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Abstract. We explore properties of the fractional Laplacian, particularly for

negative exponent, which allows us to examine the solutions of the fractional
Laplace equation. We prove several regularity results involving Sobolev and

Besov spaces for Bessel potentials. These results are then easily extended to

solutions of the fractional Laplace equation.
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1. Introduction

In this paper, we wish to explore properties of the fractional Laplacian and,
more particularly, the fractional Laplace equation, which are generalizations of the
usual Laplacian and Laplace equation. The fractional Laplacian appears in various
partial differential equations and has applications in other areas, such as probability
and mathematical finance. For instance, just as the usual Laplace equation has
connections to Brownian motion, the fractional Laplace equation has connections
to the more general Levy processes. However, we will restrict our discussion to
regularity of solutions to the fractional Laplace equation.

First we wish to motivate the definition of the fractional Laplacian. Consider

the Laplacian ∆f =
∑n
j=1

∂2f
∂x2
j

of a sufficiently nice function f (it suffices to take f

in the Schwartz space, S). For the remainder of this paper, we will use f̂ to denote
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the Fourier transform of a function f . Note that

(̂∆f)(x) =

∫
Rn

∆f(y)e−2πiy·x dy

=

n∑
j=1

∫
Rn

∂2f

∂y2j
(y)e−2πiy·x dy

=

n∑
j=1

∫
Rn
f(y)(−2πixj)

2e−2πiy·x dy

= −4π2
n∑
j=1

x2j f̂(x)

= −4π2|x|2f̂(x),

where we have integrated by parts twice and used the rapid decay of both f and
its first-order partial derivatives at infinity. Thus, we have the relation

(1.1) (̂−∆f)(x) = (2π|x|)2f̂(x).

We therefore choose to define the fractional Laplacian from this expression.

Definition 1.2. For 2α ∈ (−n, n), the fractional Laplacian is the operator ∆α

satisfying the relation

̂(−∆αf) = (2π|x|)2αf̂

for all f ∈ S.

Note that in light of (1.1), it is clear that when α = 1 the above definition agrees
with the usual definition of the Laplacian.

Using this operator, we may define the fractional Laplace equation for a domain
Ω ⊂ Rn:

(−∆)αu = f on Ω,

for some function f . Note that when α = 1, this is precisely the usual Laplace
equation. We will explore the regularity of solutions to this equation in the full
space (i.e. when Ω = Rn). In order to do this we will explore regularity of solutions
to a similar equation and then show that these results hold for the fractional Laplace
equation.

This paper is outlined as follows. In Section 2, we will define two operators that
give the solutions to our two equations. We will discuss different representations of
these operators and will prove some basic properties. We complete this discussion in
Section 3, in which we prove that the operator for the fractional Laplace equation
is bounded for certain Lp spaces. Our goal is to prove several regularity results
about solutions to the fractional Laplace equation, which we achieve in Section
6. However, these results require us to introduce certain function spaces, namely
Sobolev and Besov spaces, that give some measure of regularity of functions. We
do this in Section 4. Furthermore, we compare the regularity of solutions to the
fractional Laplace equation to those of the usual Laplace equation in Section 5.
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2. Preliminaries

We have already defined the fractional Laplacian ∆α. Note that our definition
works for negative α, so if

(−∆)αu = f

for α > 0, then

u = (−∆)−αf.

Thus, our main concern will be the operator (−∆)−α.

Definition 2.1. For 0 < 2α < n, we define the α Riesz potential to be

(2.2) Iαf = cα

∫
Rn
|x− y|2α−nf(y) dy,

where

cα =
Γ
(
n
2 − 2α

)
πn/222αΓ(α)

.

We claim that Iαf = (−∆)−αf . To see this, note that for δ > 0, the Fourier

transform of e−πδ|x|
2

is e−π|x|
2/δδ−n/2. Then by Plancherel’s formula, we have

that for any ϕ ∈ C∞c (the space of compactly supported infinitely differentiable
functions), ∫

Rn
e−πδ|x|

2

ϕ(x) dx =

∫
Rn
e−π|x|

2/δδ−n/2ϕ̂(x) dx.

Multiplying both sides by δ
n−2α

2 −1 and integrating, we see that∫ ∞
0

δ
n−2α

2

∫
Rn
e−πδ|x|

2

ϕ(x) dx dδ =

∫ ∞
0

∫
Rn
e−π|x|

2/δδ−α−1ϕ̂(x) dx dδ.

