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Abstract. This paper discusses and then uses the theory of Markov chains to

analyze and develop a theory of the board game Chutes and Ladders. Further,

a method of using computer programming to simulate Chutes and Ladders
is discussed, as are various ‘experiments’ with the rules and layout of the

standard game.
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1. Introduction

The game Chutes and Ladders, also referred to as Snakes and Ladders, is a simple
game that a child can play. Despite this the mathematics of this game - specifically
with regards to Markov chains - are quite interesting. This paper is dedicated to
exploring these mathematics.

First, we shall explain the rules of Chutes and Ladders. Then, we shall briefly
discuss the theory of Markov chains in general, and then focus on absorbing
Markov chains. Then, we shall build a theory of Chutes and Ladders, using, in
part, the theory of Markov chains. Then, we will discuss how to use computer pro-
gramming to model Chutes and Ladders. Next, we shall perform a few experiments
on the ordinary rules and layout of Chutes and Ladders and derive counterintuitive
results.
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2. The Rules of Chutes and Ladders

Figure 1. The Standard Board

Chutes and Ladders is played on a 100 square board game. There can be as
many players as desired; however, since the actions of the players are independent
from the actions of the other players, we shall only consider one player. The player
begins off of the board, at a figurative square zero. The player then rolls a six-sided
die, and advances the number of spaces shown on the die. For example, if the
player is at position 8, and rolls a 5, they would advance to position 13. The game
is finished when the player lands on square 100. There are two exceptions to the
rule of movement.

The first is that if the player, after advancing, lands on a chutes (slide) or a
ladder, they slide down or climb up them, respectively. For example, if the player,
on their first turn, rolls a 4, the player advances to square 4, and then “climbs” to
square 14, on the same turn. Thus, if the players is on square 77, and rolls a 3, the
player is finished, as he advances to 80, and then climb to 100.

The second is that the player must land exactly on square 100 to win. If the
player rolls a die that would advance them beyond square 100, they stay at the
same place. For example, a player at square 96 must roll exactly a 4 to win. A roll
of 5 would make the player stay put at position 96.

Do note that these rules could easily apply to a board of any size, with any size
die, and with chutes and ladders in any position.
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3. Overview of Markov Chains

Imagine a frog, sitting on a lilypad. Surrounding the frog are other lilypads. At
given intervals, the frog either moves from the lilypad to another, or simply stays
put, with fixed probabilities. Furthermore, the frog has no memory: the frog’s
set of probabilities from moving from a given lilypad to another stay the same,
regardless of the frog’s previous movements. That is, if the frog has a probability
p of moving from lilypad i to j at one instance, the probability of moving from
lilypad i to lilypad j is the same regardless of the frog’s previous jumps. The frog’s
behavior can be modeled by a Markov Chain.

Formally, a Markov Chain can be described as a set of states, s1, s2, . . . , sn, and
a set of probabilities pij of transitioning from one state to another. In terms of the
frog analogy, the states are the lilypads. pij are the probabilities of transitioning
to state j given you are at state i. For example, p24 is the probability of moving to
state 4 given you are at state 2. These probabilities form an n× n matrix called a
transition matrix. Note that for all 1 ≤ i, j ≤ n, pij always exists - although it
may be zero.

We will discuss a few examples of Markov chains and transitions matrices.
*I go out for dinner each night. However, I am quite picky. I only eat hamburgers,

pizza, cereal, and foie gras. Normally, I pick one of the four at random. There are
three exceptions, however: (1) I never eat pizza the night after I eat hamburgers.
In this case, I pick from the other three at random. (2) The night after eating foie
gras, I have a particular craving for cereal, and a distaste for hamburgers: I thus
choose cereal 50 percent of the time, hamburgers 10 percent of the time, and pizza
and foie gras each 20 percent of the time. (3) The night after eating cereal, I always
eat cereal. The transition matrix can be represented as:


H P C F

H 1
3 0 1

3
1
3

P 1
4

1
4

1
4

1
4

C 0 0 1 0
F 1

10
1
5

1
2

1
5


*I am on a monorail system. There are three stations that form a loop, and each

train stops at each station. I flip a coin and decide to either go one stop clockwise
or one stop counterclockwise. The transition matrix is:


1 2 3

1 0 1
2

1
2

2 1
2 0 1

2

3 1
2

1
2 0


*Going back to the frog example, imagine that there are 4 lilypads, yet the frog

only stays on the lilypad which it is currently on. The transition matrix is:


1 2 3 4

1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1


Notice that this is the identity matrix.
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Furthermore, note that all transition matrices are square. This is because each
state always has a transition probability to every other state (including itself), even
if this probability is 0.

