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Abstract. This paper serves as an introduction to the analysis of chaotic

systems, with techniques being developed by working through two famous

examples. The first is the logistic map, a first-order discrete dynamical system,
and the second is the Lorenz system, a three-dimensional system of differential

equations.
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1. Introduction

Chaos is an umbrella term for various complex behaviors of solutions to relatively
simple, deterministic systems. The study of chaos came into its own in the 1970s,
with the work of Edward Lorenz, which we will detail in Sections 5 and 6. Lorenz
was developing a model of convection in the atmosphere and found a remarkable
property - solutions through nearby points would diverge from each other extremely
rapidly, but also remain confined within a certain space. This was later found to be
characteristic of many other systems, thus beginning the study of chaotic dynamics.
Before we discuss the Lorenz system in this paper, we will develop some definitions
and techniques by considering the logistic map, a one-dimensional discrete model
of population dynamics in Section 3. The goal of this paper is to demonstrate some
of the remarkable properties of chaotic systems through these two examples and
show in Section 4 that certain properties of chaotic behavior are actually universal
and can actually be seen in many experimental systems. This paper is meant to
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Figure 1. An Example of Graphical Iteration

give the reader only a flavor of the subject. A more complete treatment of chaotic
systems can be found in the references.

2. Chaos in Discrete Dynamical Systems

Definition 2.1. 1) Let x ∈ R and f : R → R be a function that is C∞. A
first-order discrete dynamical system is a map of the form:

xn+1 = f(xn)

2) The orbit of x is the sequence

x0 = x, x1 = f(x), . . . , xn = fn(x), . . .

3) We call x0 a fixed point if f(x0) = x0.
4) We call x0 a periodic point of period n if fn(x0) = x0.

Figure 1 depicts the graphical iteration technique of visualizing orbits. If x0 is an
initial condition, we first start from the point (x0, x0) on the line y = x and move
vertically to intersect f at the point (x0, x1). Then, move horizontally to (x1, x1).
Continuing in this manner, we can find the entire orbit.

Definition 2.2. Let x0 ∈ R be a fixed point of f . If there is a neighborhood U of
x0 such that if y ∈ U , fn(y) ∈ U for all n and lim

n→∞
fn(y) = x0, then x0 is stable.

If for all y ∈ U\{x0}, fn(y) leaves U for some n, then x0 is unstable.

The following proposition gives a simple test to determine the nature of the fixed
points.

Proposition 2.3. Let x0 be a fixed point for f . Then:
1) x0 is stable if |f ′(x0)| < 1.
2) x0 is unstable if |f ′(x0)| > 1.

Proof. 1) Let |f ′(x0)| = v < 1. Choose K such that v < K < 1. Since f ′ is
continuous, there exists δ > 0 such that |f ′(x)| < K for all x ∈ [x0 − δ, x0 + δ]. By
the mean value theorem, for any x ∈ [x0 − δ, x0 + δ], we have

f(x)− f(x0)

x− x0
=
f(x)− x0
x− x0

= f ′(c) for some c between x and x0.

Therefore, we have |f(x) − x0| < K|x − x0| < |x − x0| and by iteration, we find
that |fn(x) − x0| < Kn|x − x0| so we have lim

n→∞
fn(x) = x0. The proof of (2) is

similar. �
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Figure 2. First, Second and Third Iterate of the Tent Map

Definition 2.4. |f ′(x0)| is called the stability coefficient of x0.

Next, we will define what it means to act chaotically. For simplicity, we will
restrict the domain of f to act on an interval of R.

Definition 2.5. Let f be a map from an interval I = [a, b] to itself. f is chaotic
if:

1) Periodic points of f are dense in I.
2) (Transitivity) Given any two open subintervals U1 and U2 in I, there is a

point x0 ∈ U1 and an n > 0 such that fn(x0) ∈ U2.
3) (Sensitive Dependence on Initial Conditions) There exists a sensitivity con-

stant, which we we will denote as β > 0, such that for any x0 ∈ I and any open
interval U about x0, there is some y0 ∈ U and n > 0 such that |fn(x0)−fn(y0)| > β.

Proposition 2.6. A dense orbit implies transitivity.

Proof. Such an orbit will visit any open subinterval. �

Example 2.7. The tent map T : [0, 1]→ [0, 1] is a piecewise linear map given by

T (x) =

{
2x if 0 ≤ x < 1

2

−2x+ 2 if 1
2 ≤ x ≤ 1

The plot of T , under n compositions with itself, consists of 2n lines alternating
between slopes of 2 and −2. See Figure 2.

Proposition 2.8. T is chaotic on [0, 1].

