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Abstract. The zeta function has been studied for centuries but mathemati-
cians are still learning about it. In this paper, I will discuss some of the zeta

function’s properties and introduce the Riemann hypothesis, an important

open question.
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1. History

The zeta function, usually referred to as the Riemann zeta function today, has
been studied in many different forms for centuries. The harmonic series, ζ(1), was
proven to be divergent as far back as the 14th century [1]. In the 18th century, the
Swiss mathematician Leonhard Euler found a closed form expression for the sum
of the reciprocals of the squared integers i.e. ζ(2). He also generalized this result
and found a closed form expression for ζ(2n) for n ∈ N [2]. In the 19th century, the
German mathematician Bernhard Riemann considered ζ as a complex function. He
published his work in the 1859 paper ”On the Number of Primes Less Than a Given
Magnitude”, which is one of the most influential works of modern mathematics [5].
In this paper, he conjectured that all non-trivial zeros of ζ have real part 1

2 , a
conjecture that has become known as the Riemann hypothesis and whose proof
is perhaps the most sought after in all of mathematics. The Riemann hypothesis
remains unproven and its resolution, either in the negative or affirmative, would
have enormous consequences across many areas of mathematics and science [3].

2. Definition and basic properties

Definition (Zeta function). ζ(x) =
∞∑
n=1

1
nx =

∞∑
n=1

n−x

In particular, ζ(1) is the harmonic series and ζ(2) is the subject of the Basel
problem. Before considering the domain of ζ, note that if x is in N and a, b are in
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R, and a < b, then xa < xb. Therefore, for any i in N, the i-th term in
∞∑
n=1

1
na = ζ(a)

is greater than the i-th term in
∞∑
n=1

1
nb = ζ(b), so if both sums converge, the former

is greater than the latter. Therefore, in R, ζ is decreasing wherever it is defined.

Proposition (Domain of ζ). The domain of ζ, considered as a complex function,
is {s ∈ C | Re(s) > 1}.

Proof. First, we consider ζ as a real-valued function. We use the integral test for

convergence of infinite sums, which tells us that
∞∑
n=1

1
nx = ζ(x) converges if and

only if
∫∞
1

dn
nx exists. But

∫∞
1

dn
nx exists if and only if x > 1 so the domain of

ζ is {x ∈ R | x > 1}. Now, we broaden our attention from R to C. Consider
s, an arbitrary element of C. Then | 1ns | = | 1

es log n | = 1
eRe(s) log n = 1

nRe(s) . As

shown previously,
∞∑
n=1

1
nRe(s) converges if and only if Re(s) > 1 so the domain of ζ,

considered now as a complex function, is {s ∈ C | Re(s) > 1}. �

3. Euler product

Euler gave this identity:

ζ(s) =

∞∏
k=1

1

1− p−sk
where pk is the k-th prime number.

Proof.
∞∏
k=1

1
1−p−x

k

=
∞∏
k=1

( ∞∑
n=0

(
1
pxk

)n)
=
(

1 + 1
px1

+ 1
p2x1

+ 1
p3x1

+ . . .
)(

1 + 1
px2

+ 1
p2x2

+ 1
p3x2

+ . . .
)
. . .

= 1 +
∞∑
i=1

1
pxi

+
∞∑

i,j=1

1
pxi p

x
j

+
∞∑

i,j,k=1

1
pxi p

x
j p

x
k

+ · · · = 1 + 1
2x + 1

3x + · · · = ζ(x) �

Using this identity, we prove the infinitude of the prime numbers.

Proof. Note that ζ(1) is the harmonic series. So ζ(1) = 1 + 1
2 + 1

3 + · · · =
∞∏
k=1

1
1− 1

pk

but we know that the harmonic series diverges, so this product must also diverge.
But for a product of positive numbers to diverge, the product must have an infinite
number of terms, so we conclude that there are an infinite number of prime numbers.

�

While the Euler product is beautiful and surprising, it is difficult to evaluate an
infinite product over all prime numbers, so mathematicians typically study ζ using
the summation definition and related tools, and use this to learn about the Euler
product formula.

4. Evaluating zeta at particular points

Now we find some values of ζ. Numerical evaluation with a computer would be
straightforward but finding exact values is more involved. First we introduce the
Weierstrass factorization theorem, which will be useful for evaluating ζ.
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Theorem (Weierstrass Factorization Theorem). Let f be an entire function and
let {an} be the non-zero zeros of f repeated according to multiplicity; suppose f has
a zero at z = 0 of order m ≥ 0. Then there is an entire function g and a sequence
of integers {pn} such that

f(z) = zmeg(z)
∞∏
n=1

Epn

(
z

an

)
[4, p170]

Example. Sin is entire and has a zero at z = 0 of order 1 so we can apply the
previous theorem. Doing so gives

(4.1) sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)
[4, p175]

Now we evaluate ζ(2) by using two different formulas for sin(x)
x .

Proposition. ζ(2) = π2

6 .

Proof. By the Taylor series of sin,

sin(x)

x
=

∞∑
n=0

(−1)nx2n

(2n+ 1)!
= 1− x2

3!
+
x4

5!
− . . .

and by equation (4.1)

sin(x)

x
=

∞∏
n=1

(
1− x2

n2π2

)
=

(
1− x2

π2

)(
1− x2

4π2

)
. . .

By expanding the product and equating coefficients for the x2 term, we see

−1

6
= − 1

π2

∞∑
n=1

1

n2

Therefore, ζ(2) = π2

6 . �

Continuing with this approach by equating coefficients of higher degree terms,
as Euler did, gives

ζ(2n) =
|B2n|22n−1π2n

(2n)!
for n ∈ N

[5] where Bx denotes the x-th Bernoulli number, defined by

Bx =

x∑
k=0

1

k + 1

k∑
r=0

(−1)r
(
k

r

)
rx

[9]. No closed form expression is known for the odd positive integer values of ζ, but
some approximate values are given in the following table.
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Table 1. Some values of ζ

x ζ(x)

2 π2

6 = 1.6449340 . . .

3 1.2020569 . . .

4 π4

90 = 1.0823232 . . .

5 1.0369277 . . .

6 π6

945 = 1.0173430 . . .

5. Analytic continuation

Definition (Analytic continuation). Suppose f is an analytic function on U ⊂ C
and g is an analytic function on V ⊂ C where V ⊃ U and V and U are open.
Suppose further that g(z) = f(z) for all z ∈ U . Then g is an analytic continuation
of f .

Intuitively, an analytic continuation of a function has a larger domain than the
original function but agrees with the original function on the original domain. A
powerful theorem of complex analysis states that if an analytic continuation exists,
it is unique [6, p159]. As discussed earlier, the domain of the zeta function as
defined above is {s ∈ C | Re(s) > 1}. Now we will find the analytic continuation to
{s ∈ C | Re(s) > 0, s 6= 1}.

Definition (Alternating zeta function). Z(s) =
∞∑
n=1

(−1)n+1

ns = 1− 1
2s + 1

3s − . . .

Proposition (Expanding the domain of ζ to Re(s) > 0, s 6= 1). Z(s)
1−21−s is an

analytic continuation of ζ to {s ∈ C | Re(s) > 0 ∧ s 6= 1}.

Proof. If Re(s) > 1, ζ(s) = Z(s)+2
(

1
2s + 1

4s + 1
6s + . . .

)
= Z(s)+ ζ(s)

2s−1 . Solving for

ζ gives ζ(s) = Z(s)
1−21−s [7]. But Z(s) is analytic and converges for {s ∈ C | Re(s) > 0}

so this new formula for ζ is an analytic continuation to {s ∈ C | s 6= 1}. �

Using further techniques of complex analysis, ζ has been analytically continued
to C \ {1} and the following functional equation has been proven [6, p373].

ζ(s) = 2sπs−1 sin
(πs

2

)
Γ(1− s)ζ(1− s)

From this functional equation, it can be seen that ζ(−2n) = 0 for all n ∈ N because
sin vanishes and all other factors exist. The zeros at negative even integers are
called trivial zeros [6, p375]. The analytic continuation of ζ gives surprising results
such as ζ(0) = − 1

2 and ζ(−1) = − 1
12 . ζ(−1), by the original definition of ζ, would

be
∞∑
n=1

1
n−1 =

∞∑
n=1

n = 1 + 2 + 3 + . . . but this sum diverges, of course. −1 is not

in the domain of ζ as originally defined but it is in the domain of the analytic
continuation so evaluating ζ(−1) is not the same as evaluating the sum.
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6. Riemann hypothesis

The Riemann Hypothesis is perhaps the greatest open question in mathematics.
The claim is simple: all non-trivial zeros of ζ have real part of 1

2 [6, p375]. This
hypothesis, if found to be true, would have many powerful consequences, especially
with regards to the distribution of prime numbers. Also, many theorems have been
proven with the assumption that the Riemann hypothesis is true, so a proof of the
hypothesis would validate the proofs of these theorems. For more information on
the consequences of the Riemann hypothesis, see [3] and [8].
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