(2.29) 3n/s ≤ a0ε0n/2

Note: a0, b0, and ε0 all come from the previous lemmas and are constants depen-
dent on each specific network

Consider the following (ε, δ)-partition of the network A:

(1) w1 is the set of vertices of the network A such that their corresponding
φ-points exist in G; the number of elements εn of the set w1 is equal to the
number of φ-points contained in G, i.e. ε0/2≤ ε ≤ ε0



EXPANDER GRAPHS 11

(2) w2 is the set of all vertices of the network A such that their corresponding
φ-points exist in the distinguished slices of the realization; the number of
elements δn of the set w2 is equal to the number of φ-points contained in
the distinguished slices, i.e. δ ≤ a0ε0/2

It follows from Lemma 2.16 that the network A for such an (ε, δ)-partition has
a degree of connectivity ≥ b0εn > b0εn/2. This means that the φ-points contained
in the set G and φ-points contained in the other cubes bounded by distinguishing
slices are joined to each other by at least b0(ε0/2)n non-incident conductors. The
number of conductors here is a repeat of the minimum value for the surface area
applied in Lemma 2.25. If we take a slice of all these conductors, the total surface
area is on the same order as the surface area for Lemma 2.25 because we have
defined them to have thickness of diameter 1. The set of these conductors will be
denoted by E. According to the definition of the realization, the distance between
conductors from E must be ≥1. Since the thickness of the distinguished slices is
equal to u

√
n, it follows that each of the conductors from the set E joins points

located at a distance ≥ u
√
n. Hence we obtain that any solid W which contains all

the conductors from E and in such a way that they are ≥1 from its surface, has a
volume greater than

(2.30) b0ε0n/2π(1/2)2u
√
n = (π/8)b0ε0un

√
n

(minimum number of conductors*surface area of conductors* minimum distance
to travel)

Now let us recall that these estimates were obtained using the estimates for u and
s being >0 and independent of n. It is easy to verify that there exists s and u >0
not depending on n to satisfy the earlier inequalities: 2.27, 2.29. This means that
the volume of the network satisfies

(2.31) V (A) > π/8b0ε0un
3/2 = C2n

3/2

C2 is a certain constant > 0 not depending on n.
Thus the theorem is proved. �

3. A Computer Science Application of Expander Graphs

In this section, we will discuss how expander graphs, specifically Ramanujan
graphs, can be applied to Computer Science in order to create error correcting
codes.

Sending a message from one object to another is a common occurrence in our
digital age. Televisions, radios, cell-phones, and the internet all use transmissions.
And, as anyone who has used these services can attest to, they are not perfect.
Perhaps someone’s words sound garbled on the phone or the picture on the television
is fuzzy, the basic problem is that somehow there were errors in the transmission.
One solution is for the transmission method to detect and correct any errors that
occur. Error correcting codes is a field within coding theory that concerns itself
with this very issue.

We shall begin by considering the problem mentioned above, a message between
a sender and a receiver. Now, considering that this message can be of any form, a
picture, a document, vocals, etc. we shall represent the original message as a series
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of encoded binary bits. The message is sent then the receiver needs to decode the
bits to return the original message.

In order to encode/decode the message, there needs to be an agreed upon cipher.
Our choice of cipher is important for we use it to correct any mistakes that may
be made in the transmission process. The solution here is simple. We shall create
a code, a subset of all possible n-bit blocks that contains the only valid encoded
data, i.e. codewords. Anything in the transmission that is not found in our code is
a mistake.

Consider the case when n =2 as an illustrative example. Let us graph the n = 2
case. To do this, let the first bit represent the x-coordinate, the next represent the
y-coordinate. An example bit is 01, with coordinates (0,1). There are 4 possible
2-bit blocks and we will select 2, say (0,0) and (0,1) and remove the others. The
points left on the graph are our codewords, 00 and 01, and the set of those points is
our code. When the code is received we place each 2-bit block on the corresponding

Figure 6. The black dots are the codewords and the blue dot is
the received message.

spot on the graph. Let the original code bit be 01. If there is no error, the received
bit will be place at (0,1). Suppose that there was an error and that the first bit was
changed to 1. Now, the bit’s coordinate is (1,1) instead of (0,1). We can correct
this error by finding its closest neighbor that is a codeword and making it that
codeword. In this case, (0,1) is the closest codeword so we change our received bit
to 01. Obviously, this method is not reliable at n=2, but the process remains the
same as n increases since at larger n, each individual error will change the distance
from the correct codeword less.

The question now becomes how many codewords do we want? There are two ex-
treme cases: a very small code which means the error correcting will almost always
be correct but we severely limit our efficiency or a large code that has many po-
tential messages but the correcting process is likely to make mistakes. We need to
strike a balance between these two opposites to create a worthwhile error correcting
code. It is easy to understand how expander graphs, graphs that are sparse, but
well connected, become useful in this situation of balancing two opposing properties.

Definition 3.1. A code C is a set of n-bit binary strings, and its elements are
called codewords.

The space we will be working with is F2 = {0, 1} ∼= Z/2Z,Fn2
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Definition 3.2. The Hamming distance between x,y ∈ Fn2 , denoted dH , is the
number of coordinates on which x and y differ,

(3.3) dH(x, y) = |i : xi 6= yi|

The Hamming distance will be the metric used in our code.

Definition 3.4. The distance of a code C ⊂ Fn2 denoted dist(C), is the minimum
Hamming distance between a pair of distinct codewords x,y ∈ C.

(3.5) dist(C) = min
x 6=y∈C

dH(x, y)

The rate of a code C is defined as

(3.6) rate(C) =
log|C|
n

The relative distance is defined as

(3.7) δ(C) = dist(C)/n

Definition 3.8. A family of codes Cn ⊂ Fn2 is asymptotically good if there exist
some fixed constants d > 0 and r >0, such that for all n we have both δ(C) >d
and rate(C)>r.

Definition 3.9. A code C ⊂ Fn2 is called a linear code of dimension k and length
n if it is a k-dimensional vector subspace of Fn2 .

Given a d-regular graph G = (V,W ), we will use an auxiliary bipartite graph G′

based on G.
Let G′ = (V ∩W,W ′) where ab ∈ W ′ iff a ∈ V , b ∈ W and ∃ c ∈ V such that

ac = b.
We can see that edges only exist between V and W . Also, every vertex of V has

exactly d edges connecting it to W . Label the vertices of W = 1,2,...,n. For any
vertex v ∈ V define v(1),. . .,v(d) to be the d vertices in W which are connected to
v. Let C0 be a linear code of length n0 = d, with minimum distance d0. We have
constructed a bipartite graph.

Let C ⊂ Fn2 be the set of binary vectors (x1, ..., xn) such that for every vertex
v ∈ V we have the smaller vector (xv(1), ..., xv(d) as the codeword in C0.

The distance between codewords is at least nδ20(1-ε). The relative minimum
distance of C0 is δ0 = d0

n0
. Additionally, ε is a constant that depends only on d0, d,

and λ2(G). Additionally, as λ2/d0 → 0, then ε→ 0.
Our next action will be to use a Ramanujan graph, one of the best possible

spectral expanders. And while it is the best, these graphs are still difficult to
construct explicitly; they were constructed by Sarnak utilizing deep number theory
[4].

Definition 3.10. Let G be a connected k-regular graph with n vertices and let
λ0 ≤ λ1 ≤ ... ≤ λn−1 be the eigenvalues of the adjacency matrix for G. Because G
is connected and d-regular, its eigenvalues are d=λ0 ≤ λ1 ≤ ... ≤ λn−1 ≤-d. Let

(3.11) λ(G) = $eaa(2)a|λi|<d|λi|

A d-regular graph G is a Ramanujan graph if λ(G) ≤ 2
√
d− 1
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Figure 7. A Ramanujan graph. This graph contains 80 vertices.
[4]

As was shown in the previous section and was done more explicitly by Pinsker
[5], Expander graphs exist. Although they exist, it is difficult to create an ex-
plicit representation of an expander graph. A Ramanujan graph is an explicit
construction of an expander, specifically spectral expanders. This makes them the
ideal expander to use in our formulation of an error correcting code. Let us now
assume that our graph G is a Ramanujan graph. With large enough d we find
that λ2/d0 ≤ 2

√
d− 1/(d ∗ d0) → 0 which means ε → 0. As such, we can use a

Ramanujan graph to create asymptotically good codes.
We have thus shown a method to encode data using expander graphs. The use

of the Ramanujan graph allowed us to maximize the minimum distance between
codewords so that our code would not correct words falsely. And due to the ex-
pander properties, we do not need to harshly limit the size of our code to allow
for this minimum distance. Thus our code will contain many codewords while still
maintaining effectiveness in correcting errors.
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