Proof. 1) (Density of Periodic Solutions) Tn maps each interval
[
k
2n ,

k+1
2n

]
to [0, 1]

for k = 0, 1, . . . , 2n−1. Therefore, Tn intersects the line y = x once in each interval
(this can easily be verified in Figure 2). As a result, each interval contains a fixed
point of Tn or equivalently, a periodic point of T of period n. Therefore, periodic
points of T are dense in [0, 1].

2) (Transitivity) Let U1 and U2 be open subintervals of [0, 1]. For n sufficiently
large and for some k, U1 contains an interval of the form

[
k
2n ,

k+1
2n

]
. Therefore, Tn

maps U1 to [0, 1] which contains U2.
3) (Sensitive Dependence on Initial Conditions) Let x0 ∈ [0, 1]. We will show

that a sensitivity constant β = 1
2 works. As in (2), any open interval U about x0 is

mapped by Tn to [0, 1] for some sufficiently large n. Therefore, there exists y0 ∈ U
such that |fn(x0)− fn(y0)| ≥ 1

2 = β. �

Definition 2.9. Let a discrete dynamic system depend on a parameter c. A bifur-
cation occurs when there is a ”significant” change in the orbits of the system as c
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varies. This informal definition will suffice for the purposes of this paper. Specific
types of bifurcations will be described in greater detail when they arise.

Example 2.10. Let fc(x) = x2 + c. Solving x2 + c = x to find the fixed points

yields the solutions x± = 1±
√
1−4c
2 . Hence, there are no fixed points if c > 1

4 , one

fixed point when c = 1
4 and two fixed points when c < 1

4 . c = 1
4 is called a saddle-

node or tangent bifurcation because two fixed points coincide and then annihilate
each other.

3. The Logistic Map

The logistic population model is often used as an example in the study of ordinary
differential equations and one that is simple to solve explicitly. Alternatively, we
can consider how populations change from generation to generation. As we will
show, the discretized form of the logistic equation displays much more complex
behavior than its continuous analogue.

Definition 3.1. The logistic map is given by:

f(xn) = xn+1 = rxn(1− xn)

where r ≥ 0 is a parameter that captures the growth rate of the population. We
will investigate how the behavior of this system changes as r is varied.

3.1. 0 ≤ r ≤ 4.

Proposition 3.2. For 0 ≤ r ≤ 4, the logistic map sends [0, 1] to itself.

Proof. In [0, 1], the logistic equation attains maximum r
4 at x = 1

2 . If 0 ≤ r ≤ 4,
for any initial condition x0 ∈ [0, 1], xn ∈ [0, 1] for all n. �

First, we will find the fixed points of f .

Proposition 3.3. For r < 1, 0 is the only fixed point and it is stable for r < 1 and
unstable for r > 1. For r > 1, there is an additional fixed point x = 1 − 1

r that is
stable for 1 < r < 3 and unstable for r > 3.

Proof. Solving rx(1 − x) = x to find the fixed points yields x1 = 0 or x2 = 1 − 1
r .

The latter is inside [0, 1] for r ≥ 1 (the two points coincide at r = 1).
We will use Proposition 2.3 to examine the stability of these points. Taking the

derivative, we find that f ′(x) = r(1− 2x) and plugging in the first fixed point, we
get f ′(0) = r. Therefore, 0 is stable for r < 1 and unstable for r > 1.

For the other fixed point, we have f ′
(
1− 1

r

)
= 2− r. Therefore, 1− 1

r is stable
for 1 < r < 3 and unstable for r > 3. �

Proposition 3.4. For r > 3, the logistic map has a 2-cycle that is stable if r <
1 +
√

6.

Proof. A 2-cycle is a set of points p 6= q ∈ [0, 1] such that f(p) = q and f(q) = p.
Therefore, f2(p) = p and f2(q) = q so p and q are fixed points of f2. Solving
f2(x) = r2x(1− x)[1− rx(1− x)] = x yields four solutions:

x1 = 0, x2 = 1−1

r
, x3 =

r + 1 +
√

(r − 3)(r + 1)

2r
and x4 =

r + 1−
√

(r − 3)(r + 1)

2r
.

The first two are the fixed points of f . The last two solutions are new and form a
2-cycle if r > 3.



ANALYSIS OF CHAOTIC SYSTEMS 5

Showing that a 2-cycle is stable is equivalent to showing that p and q are stable
fixed points of f2. This means that all points in [0, 1]\

{
0, 1− 1

r

}
tend to this

2-cycle.

Let λ =
d

dx
(f(f(x))|x=p = f ′(f(p))f ′(p) = f ′(q)f ′(p) by the chain rule.

By symmetry, this equals d
dx (f(f(x))|x=q. Plugging in p and q gives:

λ = r2(1−2q)(1−2p) = r2[1−2(p+q)+4pq] = r2
[
1− 2

r + 1

r
+ 4

r + 1

r2

]
= 4+2r−r2.

Solving |λ| < 1 shows that the 2-cycle is stable for 3 < r < 1 +
√

6. �

Propositions 3.3 and 3.4 show that as r increases, the stability coefficient of the
fixed point at x = 1− 1

r decreases from 1 at r = 1 to −1 at r = 3, at which point it
becomes unstable. At the same time, a stable 2-cycle is born. For this reason, r = 3
is called a period doubling bifurcation. By the same proof, the 2-cycle also becomes
unstable leading to the creation of a stable 4-cycle at r = 1 +

√
6. Therefore, a 2n

cycle appears for all n. We will denote rn as the smallest r for which a 2n cycle
first appears. Computer approximations have yielded the following values:

r1 = 3

r2 = 3.449 . . .

r3 = 3.54409 . . .

r4 = 3.5644 . . .

r5 = 3.568759 . . .

The sequence converges to a limiting value r∞ = 3.569946 . . .. More will be said
on the nature of this convergence in Section 4. As r increases past r∞, the behavior
of solutions becomes chaotic. One technique for visualizing this transition to chaos
is the orbit diagram that is constructed by choosing a random initial condition x0
and then constructing the orbit of x0 for some value of r. We plot the points of the
orbit, discarding the first several hundred points so that we capture the eventual
behavior of the orbit and not the transient initial behavior. Repeating this for
many values of r yields Figure 3.

One of the most remarkable features of the orbit diagram is that it is not entirely
chaotic for r > r∞. As we will see in the next proposition, a stable 3-cycle is born
around r = 3.8284 . . .. These intervals of stability are called periodic windows.

Proposition 3.5. For 3.8284 . . . ≤ r ≤ 3.8415 . . ., there is a stable 3-cycle.

Proof. The proof is nearly the same as that of Proposition 3.4, but with f3 in the
place of f2. �

When the 3-cycle becomes unstable, a period doubling bifurcation occurs and a
stable 6-cycle is born. As before, we can find a stable (3× 2n)-cycle for all n. As a
result, if one branch of the stable 3-cycle is magnified, the orbit diagram reappears
in miniature. Said another way, the orbit diagram exhibits a fractal structure.

We will now consider choosing r just below the periodic window. Figure 4 shows
a typical orbit for r = 3.8282. The orbit nearly forms a 3-cycle with interspersed
periods of chaos. This phenomenon is called intermittency.
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Figure 3

Figure 4

We will offer a pictoral explanation for this phenomenon. Figure 5(a) is the plot
of f3. Figure 5(b) depicts the magnification of the boxed section of Figure 5(a).
There is a narrow channel between f3 and the line y = x so an orbit passing through
requires a large number of iterations and during the crossing, we have f3(xn) ≈ xn.

As r moves further away from the periodic window, we expect to see less and
less intermittency until fully chaotic behavior is once again achieved. This is called
the intermittency route to chaos.

For r > r∞, there are unstable 2n-cycles for all n. Therefore, the periodic points
of f are dense. From the orbit diagram, we can see that a ”typical” orbit appears
to be dense on some interval smaller than [0, 1] for r < 4. The final component of
chaotic behavior which we have not yet discussed is sensitive dependence on initial
conditions.

Definition 3.6. Let x0 be some initial condition and consider the orbit of a nearby
point x0 +δ0 where δ0 is very small. Let δn be the separation in the two orbits after
n iterates. If |δn| ≈ |δ0|enλ, then λ is called the Liapunov exponent. A positive
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Figure 5

Figure 6

Liapunov exponent means that orbits separate exponentially fast, which is sufficient
to show that the system displays sensitive dependence on initial conditions.

Figure 6 shows a plot of the Liapunov exponent for the logistic map for different
values of r. Note that for r < r∞, we have λ < 0 since we don’t expect behavior to
be chaotic. The negative spikes for r > r∞ correspond to the periodic windows.

3.2. r ≥ 4.
The goal of this section will be to prove that the logistic map is chaotic for r > 4.

This case is complicated by the fact that orbits of points in [0, 1] can leave [0, 1].
Therefore, we will need a new technique called conjugacy.

Definition 3.7. Let I, J be intervals and f : I → I, g : J → J be maps. f
and g are conjugate if there exists a homeomorphism h : I → J that satisfies the
conjugacy equation h◦f = g◦h. f and g are semiconjugate if h is at most n−to−1.

Remark 3.8. h maps orbits of f to orbits of g. If x0 is an initial condition in I,
then h(x0) is an initial condition in J and by iterating the conjugacy equation, we
have h(fn(x0)) = gn(h(x0)).

Example 3.9. The tent map defined in Example 2.9 is semiconjugate to the logistic
equation for r = 4 via h(x) = 1

2 (1 − cos(2πx)) since h(T (x)) = 1
2 (1 − cos(4πx) =
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1
2 −

1
2 (2cos2(2πx − 1) = 1 − cos2(2πx) = 4 1

2 (1 − cos(2πx)) 1
2 (1 + cos(2πx)) =

4h(x)(1− h(x)) = f(h(x)).

Theorem 3.10. Let f and g be conjugate via h. If f is chaotic on I, then g is
chaotic on J .

Proof. 1) (Density of Periodic Points) Let U be an open subinterval of J and
consider h−1(U) ⊂ I. Since periodic points are dense in I, there exists a periodic
point of period n, which we will denote x ∈ h−1(U). By the conjugacy equation,
gn(h(x)) = h(fn(x)) = h(x). Therefore, h(x) is a periodic point of period n in U
and periodic points are dense in J .

2) (Transitivity) Let U and V be open subintervals of J . By continuity, h−1(U)
and h−1(V ) are open subintervals of I. By the transitivity condition for f , there
exists x0 ∈ h−1(U) such that fm(x0) ∈ h−1(V ) for some m. Then, h(x0) ∈ U and
gm(h(x0)) = h(fm(x0)) ∈ V .

3) (Sensitive Dependence on Initial Conditions) Let f have sensitivity constant
β. Let I = [α0, α1]. Assume β < α1 − α0. For all x ∈ [α0, α1 − β], consider
the function |h(x + β) − h(x)|. This function is continuous and positive, so it has
minimum value, which we will denote β∗. Therefore, h maps intervals of length
β to intervals of length at least β∗. We claim g has sensitivity constant β∗. Let
x0 ∈ J and V be an open interval about x0. Then, h−1(V ) is an open interval about
h−1(x0). By sensitive dependence on initial conditions, there exists y0 ∈ h−1(V )
and n > 0 such that |fn(h−1(x0))− fn(y0)| > β. Then,

|h(fn(h−1(x0))− h(fn(y0)| = |gn(x0)− gn(h(y0))| > β∗.

�

Remark 3.11. The above proof does not require that the preimages of any of the
intervals be unique and therefore, also works for semiconjugacies.

Corollary 3.12. The logistic map is chaotic for r = 4 by the semiconjugacy in
Example 3.9 (recall that we have already shown that the tent map is chaotic in
Proposition 2.8).

Definition 3.13. 1) Let f be the logistic map for r > 4. Let A0 ⊂ [0, 1] denote the
open interval on which we have f > 1. The orbits of points in A0 will be mapped
to a point > 1, then to a point < 0 and then will tend to −∞. The preimage of A0

under f consists of two open intervals, one on each side of A0, the union of which
we will denote A1. Continuing in this fashion, we denote An as the 2n disjoint open
intervals in [0, 1] whose nth iterate lies in A0.

2) Let Λ denote the initial conditions whose orbits stay in [0, 1] for all time.
Since any point that lies in an An eventually leaves [0, 1], we have:

Λ = I \
∞⋃
n=0

An.

3) Let I0 = Λ ∩
[
0, 12
]

and I1 = Λ ∩
[
1
2 , 1
]
. Let x0 ∈ Λ. Then, the orbit of x0

lies in I0 ∪ I1 for all time. The itinerary of x0 is the sequence S(x0) = (s0s1s2 . . .)
where sj = k ⇔ f j(x0) ∈ Ik.

The methodology is to show that the logistic map is conjugate to a chaotic map
and then use Theorem 3.10 but first, we will require a few preliminary definitions
and propositions.
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Definition 3.14. Let Σ be the set of all sequences of 0’s and 1’s. Let s, t ∈ Σ. Let

d(s, t) =

∞∑
i=0

|si − ti|
2i

.

Remark 3.15. As expected, d(s, t) is a metric on Σ. We will not need this fact for
the purposes of the paper but the proof is fairly straightforward.

Proposition 3.16. d(s, t) converges for all s, t ∈ Σ.

Proof. If si 6= ti for all i, then d(s, t) =
∞∑
i=0

1
2i = 2. By the comparison test, the

sum converges for all s, t ∈ Σ. �

Proposition 3.17. Let s, t ∈ Σ. sj = tj for j = 0, 1, . . . , n⇔ d(s, t) ≤ 1
2n .

Proof. 1) (⇒) d(s, t) =
∞∑
i=0

|si−ti|
2i = 0 +

∞∑
i=n+1

|si−ti|
2i ≤ 1

2n+1

∞∑
i=0

1
2i = 1

2n .

2) (⇐) If sj 6= tj for some j ≤ n, then d(s, t) ≥ 1
2j ≥

1
2n . �

Next, we will define the shift map on Σ and show that it is chaotic.

Definition 3.18. The shift map σ : Σ→ Σ is defined by σ(s0s1s2 . . .) = (s1s2s3 . . .).

Theorem 3.19. σ is chaotic on Σ.

Proof. 1) (Density of Periodic Points) Let s = (s0s1s2 . . .). Let ε > 0 and choose n
sufficiently large such that 1

2n < ε. Construct t = (s0s1s2 . . . sns0s1s2 . . .). Then, t
is periodic with period n+ 1 and is within ε of s by Proposition 3.17.

2) (Transitivity) Construct s∗ = (0 1 00 01 10 11 000 . . .) by successively listing
each block of length 1, then 2, and so on. We claim that the orbit of s∗ is dense,
which implies transitivity by Proposition 2.6. If s ∈ Σ, the orbit of s∗ will eventually
share the first n elements with s for any n.

3) (Sensitive Dependence on Initial Conditions) We will show that a sensitivity
constant β = 2 works. Let ŝn denote the opposite of sn. Let s ∈ Σ and construct
s′ =

(
s0s1 . . . snŝn+1ŝn+2 . . .

)
. Then, we have d(s, s′) = 1

2n and d(σn(s), σn(s′)) =
2 = β. �

Finally, we will show that the shift map is conjugate to the logistic map via the
itinerary function.

Theorem 3.20. The itinerary function S : Λ → Σ is a homeomorphism if r >
2 +
√

5.

Proof. For these values of r, we have |f ′(x)| > K > 1 for some K and for all
x ∈ I0 ∪ I1.

1) (One-to-One) Let x, y ∈ Λ and suppose S(x) = S(y). This means that fn(x)
and fn(y) lie on the same side of 1

2 for all n. Assume x 6= y. Since we have
|f ′| > K > 1, each iteration expands the distance between fn(x) and fn(y) by a
factor of at least K, so eventually they cannot both lie on the same side of 1

2 . This
contradicts the fact that they have the same itinerary.

2) (Onto) Let s = (s0s1s2 . . .) ∈ Σ. We will define

Is0s1...sn = {x ∈ I|x ∈ Is0 , f(x) ∈ Is1 , . . . , fn(x) ∈ Isn} = Is0∩f−1(Is1)∩. . .∩f−n(Isn).

In other words, Is0s1...sn contains the initial conditions whose itineraries are (s0s1 . . . sn . . .).
Note that Is0s1...sn = Is0 ∩ f−1(Is1...sn). By induction, we may assume Is1...sn is
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a nonempty, closed subinterval, so f−1(Is1...sn) consists of two closed subintervals,
one in I0 and one in I1. Hence, Is0 ∩ Is1...sn consists of a single, nonempty closed
subinterval. Furthermore, the Is0s1...sn are nested since we have:

Is0s1...sn = Is0s1...sn−1
∩ f−n(Isn) ⊂ Is0s1...sn−1

.

By the Nested Interval Theorem,
∞⋂
n=0

Is0s1...sn is nonempty and therefore, there

exists an x ∈ Λ such that S(x) = s.
3) (Continuous) Let x ∈ Λ and suppose S(x) = (s0s1 . . .). Let ε > 0 and pick n

sufficiently large so that we have 1
2n < ε. Consider the closed subinterval Is0s1...sn

defined in (2). Then, there exists δ > 0 such that if |x− y| < δ, then y ∈ Is0s1...sn .
Then, we have d(S(x), S(y)) ≤ 1

2n < ε by Proposition 3.17 since S(x) and S(y)
agree in the first n+ 1 terms.

4) (Continuous Inverse) The proof is very similar to (3) and will be omitted. �

Theorem 3.21. σ is conjugate to f via the itinerary function S.

Proof. We have shown in Theorem 3.20 that S is a homeomorphism, so all that is
left to show is that the conjugacy equation is satisfied. Let x0 ∈ Λ and S(x0) =
(s0s1s2 . . .). Then, we have x0 ∈ Is0 , f(x0) ∈ Is1 , f2(x0) ∈ Is2 and so on. Then,
S(f(x0)) = (s1s2s3 . . .) = σ(S(x0)). �

Corollary 3.22. The logistic map is chaotic for r > 2 +
√

5.

4. Universality

While the chaotic behavior of the logistic map is interesting on its own, the
results are significantly less powerful if they cannot be generalized. The purpose
of this section is to examine some of the universal features present in the logistic
map, from both a qualitative and a quantitative perspective.

4.1. The U-Sequence.

Definition 4.1. A map is unimodal if it is smooth, concave down and has a single
maximum.

Metropolis et. al (1973) considered maps of the form xn+1 = rf(xn) on [0, 1],
where f is unimodal and f(0) = f(1) = 0. They proved that as r is varied,
the order in which stable periodic solutions appear is independent of the choice
of unimodal map. This gives rise to a sequence, called the U-sequence, that the
periodic attractors occur in. Omitting periods higher than 6, the U-sequence is 1,
2, 4, 6, 5, 3, 6, 5, 6, 4, 6, 5, 6. The first three elements of the sequence represent
the initial period-doubling route to chaos. The element 3 represents the beginning
of the periodic window we found in Proposition 3.5.

Example 4.2. The sine map xn+1 = r sin(πxn) for 0 ≤ r ≤ 1 is unimodal on [0, 1].
The orbit diagram is shown in Figure 7. At a quick glance, it looks remarkably
similar to the orbit diagram for the logistic map.
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Figure 7

4.2. The Feigenbaum Numbers. Recall that we had previously defined rn as
the lowest value of r for which the logistic map has a 2n-cycle.

Definition 4.3. Let δn = rn−rn−1

rn+1−rn . Then, δ = lim
n→∞

δn = 4.66920161 . . . is called

the Feigenbaum delta.

This constant convergence rate is independent of the choice of unimodal map.
Experiments in fluid convection, diode circuits, optical bistability and acoustic
waves have measured values of δ within about 20% of the true value. The dif-
ficulty is that the distance between successive rn quickly shrinks and it becomes
difficult to distinguish between the rn’s after n = 3 or 4.

Remark 4.4. One experimental use of δ is to estimate the value of r∞ by the fol-
lowing approximation, which remarkably only requires the accurate measurements
of r1 and r2.
δ ≈ r2−r1

r3−r2 ⇒ r3 ≈ r2 + r2−r1
δ .

Similarly, r4 ≈ r3 + r3−r2
δ = r2 + r2−r1

δ + r2−r1
δ2 = r2 + (r2 − r1)

(
1
δ + 1

δ2

)
.

In general, we have rn ≈ r2 + (r2 − r1)
n−2∑
i=1

1
δi and by definition, we have r∞ =

lim
n→∞

rn = r2 + (r2 − r1)
(

1
δ−1

)
.

Definition 4.5. Let xm denote the maximum of f and let dn denote the distance
from xm to the nearest point in a 2n-cycle (see Figure 8). Then, α = lim

n→∞
dn
dn+1

=

−2.5029 . . . is called the Feigenbaum alpha. As with the Feigenbaum delta, this
constant is also independent of the choice of unimodal map.

5. The Lorenz System

In 1963, Edward Lorenz, a meteorologist, developed a simple model of convection
in the atmosphere. By holding most of the variables constant, he was able to reduce
the system to three-dimensional state space and he found the first chaotic system.
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Figure 8

In this section, we will present a few elementary properties of the Lorenz system in
order to try to visualize the geometry of the solutions.

Definition 5.1. 1) A n-dimensional, autonomous system of ordinary differential
equations is a system

dx1
dt

= f1(x1(t), x2(t), . . . , xn(t))

...
dxn
dt

= fn(x1(t), x2(t), . . . , xn(t))

We will adopt the shorthand X = F (X) where X is the vector (x1, x2, . . . , xn).
2) X = (x1, . . . , xn) is an equilibrium point if fi(x1, . . . , xn) = 0 for all i. X is

stable or a sink if there is a neighborhood U of X such that if Y ∈ U , the solution
through Y stays in U for all time and tends to X. X is unstable or a source if for
all Y ∈ U\{X}, the solution through Y eventually leaves U . Otherwise, X is a
saddle-node.

Remark 5.2. This section assumes familiarity with n-dimensional linear systems of
ordinary differential equations and in particular, how to determine if an equilibrium
point of a linear system is a source, sink or saddle-node from the eigenvalues. An
excellent introductory text is [1]. We will also make use of the following lemma.
The details of the proof can be found in [1, ch.8].

Lemma 5.3. Let X0 be an equilibrium solution to X = F (X). The linearization
about X is the system Y ′ = DFX0

Y where DFX0
refers to the Jacobian matrix

evaluated at the point X0. Linearization preserves the nature of equilibria.