Using Fubini’s theorem, we have that the left side of this is simply

Γ

(
n− 2α

2

)
πα
∫
Rn
|x|2α−nϕ(x) dx,

and the right side is

Γ (α)π−α
∫
Rn
|x|−2αϕ̂(x) dx.

But then we have that

̂|x|2α−n =
Γ (α)

Γ
(
n−2α

2

)π−2α+n/2|x|−2α =
(2π|x|)−2α

cα
.

If we let Kα = cα|x|2α−n, we see that Iαf is the convolution of f and Kα, i.e.
Iαf(x) = (Kα ∗ f)(x). Thus, we have that

Îαf(x) = K̂α ∗ f(x) = K̂αf̂ = (2π|x|)−2αf̂(x).

But then it is clear that Iαf = (−∆)−αf .
This gives us a more useful expression for the fractional Laplacian. From this,

however, it is clear that although Kα behaves nicely locally, its behavior at infinity
is less favorable, particularly if 2α is close to n. To correct for this, we define a
similar operator Jα = (I −∆)−α, where I is the identity operator. We may then
consider the analogous equation

(I −∆)αu = f,
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or

u = (I −∆)−αf = Jα(f).

It will be much easier to prove regularity results for Jα and then check that these
results carry over to Iα. As with Iα, we can represent Jαf as a convolution of f
with a kernel. In this case, we want the kernel

Gα(x) =
1

(4π)αΓ(α)

∫ ∞
0

e−π|x|
2/δe−δ/4πδα−n/2

dδ

δ
.

For a proof that Jαf = Gα ∗ f , see [3, p. 132]. We note that for any α, Jα

is a bounded operator from Lp(Rn) to Lp(Rn). This follows from the fact that if
f ∈ Lp, then

‖Jαf‖p = ‖Gα ∗ f‖p ≤ ‖Gα‖1‖f‖p = ‖f‖p,
so Jαf ∈ Lp. It will also be useful later on to note that

Ĝα(x) = (1 + 4π2|x|2)−α.

3. Boundedness of Iα

Although we have defined the operator Iα on the Schwartz space, we wish to
consider its action on more general spaces, for instance on Lp(Rn). First we need
to discover when the integral (2.2) converges for f ∈ Lp(Rn). If we have almost
everywhere convergence for this expression, then we may explore the possibility that
Iα is a bounded operator from Lp(Rn) to Lq(Rn) for some p, q. In the proof of the
theorem below, we use the following interpolation result. Suppose p0, q0, p1, q1 ∈
[1,∞] such that p0 ≤ q0, p1 ≤ q1, and q0 6= q1 and

1

p
=

1− t
p0

+
t

p1

1

q
=

1− t
q0

+
t

q1

for t ∈ (0, 1). If T is a sublinear map defined on Lp0(Rn) + Lp1(Rn) and T is of
weak types (p0, q0) and (p1, q1), then T is bounded from Lp(Rn) to Lq(Rn). For a
proof of this result, see [1, 3.8].

Theorem 3.1. Let 0 < 2α < n and 1 ≤ p < q < ∞ such that 1
q = 1

p −
2α
n . Then

for f ∈ Lp(Rn),

Iαf(x) = cα

∫
Rn
|x− y|2α−nf(y) dy

converges for almost every x and, moreover, if p 6= 1, there exists a constant C
such that

‖Iαf‖q ≤ C‖f‖p.

Proof. As noted above, Iαf is really the convolution of f with the kernel Kα(x) =
cα|x|2α−n. For convenience, we fix c > 0 and write Kα = K1 +K2, where

K1(x) =

{
Kα(x) |x| ≤ c
0 |x| > c

K2 =

{
0 |x| ≤ c
Kα(x) |x| > c.

Then we have that Iαf = Kα∗f = K1∗f+K2∗f. Thus, to show almost everywhere
convergence of Iαf , it suffices to show that both K1 ∗f and K2 ∗f are finite almost
everywhere. Now, −n < 2α− n, so

cα

∫
|x|≤c

|x|2α−n dx <∞,



REGULARITY OF SOLUTIONS TO THE FRACTIONAL LAPLACE EQUATION 5

i.e. K1 ∈ L1(Rn). Thus, if f ∈ Lp(Rn), it follows from Fubini’s Theorem that
‖K1 ∗ f‖p ≤ ‖K1‖1‖f‖p <∞, so K1 ∗ f ∈ Lp(Rn). But this implies that K1 ∗ f is
finite almost everywhere.

Now let p′ be the dual exponent to p. Then since 1
p + 1

p′ = 1 and 1
p −

2α
n = 1

q ,

we have that
1

q
=
p′(n− 2α)− n

np′
.

Thus, since q 6= ∞ and q, p′, n are positive, we have that p′(n − 2α) > n, i.e.
p′(2α− n) < −n. But then

cα

∫
|x|≥c

|x|p
′(2α−n) dx

converges, so K2 ∈ Lp
′
(Rn). Then by Hölder’s inequality,

‖K2 ∗ f‖1 ≤ ‖K2‖p′‖f‖p.
Hence, K2 ∗ f ∈ L1(Rn) and thus is finite almost everywhere. But then we have
that Iαf is finite almost everywhere.

In order to show that Iα is a bounded operator from Lp(Rn) to Lq(Rn), we will
show that for all λ > 0,

(3.2) m({x : |Iαf(x)| > λ}) ≤ A‖f‖qpλ−q,
for some constant A depending only on p and q, i.e. that Iα is weak-type (p, q).
Then, in particular, Iα is weak-types (1, q) and (p, q), so we may apply the Marcinkiewicz
Interpolation Theorem (stated above) to obtain the result.

Note that it suffices to show that (3.2) holds for f ∈ Lp(Rn) with ‖f‖p = 1.
This follows from the fact that f/‖f‖p has p-norm 1, so given (3.2) for functions
of norm 1, we have that

m({x : |Iαf(x)| > λ}) = m

({
x :
∣∣∣Iα( f

‖f‖p

)
(x)
∣∣∣ > λ

‖f‖p

})
≤ A
‖f‖qp
λq

.

Now note that

m({x : |Iαf(x)| > λ}) = m({x : |Kα ∗ f(x)| > λ})
≤ m({x : |K1 ∗ f(x)| > λ/2}) +m({x : |K2 ∗ f(x)| > λ/2}).

Furthermore, we have that

λp

2p
m({x : |K1 ∗ f(x)| > λ/2}) ≤

∫
Rn
|K1 ∗ f(x)|p dx = ‖K1 ∗ f‖pp ≤ ‖K1‖p1‖f‖pp = ‖K1‖p1.

Now,

‖K1‖1 = cα

∫
|x|≤c

|x|2α−n dx = A

∫ c

0

r2α−n+n−1 = Ac2α.

From the above two expressions it then follows that

m({x : |K1 ∗ f(x)| > λ/2}) ≤ Ac2αpλ−p.
Since this holds for any c > 0, we can choose c = λ−q/n. Then c2αp = λp−q, so for
‖f‖p = 1, we have

m({x : |K1 ∗ f(x)| > λ/2}) ≤ Aλ−q = A‖f‖qpλ−q.
Now we claim that ‖K2 ∗ f‖∞ = 0. By Hölder’s inequality, we already have that

‖K2 ∗ f‖∞ ≤ ‖f‖p‖K2‖p′ .
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Using c = λ−q/n as above, as well as the fact that p′(n− 2α)− n = np′/q, we have

‖K2‖p
′

p′ = cα

∫
|x|≥c

|x|p
′(2α−n) dx

= B

∫ ∞
c

rp
′(2α−n)+n−1 dr

= Bcp
′(2α−n)+n

= Bc−
np′
q

= Bλp
′
.

Thus, ‖K2 ∗ f‖∞ ≤ B‖f‖pλ for all λ > 0, so we must have that ‖K2 ∗ f‖∞ = 0.
But then K2 ∗f = 0 almost everywhere, so m({x : |K2 ∗ f(x)| > λ/2}) = 0. Hence,
we have that

m({x : |Iαf(x)| > λ}) ≤ m({x : |K1 ∗ f(x)| > λ/2}) ≤ A‖f‖qpλ−q,

as desired. �

4. Sobolev and Besov Spaces

Before proceeding to our regularity results, we need to define two function spaces
that provide some measure of regularity and in which we will look for solutions to
our differential equations.

Suppose f ∈ Ck(Rn) for k ≥ 1 and f is locally integrable. We will denote by ∂αf
∂xα

the partial derivative ∂|α|f
∂x
α1
1 ...∂xαnn

for α = (α1, . . . , αn) and |α| = α1 + · · ·+ αn ≤ k.

Let ϕ ∈ C∞c . Then integration by parts gives us

(4.1)

∫
Rn
f
∂αϕ

∂xα
dx = (−1)|α|

∫
Rn

∂αf

∂xα
ϕdx,

where the boundary terms are zero since ϕ has compact support. We use this
expression to define the notion of a weak derivative.

Definition 4.2. A function f ∈ L1
loc(Rn) (i.e. a locally integrable function f) is

weakly differentiable in L1
loc(Rn) if there exists a function g ∈ L1

loc(Rn) such that∫
Rn
f
∂αϕ

∂xα
dx = (−1)|α|

∫
Rn
gϕ dx

holds for all ϕ ∈ C∞c . We say that g is the α-th weak derivative of f , and use the

notation g = ∂αf
∂xα .

From (4.1), it is clear that if f is differentiable, then the weak derivative coincides
with the ordinary derivative. The notion of weak derivatives is particularly useful
in partial differential equations because it allows one to find “weak” solutions (those
only weakly differentiable) to problems for which classical solutions may not exist.
Accordingly, we will define spaces of weakly differentiable functions with a norm
giving some measure of regularity of these functions. We will then be able to
measure regularity of solutions to equations when they fall into these spaces.

Definition 4.3. The Sobolev spaceW k,p(Rn) is the space consisting of all functions
in Lp(Rn) whose α-th weak derivatives exist and are in Lp(Rn) for all multi-indices
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α with |α| ≤ k. The norm of a function f ∈W k,p is defined as

‖f‖Wk,p = ‖f‖p +
∑

0<|α|≤k

∣∣∣∣∣
∣∣∣∣∣∂αf∂xα

∣∣∣∣∣
∣∣∣∣∣
p

.

In fact, W k,p is a Banach space under this norm. This follows easily from the

fact that if {fk} is a Cauchy sequence in W k,p, then {∂
αfk
∂xα } is a Cauchy sequence

in the Banach space Lp. In the special case when p = 2, W k,p is a Hilbert space,
which we will denote by Hk.

Let y > 0. We define

Py(x) =
any

(|x|2 + y2)
n+1
2

,

where an = Γ(n+1
2 )/π

n+1
2 . (Note that Py is the Poisson kernel, i.e. the solution

to the Laplace equation in the upper half plane with f = 0 can be obtained by
convolution of Py with the boundary function.)

Definition 4.4. For α > 0, 1 ≤ p ≤ ∞, 1 ≤ q < ∞, and k = dαe, we define the
Besov space Bαp,q to be

Bαp,q =

{
f ∈ Lp(Rn) :

∫ ∞
0

yk−α∣∣∣∣∣
∣∣∣∣∣∂k(Py ∗ f)

∂yk

∣∣∣∣∣
∣∣∣∣∣
p

q

dy

y

1/q

<∞

}
.

We define the norm of f ∈ Bαp,q to be

‖f‖Bαp,q = ‖f‖p +

∫ ∞
0

yk−α∣∣∣∣∣
∣∣∣∣∣∂k(Py ∗ f)

∂yk

∣∣∣∣∣
∣∣∣∣∣
p

q

dy

y

1/q

.

For q =∞, we define

Bαp,∞ =

{
f ∈ Lp(Rn) : sup

y>0
yk−α

∣∣∣∣∣
∣∣∣∣∣∂k(Py ∗ f)

∂yk

∣∣∣∣∣
∣∣∣∣∣
p

<∞

}
with the norm

‖f‖Bαp,∞ = ‖f‖p + sup
y>0

yk−α

∣∣∣∣∣
∣∣∣∣∣∂k(Py ∗ f)

∂yk

∣∣∣∣∣
∣∣∣∣∣
p

.

Note that Besov spaces are complete with respect to these norms.
While the expressions in this definition may seem overwhelming, it is most im-

portant to note the roles that p, q, α play in controlling the regularity of functions in
Bαp,q. Clearly, p determines integrability of functions, as well as the starting norm,
and α controls the smoothness of functions. Less obvious is that q plays a subtler
role in determining smoothness.

5. A Regularity Result for the Usual Laplace Equation

We now move to our regularity results. First we wish to find some relationship
between the number of weak derivatives of f and the number of weak derivatives
of Iαf . To motivate this, we first consider the usual Laplace equation.
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Suppose u is a solution to −∆u = f that is sufficiently smooth and vanishes
sufficiently quickly at infinity to justify the following calculation:∫

Rn
|f |2 dx =

∫
Rn
|∆u|2 dx

=
∑
i,j

∫
Rn
uxixiuxjxj dx

= −
∑
i,j

∫
Rn
uxixixjuxj dx

=
∑
i,j

∫
Rn
uxixjuxixj dx

=

∫
Rn
|Du|2 dx.

Here we have integrated by parts twice, noting that the boundary terms disappear
due to the decay of u. The above calculation shows that if f ∈ L2, then so are
the second-order derivatives of u. Moreover, we can estimate the L2 norms of
these second-order derivatives with the L2 norm of f . Now suppose f ∈ H1.
Differentiating our differential equation (in the weak sense), we then have

−∆uxi = fxi .

Repeating the above calculation, we will find that we can again estimate the L2

norm of the third-order derivatives of u by the L2 norm of the first-order derivatives
of f . This shows that u ∈ H3. More generally, if we have that f ∈ Hk, after
differentiating the differential equation and repeating the above calculation, we will
have that u ∈ Hk+2. Thus we find that, at least in the case when u is sufficiently
smooth and well-behaved at infinity, we can guarantee that u has at least two more
L2 derivatives than f . We find that a similar statement holds for the fractional
Laplace equation.

Theorem 5.1. Suppose f ∈ L2(Rn) ∩ Lp(Rn) for q = 2 and p as in Theorem 3.1.
Then u = Iαf ∈ H2α.

Note that 2α may not be an integer. In this case, we may either conclude that
u ∈ Hb2αc, or we may conclude that u is in the fractional Sobolev space H2α (see
[2, p. 297]). In the proof of this theorem, we will use the fact that if u ∈ L2, then
for any k ≥ 0, u ∈ Hk if and only if (1 + |x|k)û ∈ L2. See [2, p. 297] for a proof of
this fact.

Proof. Since f ∈ L2(Rn), we know that f̂ ∈ L2(Rn). Since f ∈ Lp(Rn), we have
by Theorem 3.1 that u ∈ L2(Rn), so û ∈ L2(Rn) as well. Note that by definition
of Iα = (−∆)−α, we know that

û(x) = (2π|x|)−2αf̂(x).

Furthermore, we have that

(1 + |x|2α)û = û+ (2π)−2αf̂ ∈ L2.

Thus, by the fact above, we have that u ∈ H2α. �
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Theorem 5.1 shows us that, indeed, as with the usual Laplace equation, solu-
tions to the fractional Laplace equation have more weak derivatives in L2 than the
starting function. In fact, we did not even need to assume that f had any weak
derivatives to begin with.

6. Regularity of Solutions to the Fractional Laplace Equation

Now we move to some regularity results involving Besov spaces. We will first
prove the results for Jα and then show that they also hold for Iα, as desired.

Theorem 6.1. Let α > 0 and β ≥ 0. Then for f ∈ Bαp,q, Jβf ∈ Bα+βp,q .

Remark 6.2. In fact, it turns out that Jβ is an isomorphism from Bαp,q to Bα+βp,q

and the norms ‖f‖Bαp,q and ‖Jβf‖Bα+β
p,q

are equivalent. However, we need only the

weaker statement for now.

For a proof of the stronger result, see [3, p. 149].
For convenience of notation, we will introduce a new space for the next two

theorems.

Definition 6.3. For 1 ≤ p ≤ ∞ and α > 0, we define the Bessel potential spaces
L p
α to be

L p
α = Jα(Lp),

that is, f ∈ L p
α if and only if f = Jαg for some g ∈ Lp. The norm of f ∈ L p

α is
‖f‖α,p = ‖g‖p, where Jαg = f .

Note that this norm is well-defined, for if∫
Rn
Gα(x− y)g(y) dy =

∫
Rn
Gα(x− y)h(y) dy,

then ∫
Rn
Gα(x− y)(g(y)− h(y)) dy = 0,

so g = h almost everywhere and ‖g‖p = ‖h‖p.

Theorem 6.4. Suppose 1 < p < ∞ and k is a nonnegative integer. Then L p
k =

W 2k,p. Moreover, the norms ‖·‖W 2k,p and ‖·‖k,p are equivalent.

Proof. The bulk of the proof consists in proving the following lemma:

Lemma 6.5. If α ≥ 1/2, then f ∈ L p
α if and only if f ∈ L p

α−1/2 and ∂f
∂xj
∈ L p

α−1/2
for j = 1, . . . , n. