
INTRODUCTION TO THE KEISLER ORDER

KYLE GANNON

Abstract. In this paper, we introduce the basic definitions and concepts
necessary to define the Keisler Order. We will prove the order is well-defined

as well as the existence of a maximal class with respect to the order.
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1. Introduction

The Keisler Order was first introduced by H. Jerome Keisler in 1967. Currently,
this order is known to be a pre-order on (countable) first-order theories which,
broadly speaking, ranks classes of theories by complexity. Stronger theorems have
been proven for stable theories (e.g. the Keisler Order on stable theories is linear
[6]), while the complete structure of the Keisler Order is still an open problem.

The classification of first-order theories is both a classic and modern program
in model theory. Shelah’s stability program, the most famous type of classification
framework, organizes theories relative to the number of definable types over subsets
of a model. While the stability program has had great success, the program also
leaves unstable theories in some unclassifiable purgatory. Work on the Keisler Order
has shed light on dividing lines between classes of unstable theories. Additionally,
one of the major results in a paper by Malliaris and Shelah [4] shows that theories,
which have the SOP2-property, are maximal. This result was important in proving
p = t, the oldest open problem in cardinal invariants.

We will begin with many definitions as well as examples to provide the reader
with some intuition. We will leave most of the proofs which relate to the Keisler
Order to the last two sections. The two big theorems we prove at the end can be
found in Keisler’s original paper on the topic [3].
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2 KYLE GANNON

2. Notation and Basic Definitions

This paper will assume at least one course in basic first-order model theory. How-
ever, in this section, we will go over some of the necessary terminology and theorems
required to understand this paper. A language L = {f1, f2, ..., R1, R2, ..., c1, c2, ..}
is a collection of (n-ary) function, (n-ary) relation, and constant symbols (some-
times called non−logical symbols). Languages also contain logical symbols, i.e.
∧,∨,¬,→, equality, and parentheses, as well as (object-level quantification) ∀,∃. A
formula in a language is simply a grammatically coherent string of logical symbols
which may or may not have free variables (for instance, x = x or (∃x)(S(x) = y)
where y is a free variables and x is bounded).

A theory T is a set of logical sentences with symbols from some fixed language
L . A complete theory is a maximally consistent set of sentences. A model, or a
L -structure, is some set-sized mathematical object with an interpretation for each
non-logical symbol in the language. “|=” is a (semantic) binary relation between
L -structures and sentences in the language L . We say a sentence ϕ is true in a
model A by writing A |= ϕ.

The following will be our notational habits. An arbitrary model will be denoted
as A or B. Usually, we will denote indexing sets as I, J , and cardinals as α, β, κ.
Every theory T will have a corresponding fixed language L where the size of the
underlying language is at most countable. The underlying set of a model A is
formally written as dom(A). However, we will usually write A for dom(A), B for
dom(B). A set X (of sets) has the finite intersection property if and only if any
finite intersection of elements is not empty. If A is a set, then P(A) is the power
set of A and Pℵ0(A) is the collection of all finite subsets of A.

Finally, we have some more formal definitions and theorems which we will be
referring to.

Definition 2.1. Let L be a language, A be an L -structure, and α be a cardinal.
Then, we let L (α) be the language with α-many new constant symbols, {cβ}β<α.
Moreover, if (aβ)β<α be a sequence of elements A, then (A, α) is naturally an
L (α)-structure.

Definition 2.2. A collection of sentences, ∆, is said to be satisfiable is there
exists a model A such that A |= ∆. ∆ is said to be finitely satisfiable if every finite
subset of ∆ is satisfiable.

Theorem 2.3. (Completeness): A set of sentences ∆ is consistent if and only if
it is satisfiable.

Theorem 2.4. (Compactness): A set of sentences ∆ is satisfiable if and only if it
is finitely satisfiable.

Definition 2.5. If A and B are two L -structures, we say that A is elementarily
equivalent to B (written A ≡ B) if for any sentence ϕ in the language L , we have
A |= ϕ if any only if B |= ϕ.

Definition 2.6. Let A, B be two L -structures. We say that A is isomorphic to
B if there exists a bijection f : A → B such that f preserves functions, relations,
and constant symbols.

For a more detailed introduction, we refer the reader to the first few sections of
any basic model theory text (e.g. Chang & Keisler [2]).
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3. Ultrapowers

Ultrapower constructions are one of the two the central concepts necessary to
understanding the Keisler Order. However, before we can define ultrapowers, we
have to first get an intuition for ultrafilters and ultraproducts.

Definition 3.1. Let I be an indexing set. We say that D is a filter over I if D is
a non-empty subset of P(I) with the following properties:

1. If X ∈ D and Z ⊃ X, then Z ∈ D.
2. If X,Y ∈ D, then X ∩ Y ∈ D.

Furthermore, we call D an ultrafilter if for any X ⊆ I, we have (exclusively)
either X ∈ D or I − X ∈ D. Intuitively, we can think of D as a mathematical
object that makes decisions about which subsets of I are large. D thinks the entire
set is large, any set containing a large set is large, and the intersection of any
two large sets is large. Note, D may not think that the countable/uncountable
intersection of large sets is large. We will see later that ultrafilters without the
countable intersection property are valuable and are central to our study.

Definition 3.2. Let D be a filter over I. We say that D is a principal filter if there
exists X ⊂ I such that D = {Y ⊆ I : X ⊂ Y }.

We call any filter which is not principal a nonprincipal (or free) filter.

Example 3.3 (Principal Ultrafilter). Let I = N and let D = {X ⊆ N : 3 ∈ X}.
Then, D is a principal ultrafilter over I.

Example 3.4 (Nonprincipal Ultrafilter). It is provable that one cannot construct
an example (since the existence of a nonprincipal ultrafilter is equivalent to a weak
version of choice). There are models of ZF where there do not exist any nonprinci-
pal ultrafilters. However, the constructions of these models of ZF not suitable for
this paper. We refer the interested reader to [1].

For the remainder of this paper, every ultrafilter will be a nonprincipal ultrafilter.
Furthermore, we will assume the full power of ZFC and thus never worry about
the existence of ultrafilters (in general). The next two facts follow quickly from the
definitions and are left unproven.

Proposition 3.5. No free ultrafilter contains any finite sets.

Proposition 3.6. Let A be a collection of subsets of I such that A has the finite
intersection property. Then A can be extended to an ultrafilter over I.

Let I be an indexing set of cardinality α and let {Ai}i∈I be a collection of models.
Let

∏
i∈I Ai be the cartesian product of these models. Note that the elements of∏

i∈I Ai can be seen as function from I into {Ai}i∈I or as an α-termed sequence of
elements where the ηth term (for η < α) is an element of Aη. If f, g are elements
of
∏
i∈I Ai, we say that f is D-equivalent to g (written as f ≡D g) if and only if f

and g agree on a large set. Formally,

f ≡D g ⇐⇒ {i ∈ I : f(i) = g(i)} ∈ D
Proposition 3.7. If D is a filter, then ≡D is an equivalence relation over

∏
i∈I Ai.

Definition 3.8 (Ultraproduct). Let I be an indexing set and let D be an ultrafilter
over I. An ultraproduct of L -structures is defined as,∏

i∈I
A/D = {f/D : f ∈

∏
i∈I

Ai}.
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For notational purposes, we will always have our I’s fixed and so we will write∏
i∈I Ai as

∏
D Ai. In some sense, ultraproducts are similar to quotient spaces in

topology. We are simply taking elements in our Cartesian product and gluing them
together. Now, the following theorem demonstrates the strength of ultraproducts
in model theory.

Theorem 3.9 ( Loś’s Theorem). Let D be an ultrafilter over I. Then, for any
f1, ..., fn ∈

∏
D Ai, we have that∏

D

Ai |= ϕ(f1, ..., fn) ⇐⇒ {i ∈ I : Ai |= ϕ(f1(i), ..., fni
)} ∈ D.

So what does this theorem actually mean? First of all, note that if each Ai agrees
on some (first-order) sentences in L , then

∏
D Ai also agrees on that sentence. In

fact, if D thinks some subset of I is large, and all the models of the large set agree
(disagree) on some sentence, then

∏
D Ai also agrees (disagrees) on that sentence.

Free ultraproducts can be thought of as averaging on an infinite set. They pick
up on what is happening in general while forgetting about small perturbations
and outliers. We will consider the following example to give an intuition on how
ultraproducts work.

Example 3.10. First note that the axioms of an algebraically closed field are
first-orderizable in the language L = {0, 1,+,×}. We will denote ACF to mean
algebraically closed field while ACFp will mean algebraically closed field of charac-
teristic p. Let P denote the set of standard primes. Furthermore, let Ap |= ACFp
and so each model, Ap is an algebraically closed field of characteristic p. Let D be
a nonprincipal ultrafilter of P. Now, we consider the object

∏
D Ai. Note that since

Ai |= ACF for all i ∈ P, it follows that
∏
D Ai |= ACF and so

∏
D Ai is an alge-

braically closed field. We will now find this field’s characteristic. By proposition
3.5, there is no finite set in D. Since D is an ultrafilter, this means that D contains
all cofinite sets. Define ϕi, for all i ∈ N as follows:

ϕi ≡ ¬(1 + 1 + 1...+ 1︸ ︷︷ ︸
i

= 0).

For i ∈ N, Aj |= ϕi for j 6= i. Hence, we know that ϕi is true on a cofinite subset
of P. Therefore,

∏
D Ai cannot have characteristic i for any i ∈ N (recall that fields

cannot have composite characteristic anyway). Since
∏
D Ai is a field and must

have some characteristic, it has characteristic 0.

Definition 3.11 (Ultrapower). If I is an indexing set and D is an ultrafilter over
I, then

∏
D Ai is an ultrapower if for any i, j ∈ I, we have that Ai ∼= Aj

Since the indexing of our models no longer provides a method of differentiation
we will simply write ultrapowers as

∏
D A when I is fixed. This construction, in

relation to ultraproducts, might seem a little odd at first. We already know the
exact set of first-order sentences that

∏
D A satisfies. The proof that

∏
D A ≡ A

is a trivial corollary to  Loś’s theorem. The following example begins to show how
ultrapowers can be different from the models used to construct them.

Example 3.12. Let A = (N;≤, S) where ≤ has its normal interpretation and S
is interpreted as the unary successor function1. We let I be countable and let D

1Note that S can be defined in the language {≤}. We have added S to our language to simplify
our arguments.
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be a nonprincipal ultrafilter over I. Note that (N;≤, S) is well-ordered. We will
show that

∏
D A is not. Consider the element f = (1, 2, 3, 4, ...) ∈

∏
D A. Notice

that for every m ∈ N, m ≤ f(i) is true on a cofinite set and as a result, true on a
large set. Therefore, the element f is larger than every standard natural number.
Furthermore, it is easy to show that N |= (∀x)(x 6= 0 → (∃y)(S(y) = x)). This
statement simply reads: Every element not equal to 0 has a direct predecessor.
Thus, we can find an infinite descending chain beginning with f . The chain begins
like this:

(1, 2, 3, 4, 5, ...)

(0, 1, 2, 3, 4, ...)

(0, 0, 1, 2, 3, ...)

...

We know that this chain does not terminate after finitely many steps, since if it
did, then f would be some standard natural number. Since

∏
D A has an infinite

descending chain, we know that
∏
D A is not well ordered.

Now, if you know some basic logic, you should be making a connection with the
compactness theorem. Ultrapowers and ultraproducts are tools which apply the
compactness theorem. However, while compactness simply proves that a certain
model exists, ultrapowers and ultraproducts give us much more control over the
models we are constructing.

Finally, in this section, we will define regular ultrafilters.

Definition 3.13. Let D be a nonprincipal ultrafilter over some infinite indexing
set I. We say that D is a (β, α)-regular ultrafilter if there is a subset X of D such
that

1. |X| = α.
2. For any subset Y of X such that |Y | = β, we have that

⋂
Y = ∅.

We drop the (β, α) notation and just call an ultrafilter D regular if β = ω and
α = |I|. We also call X a regular subset of D if the above properties holds for X.

Since this is the type of ultrafilter we actually need for the definition of the
Keisler Order, we will prove that D regular ultrafilters exist. The following comes
from Proposition 4.3.5 in [2].

Lemma 3.14 (Regular Ultrafilter Existence). For every infinite cardinal κ, there
exists a regular ultrafilter over κ.

Proof. Let Pℵ0(κ) be the set of all finite subsets of κ. Note that |Pℵ0(κ)| = κ. Let
f : Pℵ0(κ)→ κ be a bijection and for each β ∈ κ, define Yβ = {γ ∈ κ : β ∈ f−1(γ)}.
Now, consider A = {Yβ : β ∈ κ}. It is clear that |A| = κ. Recall that if A has the
finite intersection property, then A can be extended to an ultrafilter. Consider:

n⋂
j=1

Yβj
=

n⋂
j=1

{γ ∈ I : βj ∈ f−1(γ)}.

By definition, we have,

= {γ ∈ κ : β1, ..., βn ∈ f−1(γ)} 6= ∅.
The inequality follows from the fact that f is a bijection and so if we set γ0 =
f({β1, ..., βn}), we see that the set above is non-empty. Therefore, A has the finite
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intersection property and may be extended into an ultrafilter. It should also be
clear that the intersection of countable subsets of A are empty and so A is our
regular subset of its ultrafilter extension. �

4. Saturation and Satisfaction

While ultrapowers are necessary for understanding the Keisler Order, this topic
alone is not sufficient. Another key ingredient of the Keisler Order is saturation.
This concept, along with satisfaction, will bring the Keisler Order into view.

Definition 4.1. Let A be a model in a language L . Let X ⊆ A. We say that ρ is
an n-type over X if

(1) ρ is a collection of formulas in n-free variables in the language L (X).
(2) For any finite subset ρ0 of ρ, there is some (c1, ..., cn) ∈ An such that for

any ϕi(y1, .., yn) ∈ ρ0, we have A |= ϕi(c1, ..., cn).

We say that an n-type ρ is complete if and only if it is maximally consistent.
Equivalently, ρ is a complete n-type if for any formaula ψ(y1, ..., yn) in n-free vari-
ables, (exclusively) either ψ(y1, ..., yn) ∈ ρ or ¬ψ(y1, ..., yn) ∈ ρ. Note that every
element of a model has a corresponding complete 1-type (over X ⊂ A). In fact, ev-
ery fixed n-tuple in any model has a corresponding complete n-type (over X ⊂ A).
Consider the following: if we let (a1, ..., an) be a tuple of elements in An, let

ρ ≡ {φ(y1, ..., yn) : A |= φ(a1, ..., an)}.

Definition 4.2 (Satisfaction of 1-Types). Let ρ be a complete 1-type in one free
variable. We say that ρ is satisfied/realized in A if there exists an a in A such that
A |= ϕ(a) for all ϕ(x) ∈ ρ.

We let S1(X) be the collection of all (consistent) complete 1-types over X ⊂ A.

Remark 4.3. Note that the above definition can be clearly extended to n-types and
has corresponding collections, Sn(X).

Definition 4.4 (κ-Saturation). Let κ be some infinite cardinal. We say that a
structure A is κ-saturated if for every X ⊆ A with |X| < κ, all the types in S1(X)
are realized in A.

Proposition 4.5. One can show, by induction, that is A is κ-saturated and |X| <
κ, then every type in Sn(X) is realized in A.

Proposition 4.6. Not every theory has a saturated model in every cardinality.

Before we go any further with our definition building, we will give an indepth
example.

Example 4.7 ((Q;<)). Let us consider Q in the language {<}. We will show that
there does not exist an ℵ1-saturated model of size ℵβ for ℵ0 ≤ ℵβ < 2ℵ0 . The
problem here is that we have continuum many 1-types over Q. Let E be any dense
linear order of cardinality less than 2ℵ0 . One can find an isomorphic copy of Q
inside E. Consider any two (distinct, irrational) real numberes, s and r. We will
write ρr and ρs as their complete corresponding 1-types over Q. It is not difficult to
show that ρr and ρs are finitely satisfiable, and so they are valid types. Without loss
of generality, we assume that s < r. Since s 6= r and Q is dense inside the reals, we
have that there exists q ∈ Q such that (x < q) ∈ ρs and (x > q) ∈ ρr. Hence, every
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real number corresponds to a different (complete) 1-type over a countable subset of
the model (where the countable subset is the entire model itself). Therefore, any
ℵ1-saturated model is at least size 2ℵ0 (since |R| = 2ℵ0).

However, (R;<) is not a ℵ1-saturated model of the theory of dense linear or-
derings. Let (D, <) be a ℵ1-saturated model containing Q. We will show that
(D, <) realizes a type over Q that (R, <) does not realize. Consider the type
ρξ = {x < q : q ∈ Q} ∪ {x > 0}. First note, that since the rationals are dense in
themselves, no elements of Q realize this type. However, one can easily show that
ρ is finitely satisfiable. By the compactness theorem, we note that ρξ is consistent.
Therefore, it must be satisfied in our ℵ1-saturated model (since this partial type is
over a countable parameter set). Let a be the element of D which satisfies this type.
Note that for any q ∈ Q, we have that q ≤ 0 or q > a. Suppose that r ∈ R and
r = a. Since the rationals are dense in the reals, then there must be some p ∈ Q
such that 0 < p < r. But this a contradiction. Hence, (R, <) is not ℵ1-saturated.

5. An Early Application

We have just defined a lot of new machinery, but it is probably still unclear
how ultrapowers and saturation relate to one another. This section is dedicated to
exhibiting the interaction of the two.

Definition 5.1 (Countably Incomplete Ultrafilter). An ultrafilter is said to be
countably incomplete if there exists a subset X of D such that |X| = ℵ0 and⋂
X = ∅.

We are going to show that any ultrapower, using a countably incomplete ultra-
filter, is ℵ1-saturated. However, we will need the following lemma first.

Lemma 5.2. Let D be a countably incomplete ultrafilter. Then, there exists a
countable descending chain I = I0 ⊂ I1 ⊂ I2 ⊂ ..., such that

⋂
n∈ω In = ∅.

Proof. Since D is countably incomplete, we know that there exists a set X ⊂ D
such that |X| = ℵ0 and

⋂
X = ∅. Let {Y1, ..., Yn, ...} be a well-ordering of the

elements of X. Define,

Jn =

n⋂
i=1

Yi.

Since D is a filter, it is closed under finite intersection. Therefore, Jn ∈ D for
all n < ω. Furthermore, it is clear that Jn ⊇ Jn+1 and that we have the following
equality, ⋂

i∈ω
Jn = ∅.

We also know that for each Jn, there exists some Jm such that Jn ) Jm, for
some m > n. If this was not the case, then

⋂
i∈ω Ji = Jm. Now, we can choose

a subsequence of {Ji}i∈ω such that Ji+1 is a proper subset of Ji for each i. By
well-ordering this set in the obvious way, we have found the collection that we are
looking for. �

The following theorem comes from Theorem 6.1.1 in [2].

Theorem 5.3. Let L be countable and let D be a countably incomplete ultrafilter
over some infinite set I. Then, for any collection {Ai}i∈I of L -structures, we have
that

∏
D Ai is ℵ1-saturated.
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Proof. Let C ⊂
∏
D Ai be a countable set and let ∆(x) be a set of formulas (with

one free variable) in the language L1 = L (C). It suffices to find an f/D ∈
∏
D Ai

such that f/D satisfies every finite subset of ∆(x).
Suppose that each finite subset of ∆(x) is realized in

∏
D Ai. Because L1 is

countable, we know that ∆(x) is countable. Therefore, we can well order our
elements of ∆(x) as {δ1(x), δ2(x), ...}. Since D is countably incomplete, we know
that there exists a descending chain I = I0 ⊃ I1 ⊃ I2 ⊃ ... such that

⋂
n∈ω In = ∅.

Now, we let X0 = I0 and define

Xn = In ∩ {i ∈ I : Ai |= (∃x)(δ1(x) ∧ ... ∧ δn(x))}.

Since every finite subset of ∆(x) is satisfied in
∏
D Ai we may apply  Loś’s Theorem

and we know that {i ∈ I : Ai |= (∃x)(δ1(x)∧ ...∧δn(x))} is large (hence, it is in D).
Since In is also in D, we know by definition of a filter that each Xn is in D for each
n ∈ N. Furthermore, note that

⋂
n∈ωXn = ∅ because of the following computation,⋂

n∈ω
Xn =

⋂
n∈ω

In ∩ {i ∈ I : Ai |= (∃x)(δ1(x) ∧ ... ∧ δn(x))}

=
⋂
n∈ω

In ∩
⋂
n∈ω
{i ∈ I : Ai |= (∃x)(δ1(x) ∧ ... ∧ δn(x))}

∅ ∩
⋂
n∈ω
{i ∈ I : Ai |= (∃x)(δ1(x) ∧ ... ∧ δn(x))} = ∅

By construction, we have Xn ⊃ Xn+1 for each n. Now, for all i ∈ I, we let
ni = max{n : i ∈ Xn}. Since

⋂
Xn = ∅, ni is some finite natural number for each i.

We will now construct an element, f/D, in
∏
D Ai which satisfies ∆(x). If ni = 0,

let f(i) be any arbitrary a in Ai. If ni > 0, choose f(i) ∈ Ai such that,

Ai |= δ1(f(i)) ∧ ... ∧ δni(f(i)).

Note that for any i ∈ Xn, we have that n ≤ ni (by definition) and therefore Ai |=
δn(f(i)). Since Xn is a large set, by  Loś’s theorem, we have that

∏
D Ai |= δn(f/D)

for every n. So f/D satisfies ∆(x).
�

Remark 5.4. Note that every regular ultrafilter is countably incomplete.

Corollary 5.5. If D is a nonprincipal ultrafilter over N and {Ai}i∈N is a collection
of L -structures, then

∏
D A is ℵ1-saturated.

Proof. By the theorem above, it suffices to show that every nonprincipal ultrafilter
over N is countably incomplete. Recall that since D is nonprincipal, it contains all
cofinite sets. Now, let I0 = N and define,

In+1 = In − {n}.

It is clear that In ∈ D as well as the fact that In ⊃ In+1 for n ∈ ω. It is also
clear that

⋂
n∈N In is empty by construction. Therefore, every ultrafilter over N is

countable incomplete. Hence,
∏
D Ai is ℵ1-saturated by the previous theorem. �
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6. The Order

Now that we have all the necessary definitions in place, we can finally define the
Keisler Order.

Definition 6.1 (Keisler Order). We say that a theory T1 Eκ T2 is for any A1 |= T1,
A2 |= T2, and regular ultrafitler D over κ, we have that if

∏
D A2 is κ+-saturated

then
∏
D A1 must be κ+-saturated. Now we say that T1 E T2 if for every infinite

cardinal, κ, we have that T Eκ T2. This second definition, E, is the Keisler Order.

Note that the ultraproduct construction is on models while the order is on theo-
ries. Therefore, we still need to show that this definition is well defined (i.e. that it
is not dependent on our choice of model). The following theorem is from Corollary
2.1a of [3].

Theorem 6.2. Fix some language L and some indexing set I. Furthermore,
suppose that A ≡ B over L and D is a regular ultrafilter over I. Then we have
that

∏
D A is α+-saturated if and only if

∏
DB is α+-saturated.

Proof. We need a method of translation between the two ultrapowers. Usually,
one can get away with confusing parameters and constant symbols in the language.
In this argument, we will need to be careful and make use of the L (α) language
discussed in the introduction. Note that the two directions have identical proof.
Assume, without loss of generality, that

∏
DB is α+-saturated. Let X = {Yi}i∈I

be a regular subset of D. Fix C ⊂
∏
D A where |C| = α.

For clarity, for each element f/D in
∏
D Ai, we fix a section map. In particular,

we fix some function f ′ in
∏
i Ai such that f ′/D = f/D. Let a = (f/Dβ : β < α) be

an α-enumeration the elements of C. Then, if we fix some index i we have a sequence
of elements in Ai of length α (with possible repetitions) via a(i) = (f ′β(i))β<α where

f ′β is our fixed section map for f/Dβ . Then both (
∏
D A, a) and, for any fixed index

i in I, (A, a(i)) are L (α)-structure. Let ∆(x) be a collection of formulas in one
free variable (in the expanded language L (α)) such that ∆(x) is finitely satisfiable
in (
∏
D A, a). It suffices to find some f/D in

∏
D Ai such that f/D realizes ∆(x).

Now, since |∆| ≤ |X| = α, we let h be an injection from ∆ into X. We define,

∆(i) = {δ(x) ∈ ∆(x) : i ∈ h(δ(x))},

and,

Xi = h(∆(i)) = {h(δ(x)) : δ(x) ∈ ∆(i)}.
Note that ∆(i) is finite. If ∆(i) were infinite, then we could find a infinite

collection of elements in X such that their intersection would be non-empty which
would contradict the regularity of X. We let Γ(i) be the collection of sentences in
L (α) with the following description;

Γ(i) = {(∃x)
∧

δ(x)∈s

δ(x)|s ∈ P(∆(i))− ∅}

Note that Γ(i) is a valid collection of first-order formulas since ∆(i) is finite. Γ(i)
is simply every possible subcollection of sentences in ∆(i). Since Γ(i) is finite and

Ai ≡ Bi we can construct a sequence of points, (bβi )β<α, in Bi such that,

Γ(i) ∩ Th((Ai, a(i)) = Γ(i) ∩ Th((Bi, (b
β
i )β<α))
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This follows from the fact that every n-type over a finite set is realized in every
model. By construction, any subset of Γ(i) is finitely satisfiable in (Ai, a(i)) if and

only if it is finitely satisfiable in (Bi, (b
β
i )β<α). Notice that now we have turned

Bi into a L (α)-structure by adding the sequence of points b(i). We now wish to
construct a sequence in

∏
DBi. In particular, we want to have some b similar to a.

Let gβ be the element in
∏
i∈I Bi given by gβ(i) = bβi . Then, we let b = (gβ/D)β<α.

Hence, (
∏
DBi, b) is naturally a L (α)-structure.

We claim that ∆(x) is finitely satisfiable in (
∏
DBi, b). Fix δ1(x), ..., δn(x) in

∆(x). Then, let ϕ = (∃x)
∧n
j=1 δj(x). One must first check that {i ∈ I : ϕ ∈ Γ(i)}

is in D. By construction, we have that for each j ≤ n, {i ∈ I : i ∈ h(δj(x))} is in
D by construction. The intersection of these sets is also in D. Notice,

n⋂
j=1

{i ∈ I : i ∈ h(δj(x))} = {i ∈ I : δ1(x), ..., δn(x) ∈ ∆(i)}

= {i ∈ I : (∃x)

n∧
j=1

δj ∈ Γ(i)} = {i ∈ I : ϕ ∈ Γ(i)}.

Since ∆(x) is finitely satisfiable in (
∏
D A, a), we know that (

∏
D Ai, a) |= ϕ.

By  Loś’s Theorem, (Ai, a(i)) |= ϕ for D-almost all i (call this indexing collection

J). Then, (Bi, (b
β
i )β<α) |= ϕ for any i in the collection {i ∈ I : ϕ ∈ Γ(i)} ∩ J .

This set is the intersection of two large sets and so by  Loś’s Theorem, we have that
(
∏
DB, b) |= ϕ.
Since

∏
DB is α+-saturated and the size of ∆(x) is less than α, we may conclude

that ∆(x) in realized in (
∏
DBi, b). Let g ∈

∏
I B such that g/D realizes ∆(x).

Now, we just need to use our machinary to move g/D back to
∏
D Ai. For each

i ∈ I, we let Θ(i) be the set of δ(x) ∈ ∆(i) such that (Bi, (b
β
i )β<α) |= δ(g(i)). By

definition, Θ(i) is finitely satisfiable in (Bi, (b
β
i )β<α). Therefore, by construction,

Θ(i) is also finitely satisfiable in (A, a(i)). Note that since Θ(i) is finite, we can find
an element f(i) ∈ Ai such that A |= δ(f(i)) for δ(x) ∈ Θ(i). Finally, we can now
show that f/D satisfies ∆(x) in (

∏
D Ai, a). Let δ(x) ∈ ∆. Then {i : δ(x) ∈ ∆(i)}

is large. Now, g/D satisfies δ(x) in (
∏
DB, b), so g(i) satisfies δ(x) in (Bi, b(i))

for D-almost all i. Thus, we have that δ(x) ∈ Θ(i) for D-almost all i. It follows
that f(i) satisfies δ(x) in (Ai, a(i)) for D-almost all i, and therefore, f/D satisfies
δ(x) in (

∏
D A, a). Since δ(x) was arbitrary, it follows that f/D realizes the type

∆(x). �

7. Existence of a Maximal Class

In this section, we will prove the existence of a maximal class. The theories we
will show are maximal, in some sense, understand the concept of saturation. The
theories encode the idea of saturation. Note that the main proof in this section
provides a sufficient condition for maximality.

Definition 7.1. (Weak Ideals): Let n ∈ N. We say that T is a weak ideal over n if
1. T ⊆ P(n) and T 6= ∅.
2. If t ∈ T and ∅ 6= s ⊂ t, then s ∈ T .

The following example is the key concept to keep in mind when understanding
why weak ideals are important.
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Example 7.2. Let ∆ = {δ1, ..., δn} be a finite collection of sentences. Suppose
that A |= δi1 ∧ ... ∧ δim where m ≤ n. Then, if we let,

T = {s ∈ P(n) : A |=
∧
k∈s

δk}

then, T is a weak ideal over n.

Definition 7.3. (Versatile Formula): Let ϕ(x, ȳ) be some formula in a language
L . Then, for every n and weak ideal T over n, we define the formula,

θT (y1, ..., yn) =

([ ∧
t∈T

(∃x)
∧
m∈t

ϕ(x, ym)
]
∧
[ ∧
t 6∈T

¬(∃x)
∧
m∈t

ϕ(x, ym)
])
.

We say that ϕ(x, y) is a versatile formula if for every n and every weak ideal T over
n, we have that A |= ∃y1, ..., ynθT (y1, ..., yn).

At first glance, the versatile formula might seem a little daunting. Note that in
the standard model of arithmetic, (N; +,×, 0, 1), the formula

ϕ(x, y) ≡ (∃z)[(z × x = y) ∧ (x 6= 1)],

is a versatile formula. ϕ just states that x is a non-trivial divisor of y. The following
is from Theorem 3.1 in [3].

Theorem 7.4. There exists a maximal class with respect to the Keisler Order.

Proof. We show that if A has a versatile formula, then A is maximal. Let D be a
regular ultrafilter and suppose that

∏
D A is α+-saturated. It suffices to show that

for any (countable) language L ′ and any L ′-structure B,
∏
DB is α+-saturated.

Let W be a subset of
∏
DBi of size α. Let b be some α-enumeration of W .

Let ∆(x) be a collection of formulas in one free variable (in the language L (α)).
Suppose that ∆(x) is finitely satisfiable in (

∏
DB, b). We want to show that ∆(x)

is realized in (
∏
DB, b). For each i in I we fix b(i), an α-enumeration of elements

in Bi such that (∏
D

B, b
)
∼=
∏
D

(Bi, b(i)).

This can by done by by  Loś’s Theorem. Let X be a regular subset of D. Let
h : ∆(x)→ X be an injection. As in the proof of Theorem 6.2, we define

∆(i) = {δ(x) ∈ ∆(x) : i ∈ h(δ(x))}.
Notice that each ∆(i) is finite for the same reason as Theorem 6.2. Now, for i ∈ I
we can write ∆(i) = {δ1(x), ..., δn(x)}. We define,

T (i) = {t ⊂ n : t 6= ∅,
(∏

D

B, b
)
|= (∃x)

∧
m∈t

δm(x)}.

Since ∆(x) is finitely satisfiable, we know that T (i) is a weak ideal over n. Let
ϕ(x, ȳ) be a versatile formula for A. Assume that |y| = k, i.e. y = (y1, ..., yk). Then,
for any n > 0 and F a weak ideal over n, we have that the formula θF (y1, ..., yn)
is finitely satisfiable in A. In particular, θT (i)(y1, ..., yn) is finitely satisfiable in

A. We let a1,i, ..., an,i be a sequence of elements in A|y| which satisfy the formula
θT (i)(y1, ..., yn) in the obvious way. Now, for fixed δ(x) ∈ ∆(x), we choose a function

fδ from I to A|y| such that for any i such that δ(x) ∈ ∆(i) (and so δ(x) = δl(x) for
some l less than or equal to |∆(i)|), we have that fδ(i) = al,i. Moreover, since |y| =
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k, we can split fδ into functions which map from I into A. In particular, for l ≤ k, we
let fδ,l map from I to A such that fδ(i) = (fδ,1(i), ..., fδ,k(i)). Now, for every l ≤ k,
we define gδ,l as fδ,1/D. We notice that the cardinality of {gδ,l : δ(x) ∈ ∆(x), l ≤ k}
is equal to α. We let a be an enumeration of this set. Therefore, (A, a) is a
L (α) structure. Notice that for any index j, we have well-defined L (α) structure,
(Ai, a(i)) where a(i) is induced enumeration of {fδ,l(i) : δ(x) ∈ ∆(x), l ≤ k}.

Now, for every δ(x) in ∆(x), we consider the formula σδ(x) = ϕ(x, cδ,1, ..., cδ,k)
where cδ,l is the constant in L (α) corresponding to the element gδ,l. By construc-
tion, for any i ∈ I and δ1(x), ..., δn(x) ∈ ∆(i), we have that δ1(x)∧ ...∧ δm(x) holds
in (B, b(i)) if and only if σδ1(x) ∧ ... ∧ σδn(x) holds in (A, a(i)). Since (∃x)δ1(x) ∧
...∧ δm(x) holds on a large subset of D, we also know that ∃(x)σδ1(x)∧ ...∧ σδn(x)
holds on a large subset of D. Therefore, σδ1(x)∧ ...∧σδn(x) is satisfied in (

∏
D A, a)

and the set Φ = {ϕδ : δ ∈ ∆} is finitely satisfiable in (
∏
D A, a). Since

∏
D A is

α+-saturated and |Φ| ≤ α, Φ is realized in
∏
D A. Let g/D satisfy Φ.

We now construct a map from I into B. For each i in I, we let f(i) ∈ B
be an element which satisfies δ(x) whenever δ(x) ∈ ∆(i) and g(i) satisfies φδ(x).
Notice that f(i) satisfies δ(x) on a large set because {i ∈ I : δ(x) ∈ ∆(i)} and
{i ∈ I : Ai |= σδ(g(i))} are both large sets. Therefore, f/D satisfies ∆ in (

∏
DB, b).

Hence,
∏
DB is α+-saturated.

�

Note that by our theorem in the last section, we now know that the theory of
arithmetic is maximal with respect to the Keisler Order. However, a necessary and
sufficient condition for maximality is still unknown.

As stated at the beginning of the paper, the complete order type of the Keisler
Order is still unknown. It is known that there exists a minimal class, at least two
non-minimal and non-maximal classes, and a maximal class. At the time of this
editing, it is also known that the Keisler order is infinite has contains an infinite
descending chain of classes [5].
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