Definition 5.4. The Lorenz system is the 3-dimensional, autonomous system of
ordinary differential equations given by:

x′ = σ(y − x)

y′ = rx− y − xz
z′ = xy − bz
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where σ > 0 is the Prandtl number, r > 0 is the Rayleigh number and b > 0
is a constant related to the size of the system. We also require σ > b + 1. The
derivation of the Lorenz system and an explanation of the constants is contained
in [3, Sec.1.5].

We will now list and prove some of the properties of the Lorenz system. First,
we will show that solutions to the system are either symmetric or have a symmetric
partner.

Proposition 5.5. If (x(t), y(t), z(t)) is a solution, so is (−x(t),−y(t), z(t)) (i.e.
reflection through the z-axis preserves the vector field).

Proof. Let (x(t), y(t), z(t)) be a solution. Then, we have

x′(t) = σ(y(t)− x(t))⇒ −x′(t) = σ(−y(t)− (−x(t)).

y′(t) = rx(t)− y(t)− x(t)z(t)⇒ −y′(t) = r(−x(t))− (−y(t))− (−x(t))z(t).

z′(t) = x(t)y(t)− bz(t)⇒ z′(t) = (−x(t))(−y(t))− bz(t).
Therefore, (−x(t),−y(t), z(t)) is also a solution. �

Next, we will determine the nature of equilibria solutions.

Proposition 5.6. The origin is an equilibrium point that is a sink for 0 ≤ r < 1.

Proof. It is clear that if x = y = z = 0, then x′ = y′ = z′ = 0. By the lemma above,

the linearization about the origin gives the system Y ′ =

−σ σ 0
r −1 0
0 0 −b

Y which

has eigenvalues −b, λ± =
−(σ+1)±

√
(σ+1)2−4σ(1−r)

2 . If 0 ≤ r < 1, then λ± < 0 so
the origin is a sink. In fact, all solutions will tend to the origin, so the origin is
called a global attractor. �

Proposition 5.7. If r > 1, there are two additional equilibria at Q± = (±
√
b(r − 1),

±
√
b(r − 1), r − 1). Q± are sinks if 1 < r < σ

(
σ+b+3
σ−b−1

)
.

Proof. It is easy to check that these are equilibria. By linearizing around Q±, we
find that the eigenvalues satisfy the polynomial:

f(λ) = λ3 + (1 + b+ σ)λ2 + b(σ + r)λ+ 2bσ(r − 1) = 0.

When r = 1, the roots are 0,−b and −σ − 1. For r > 1, we expect the roots to
be close to these values and in particular, to be real. Noting that if r > 1 and
one of the roots λ ≥ 0, then f(λ) > 0. Therefore, the three roots of f must be
negative. This proves the lower bound. To prove the upper bound, Q± become
unstable when one of the eigenvalues has zero real part. This cannot happen for
real roots, so the roots must take the form ±iω with ω 6= 0. Solving f(iω) = 0
yields the desired result. �

These equilibria are surrounded by an unstable limit cycle visualized in Figure

9. As r → σ
(
σ+b+3
σ−b−1

)
, the limit cycle shrinks until it is absorbed by the fixed

point, which then becomes a saddle-node. This is known as a Hopf bifurcation. A
partial bifurcation diagram is shown in Figure 10, where solid lines indicate a stable
periodic solution and dashed lines indicate an unstable periodic solution. We see

that there is no stable periodic solution for r > σ
(
σ+b+3
σ−b−1

)
. One may naively guess



14 JUSTIN GUO

Figure 9

Figure 10. Bifurcation Diagram

that trajectories after this point are repelled out to infinity, but this is not the case,
as we will see in the next proposition.

Proposition 5.8. Let V (x, y, z) = rx2 + σy2 + σ(z − 2r)2 = v be the ellipsoid
centered at (0, 0, 2r). There exists v∗ such that any solution that starts outside
V (x, y, z) = v∗ eventually enters and stays there for all time.

Proof. We want to show that for v ≥ v∗, we have V ′ < 0.

V ′ = −2σ(rx2 + y2 + b(z2 − 2rz)) = −2σ(rx2 + y2 + b(z − r)2 − br2).

The equation rx2 + y2 + b(z − r)2 = 2br2 is an ellipsoid. Choose v∗ large enough
so that the ellipsoid V = v∗ strictly contains this ellipsoid in its interior. �

6. Chaos on the Lorenz Attractor

In the previous section, we saw that all solutions eventually congregate into a
space which we will define as the Lorenz attractor. In this section, we will use some
of the techniques developed for the logistic map to describe the chaotic behavior of
solutions.

Definition 6.1. A closed set A is an attractor if:
1) A is invariant. 2) There is an open set U containing A such that if X ∈ U ,

then the distance from X to A tends to zero as t→∞. In other words, A attracts
an open set of initial conditions. 3) A is minimal (i.e. there is no proper subset of
A that satisfies both (1) and (2)).

An attractor is strange if it has a fractal structure. An attractor is chaotic if it
exhibits sensitive dependence on initial conditions.
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Figure 11. The Lorenz Attractor

Figure 11 displays one solution that has been projected onto the xz-plane, which
gives us a sense of the geometrical shape of the Lorenz attractor. The trajectory
spirals around Q− several times before crossing over to spiral around Q+. It con-
tinues to switch back and forth for all time, with the number of circuits made on
each side varying as if random.

The first interesting property of the Lorenz attractor is that it has no volume,
which we will demonstrate in the following proposition.

Proposition 6.2. The Lorenz system contracts volumes.

Proof. Suppose D is a region in R3 with a smooth boundary and let D(t) denote
the image of D as it evolves according to the Lorenz equation. Let V (t) be the
volume of D(t). By Liouoville’s theorem, we have:

dV

dt
=

∫
D(t)

divF dx dy dz

where the divergence of a vector field F (X) is given by div F =
3∑
i=1

∂Fi

∂xi
(X).

Plugging in the divergence for the Lorenz system, we have:

dV

dt
= −(σ + 1 + b)V ⇒ V (t) = e−(σ+1+b)tV (0).

Therefore, any volume contracts exponentially fast to 0. A system that contracts
volumes is called dissipative. �

Corollary 6.3. The volume of the Lorenz attractor is 0.

Next, we will show that the Lorenz attractor is chaotic by redefining Liapunov
exponents for an n-dimensional system of differential equations.

Definition 6.4. Consider the evolution of an infinitesimal sphere of initial condi-
tions. The sphere becomes an infinitesimal ellipsoid. Let δk(t) denote the length of
the kth principal axis of the ellipsoid. If δk(t) ≈ δk(0)eλkt, then the λk are called
the Liapunov exponents. Let λ = max{λk}.
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Figure 12

Figure 13. The Lorenz Map

Remark 6.5. Let x(0) be a point on the attractor and let x(0) + δ(0) be a nearby
point. Let δ(t) be the separation in the two orbits at time t. Then, |δ(t)| ≈ |δ(0)|eλt.
A plot of ln|δ(t)| versus t is shown in Figure 12. The initial slope is λ ≈ 0.9.
Eventually, the plot saturates, or levels off, since the maximum distance possible
on the attractor is achieved. As before, a positive λ indicates sensitive dependence
on initial conditions. Therefore, the Lorenz attractor is chaotic.

Next, we will examine the Lorenz map, a beautiful result that emerges out of
the chaotic behavior.

Definition 6.6. Lorenz noted that the trajectory appeared to only leave one spiral
after reaching a threshold distance from the center. Moreover, the amount by which
the threshold is exceeded seemed to determine the number of spirals in the next
circuit. Lorenz defined zn to be the nth local maximum of z(t) and plotted zn+1

versus zn. The result is plotted in Figure 13. We will denote this function f and
define the Lorenz map as zn+1 = f(zn).

It is difficult to distinguish between chaotic behavior and a trajectory that even-
tually settles down and becomes periodic. No argument has yet been made that
has shown that the latter case does not occur for the Lorenz system. However, we
can show, in following proposition, that if the Lorenz system has any closed orbits,
they must necessarily be unstable.

Proposition 6.7. If the Lorenz system has any closed orbits, they are unstable.
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Proof. Consider the sequence of {zn} corresponding to a closed orbit. The sequence
must eventually repeat, so let zn+p = zn. Consider the fate of a perturbation to
the closed orbit that passes through zn + ηn. Let ηt denote the distance from the
closed orbit. Then, by linearization around zn, we have:

zn+1+ηn+1 = f(zn+ηn) ≈ f(zn)+f ′(zn)ηn = zn+1+f ′(zn)ηn ⇒ ηn+1 ≈ f ′(zn)ηn.

Similarly, we have:

ηn+2 ≈ f ′(zn+1)ηn+1 = f ′(zn+1)f ′(zn)ηn

After p iterations, we have:

ηn+p ≈

[
p−1∏
i=0

f ′(zn+i

]
ηn

From the plot of the Lorenz map,we can see that |f ′(z)| > 1 for all z. Then,
|ηn+p| > |ηn|, which proves that the closed orbit is unstable. �
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