Chutes and Ladders can be thought of as being modeled by a Markov chain.
Each square on the board, 1 through 100, is a state, as is the starting position,
the figurative square zero. We will consider the transition matrix of Chutes and
Ladders in the next section.

There are many different types of Markov chains. This paper shall focus on one
specific type, absorbing Markov chains. First, we define an absorption state:

Definition 3.1. An absorption state is one in which, when entered, it is impos-
sible to leave. That is, pii = 1. A state that is not an absorption state is called a
transient state.

Definition 3.2. An absorbing Markov chain is a Markov chain with absorption
states and with the property that it is possible to transition from any state to an
absorbing state in a finite number of transitions.

In the above examples, the first and third examples were absorbing Markov
chains. In the first example, ‘cereal’ was the absorbing state, while in the third
example, all of the states were absorbing states.

Furthermore, for nearly any configuration, Chutes and Ladders is an absorbing
Markov Chain. The final square is the absorbing state, and it is possible to reach
the final square from any given square (including figurative square zero). Some
exceptions to this rule are that if there are d or more chutes directly before the
final square, where d is the number of sides on the dice, or if there is some loop of
chutes and ladders. Denoting P as the transition matrix, we derive the probability
of going from state i to state j in precisely n steps.

Proposition 3.3. The probability of going from state i to state j in precisely n

steps is p
(n)
ij , the i, j-th entry of Pn.

Proof. The probability of going from state i to state j in two steps is the sum of the
probability of going from step i to step 1, then from step 1 to step j, the probability
of going from step i to step 2, then from step 2 to step j, and so on. Thus, letting
P be a w × w matrix,

p
(2)
ij = pi1p1j + pi2p2j + . . . + piwpwj =

w∑
r=1

pirprj

This parallels the definition of matrix multiplication. That is, it is evident that p
(2)
ij

is the i, j-th entry of P2 = P×P.
This proves the proposition for the n = 2 case; the proofs for greater n follow
similarly. �

Proposition 3.4. The probability of being in an absorbing state approaches 1, and
the probability of being in a non-absorbing state approaches 0, correspondingly, as
the number of steps is increased.

Proof. Define mj to be the minimum number of steps required to reach an absorbing
state from state j, and tj to be the probability of not reaching an absorbing state
from state j in mj steps. tj < 1. Define m∗ to be the greatest of the mj , and t∗

to be the greatest of the tj . Thus, the probability of not being absorbed in m∗ is
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less than or equal to t∗ < 1, the probability of not being absorbed in 2m∗ is less
than of equal to t∗2. Since t∗ is less than zero, as the number of steps increases,
the probability of not being in an absorbing state approaches 0. �

For an absorbing Markov chain, we can define a submatrix Q of P as the transi-
tion matrix between non-absorbing states. That is, Q is P, but with the rows and
columns corresponding to absorbing states removed. For example, in the dinner
scenario described above

Q =


H P F

H 1
3 0 1

3

P 1
4

1
4

1
3

F 1
10

1
5

1
5


Remark 3.5. By Proposition 3.3 and Proposition 3.4, we see that as n approaches
infinity, Qn approaches 0.

Proposition 3.6. (I−Q)−1 exists.

Proof. Take x such that (I − Q)x = 0. Note that this is possible, as the trivial
solution x = 0 works. Distributing and subtracting yields x = Qx. This implies
that x = Qnx by iteration. By Remark 3.5, we have that Qn approaches 0 as n
approaches infinity, which, due to the way Qnx is constructed by iteration, implies
that x = 0. Thus, the only solution is the trivial solution, which means that (I−Q)
is invertible. �

Proposition 3.7. (I−Q)−1 = I + Q + Q2 + Q3 + . . . .

Proof.

(I−Q)(I + Q + Q2 + Q3 + . . . + Qn) = I−Qn+1

(I−Q)−1(I−Q)(I + Q + Q2 + Q3 + . . . + Qn) = (I−Q)−1(I−Qn+1)

I + Q + Q2 + Q3 + . . . + Qn = (I−Q)−1(I−Qn+1)

I + Q + Q2 + Q3 + . . .+ = (I−Q)−1

The final step is true as n approaches infinity per Remark 3.5. �

Definition 3.8. Now, we shall let N = (I−Q)−1. nij refers to the i, jth entry of
N. We call N the fundamental matrix for P.

Proposition 3.9. Given that we start in state i, nij is the expected number of
times that state j is reached.

Remark 3.10. This includes the starting state, so nii ≥ 1, as if we start in a given
state, we must be in that state at least once.

Proof. We define X
(l)
ij as a random variable that is equal to 1 if we are in state j

after l steps starting from position i, and 0 otherwise. From our previous work, we

see that P (X
(l)
ij = 1) = q

(l)
ij . Thus, P (Xij = 0) = 1 − q

(l)
ij . Note that q

(l)
ij is the

i, jth entry of Ql, and nij is the i, jth entry of N. Note that this holds for l = 0,

as we can state Q0 = I. Further, E(X
(l)
ij ) = P (X

(l)
ij = 1) = q

(l)
ij , as 0 ≤ X

(l)
ij ≤ 1.

Therefore,

E(X
(0)
ij + X

(1)
ij + X

(2)
ij + . . . + X

(l)
ij ) = q

(0)
ij + q

(1)
ij + q

(2)
ij + q

(l)
ij
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Letting l approach infinity,

E(

∞∑
l=0

X
(l)
ij ) =

∞∑
l=0

q
(l)
ij = nij

�

Remark 3.11. A natural question is, given we start in state i, how much time will
it take until an absorbing state is reached. By our definition of N, the solution
is to sum the entries of row i in N. This is because nij is the number of times a
particular non-absorptive state will be reached, so to get the number of times until
absorption, we simply need to sum these values,

∑
j nij .

4. Theory of Chutes and Ladders

Now that we have discussed the terminology of Markov chains, it is time to
apply them to Chutes and Ladders. As mentioned above, Chutes and Ladders can
be represented as an absorbing Markov chain, with the final square as the only
absorbing state.

Now, the job is to determine the transition matrix.

Remark 4.1. We shall denote a game of Chutes and Ladders by C(k, n,M), where
k is the number of squares on the board (not including the figurative square zero),
n is the number of sides on the dice, and M is the set of chutes and ladders. A
chute is denoted as, for example, (15,2), which means there is a chute from square
15 to square 2. Ladders are denoted similarly.

Remark 4.2. The standard board, described in Section 2, shall be denoted as T.
Specifically, T = C(100, 6, {(1, 38), (4, 14), (9, 31), (21, 42), (28, 84), (36, 44), (51, 67),
(71, 91), (80, 100), (16, 6), (47, 26), (49, 11), (56, 53), (62, 19), (64, 60), (87, 24),
(93, 73), (95, 75), (98, 78)}).

For the time being, we shall consider C(k, n,Ø), given n ≥ 2 and n < k. What
would this transition matrix be?

Remark 4.3. Since figurative square zero is a state, the first row in the transition
matrix is the row representing state 0. However, for ease of notation, we shall index
our matrix to begin at row 0. That is, row 0 represents square 0, row 1 represents
square 1, and so on.

Take some i ∈ N ∪ {0} such that n + i ≤ k. i is some square on the board,
including the figurative square zero. Rolling the dice will yield a probability of 1

n
of advancing 1, 2, . . . , n squares. Therefore, given being in square i, after the next
transition, there is a 1

n chance of being in square i+1, a 1
n chance of being in square

i + 2 and so on until there is a 1
n chance of being in square i + n. The ith row of

the transition matrix thus looks like:

( 0 1 . . . i i + 1 i + 2 . . . i + n i + n + i . . . k

i 0 0 . . . 0 1
n

1
n . . . 1

n 0 . . . 0
)

However, the issue is slightly different for i within n squares of k. Recall that
a player must land precisely on k. If the player rolls something that would place
them beyond k, they stay put. For example, in T, if a player is on square 97 and
rolls a 4, they remain on 97. This means that our transition matrix over C(k, n,Ø),
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for the final n rows (including row k) will be different from the remaining rows
discussed above. Row k will look as such:

( 0 1 . . . k − 3 k − 2 k − 1 k

k 0 0 . . . 0 0 0 1
)

This is because it is an absorbing state.
Row k − 1 will look as such:

( 0 1 . . . k − 3 k − 2 k − 1 k

k − 1 0 0 . . . 0 0 n−1
n

1
n

)
This is because there is a 1

n probability of rolling a 1 on an n-sided dice, and a

probability of 1− 1
n = n−1

n of not rolling a one and staying put.
For similar reasons, row k − 2 looks as such:

(0 1 . . . k − 3 k − 2 k − 1 k

k − 2 0 0 . . . 0 n−2
n

1
n

1
n

)
This pattern continues until row k − n, which is simply an ‘ordinary’ row.
Now, we shall add in 1 ladder (or chute) from square f to square g. Now, anytime

we roll the die that would result in going to square f , we move instead to square
g. We therefore need to alter our transition matrix accordingly.

Remark 4.4. The same algorithm applies regardless if f < g (a ladder) or f > g (a
chute).

The probability of going to square f is now 0, and the probability of going to
square g is now what used to be the probability of going to square f plus the
original probability of going to square g, which is in most cases 0. The transition
matrix would look like:



f − n f − n + 1 f − n + 2 . . . f − 1 f . . . g . . . k

f − n− 1 1
n

1
n

1
n . . . 1

n 0 . . . 0 . . . 0

f − n 0 1
n

1
n . . . 1

n 0 . . . 1
n . . . 0

f − n + 1 0 0 1
n . . . 1

n 0 . . . 1
n . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
f − 2 0 0 0 . . . 1

n 0 . . . 1
n . . . 0

f − 1 0 0 0 . . . 0 0 . . . 1
n . . . 0


This still leaves the question of what row f looks like.
The answer to this question is that there is a 1 in the gth column, and 0 elsewhere.

This is because if a players is on square f , they move with probability 1 to square g.
This is quite irrelevant for a computer simulation, as it is impossible to start a turn
on square f , but is necessary for accurately calculating the fundamental matrix.

Remark 4.5. This algorithm still works in the edge cases, such as where f and g
are close together, or g is near k.

Remark 4.6. The same algorithm can be used to add in as many chutes and ladders
as we wish. For example, we could use this algorithm to generate T.

Since only the square k is an absorbing state, the Q matrix is simply the transi-
tion matrix, with the row k and column k removed. Note that Q is a k× k matrix,
as the transition matrix is a (k + 1)× (k + 1) matrix, due to the figurative square
zero.
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At this point, we can hand over the Q matrix to the computer, which, provided
k is not very large, can calculate N, and give us the expected number of turns,
completing the problem.

Remark 4.7. The computer package Jama for Java is capable of calculating inverses
quickly and efficiently; attempting to calculate a 100 × 100 matrix’s inverse, as is
necessary for T, is quite challenging to do by hand. However, Jama can do it in
under one second.

Remark 4.8. For T, the expected number of turns needed is approximately 39.2251223.

5. The Programming

Programming was used to determine the answer experimentally. The program-
ming was done in the Java language. The program had a number of methods.

*The first method was to create a transition matrix of the form C(k, n,Ø). The
values of k and n were inputted from the user, and the transition matrix was
constructed as described in section 3.

*The second method added the chutes and ladders. The user inputs the co-
ordinates of the chutes and the ladders, and the transition matrix was altered
accordingly, by the algorithm described in the section above.

Remark 5.1. For convenience, there exists a method that combined the two methods
above to automatically create T without input from the user.

* The third method ran through one iteration of the game chutes and ladders.
The player started at figurative square zero, corresponding to the 0th row in the ma-
trix (using the convention described above). Then, a random number is generated
corresponding to the dice roll, and the player moves according to the established
transition matrix, including using the chutes and ladders.1 Meanwhile, it is recorded
that the die has been rolled once. The process is repeated until the player reaches
k exactly. Then, the number of dice rolls needed is output.

* The fourth method ran the third method multiple times in order to reap the
benefits of the law of large numbers. The user inputs the number of times they wish
to third method to run. The average of these runs is then output. For example,
running the fourth method, with input 1,000,000 on T 5 times yields:

39.225808, 39.251338, 39.221559, 39.295085, 39.211283

These are remarkably close to the value predicted by the theoretical methods de-
scribed in section 4.

1The actual details are a little bit technical, and thus best described in a footnote. The random
number generated was not between, say, 1 and n. Instead, a random number was generated
between 0 and 1. Each entry in the row corresponding to the space the player is currently in was

assigned an “area” according to it’s value. Since the sum of the values on a given row is equal to
1, the square moved to corresponded to which “area” it fell into. For example, if the player was

on the ith square, and row i of the transition matrix looked like,

( 0 . . . i i + 1 i + 2 i + 3 i + 4 . . . i + 15 . . . k

i 0 . . . 0 1
4

1
4

0 1
4

. . . 1
4

. . . 0
)

then if the random variable was between 0 and .25, then the player would move to square i+ 1, if

the value of the random variable was between .25 and .5, the player would move to square i+ 2, if

the value of the random variable was between .5 and .75, the player would move to square i + 4,
and if the value of the random variable was between .75 and 1, the player would move to square

i + 15. This represents a ladder between square i + 3 and square i + 15.
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6. Miscellany

In this section, we shall focus on three different ‘experiments,’ which shall yield
somewhat counterintuitive results. These counterintuitive results are largely due
to some of the large ladders and chutes on the board.

6.1. Sides on the Die. On T, a 6-sided die is used. Here, we shall modify T by
changing the number of sides of the die. We would expect that, as we increase the
number of sides on the die, the expected number of rolls needed to complete the
game decreases, for each roll has a higher expected value. Using the theoretical
methods described in Section 42 we have established the following table, with n
representing the number of sides and e representing the expected number of rolls
needed to complete the game.

n e
2 60.7625788
3 65.9007753
4 54.4937116
5 45.5619456
6 39.2251223
7 34.6965984
8 31.8532909
9 30.2952849
10 28.768692
11 27.427206
12 27.017742
13 26.221553
14 25.980534
15 25.805895

This table corresponds roughly to an intuitive understanding: in general, as the
number of sides of the die increases, the number of turns it takes to complete the
game increases. However, there is an exception. Rolling a 2-sided die yields an e
value of approximately 60.8, yet rolling a 3-sided yields an e value of 65.9. That
is, it would take longer to play a game of Chutes and Ladders with a 3-sided die
than with a 2-sided die. This is likely due to the ladder from square 1 to 38, a large
ladder: There is a higher probability of landing on this ladder immediately with a
two-sided rather than 3-sided die. Beyond this, however, increasing the number of
die functions as expected.

6.2. The Effects of Adding a Ladder (or a Chute). This subsection shall
address the idea of adding one additional ladder or chute to T. It would seem
likely that adding a ladder would decrease the number of rolls expected to finish the
game, while adding a chute would correspondingly increase the number of times.
However, there are some circumstances when a non-intuitive effect would occur.
Looking at the board earlier in this paper, it is clear that a ladder from square 27

2The empirical methods described in Section 5 would likely work as well. However, when using

such methods, there is a small but existing probability of error. Because the matrix that needs to

be inverted in order to calculate the precise value is small (100×100), it can be inverted quickly in
Java using Jama. If we were dealing with larger matrices, the empirical method would probably

be better.
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to 29 would probably increase the expected number of rolls needed, for if a player is
“lucky” enough to land on square 27 and advance to square 29, they would miss the
opportunity to land on a much bigger ladder, that from square 28 to 84. Similarly,
a chute from square 29 to 27 would probably decrease the expected number of
rolls needed. In fact, these guesses is correct. The e value, calculated using the
theoretical methods described in section 4, for T with a ladder added from square
27 to square 29 is approximately 40.20 - nearly one roll longer than T, and the e
value for T with a chute added from square 29 to 27 is approximately 38.05, more
than one roll shorter than T.

However, these are fairly trivial examples that do not, in general, counteract our
notion that adding ladders decreases the expected number of rolls needed while
adding chutes increases the number of expected rolls. For one, these examples were
only of length two, and were situated immediately ‘over’ a very important ladder.
Therefore, to see if our intuition is correct, we should check for long ladders.

For the remainder of this section, we shall only consider ladders of length 10 or
more.3 First, however, a definition.

Definition 6.1. A non-ladder square is one which is neither the starting nor
finishing point of any existing chute or ladder.

We shall only permit our additional chutes and ladders to go from non-ladder
squares to non-ladder squares.4 Using the theoretical method (combined with a
pair of nested for-loops to allow us to check all possible feasible ladders (or chutes)
of length 10 or greater), we find that there are 5496 feasible ladders (or chutes)
of length 10 or greater, and that 254 of them change the expected value against
our intuition. 254

5496 = 4.6%. Although a small percentage, 4.6% is not insignificant
either. This means that of all ladders and chutes that can be added onto the board

310 is mostly an arbitrary, reasonably-large number
4If this were not the case, there would be errors. There are a few possible cases:

(1) An additional ladder (or chute) goes from square i to square k, and there already exists

a ladder (or chute) from square i to square j. This makes it so that when a player lands
on square i, there is no defined square to go to.

(2) An additional ladder (or chute) goes from square i to square k, and there already exists

a ladder (or chute) from square j to square i. Thus, if a player were to land on square
j, they would jump to square i, then immediately jump to square k. Thus, we are both

adding a ladder (or chute) from square i to square k, and, in essence, modifying the
existing ladder (or chute) from square j to square i to a ladder (or chute) from square j
to square k. However, we solely wished to add a ladder.

(3) An additional ladder (or chute) goes from square i to square k, and there already exists
a ladder (or chute) from square k to square j. For the same reasons discussed in (2),

this does not work.

(4) An additional ladder (or chute) goes from square i to square k, and there already exists
a ladder (or chute) from square j to square k. This would make the Q matrix look like:


0 1 . . . k − 1 k k + 1 . . . 99

i 0 0 . . . 0 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
j 0 0 . . . 0 1 0 . . . 0


Thus, the Q matrix is singular, so (I−Q) is singular, so N = (I−Q)−1 does not exist,
which makes our theoretical method for calculating the expected number of turns needed
not work.
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and are at least of length 10, nearly 1 in 20 defies our intuition about their effect
upon the expected value.

Remark 6.2. Most of these are clustered near either the (28,84) or (80,100) ladder.
This is because the (28,84) ladder is quite large, and the (80,100) ladder allows the
player to land precisely on the finishing square.

6.3. Starting Somewhere Besides Square Zero. A rule that we have followed
so far is that the player begins at the figurative square zero. What happens if we
change this rule? Recalling Remark 3.11, we have a method for calculating the
expected number of rolls needed to complete the game given a specified starting
position.

Using this, we can see, for example, that starting at square 2 has an expected
value of 39.6964061, and that starting at square 5 has an expected value of 39.2950265,
both of which are larger than the expected value of starting at the figurative square
zero. That is, it would be preferable to start at figurative square zero than to start
at either square 2 or square 5, a counterintuitive result. What causes this? There
are ladders going from square 1 to square 38, and from square 4 to square 14. If
a player is on square 2, they miss the opportunity to use the 1-38 ladder, and if a
player is on square 5, they miss the opportunity to use them both.

This analysis shows that it is often better to be just before a ladder rather than
just after, even though there are fewer squares until the finishing square, and there
is no guaranteed advancement onto the ladder.

Remark 6.3. There is not a similar analysis for chutes, because this analysis would
show that it is better to be just after a chute rather than before it, which already
corresponds to our intutition.

However, as we move further away from figurative square zero, this effect is not
strong enough to increase the expected value above the expected value of starting
at zero. For example, starting at square 29 - just after the massive (28,84) ladder
- has an expected number of rolls of 36.8911770. Thus, another way to see if
unintuitive results occur is to compare specific squares to the square preceding them.
Because the expected value is not precisely defined from starting at the bottom of
a ladder, we shall only consider cases not as such.5 Running this algorithm from
the computer, we find that it is preferable to start at the prior square (or the prior
non-ladder square, if necessary) for the following squares on T:

2, 5, 10, 23, 24, 25, 26, 27, 29, 41, 43, 52, 57

66, 67, 72, 73, 75, 76, 77, 78, 79, 81, 89, 92

There are a number of things apparent from this list. First and foremost is the
sheer quantity of such ‘unintuitive’ squares, 25 in total. Considering that we are
not counting a number of squares, this amounts to over 1

3 of the ‘eligible’ squares.
Clearly, our intuition is off-kilter.

Further, the placement of these squares is quite interesting. These squares show
how important the (28,84) and (80,100) ladders are; it is but slightly more prob-
ably to land on these latters being, say, 5 rather than 4 squares before the ladder
(recalling that this is over multiple turns), and the fact that even 8 squares out,

5For technological reasons, we shall also exclude squares at the top of ladders and chutes, and
the bottom of chutes.
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for the (80,100) ladder and 4 for the (28,84) one, shows precisely how important
they are.
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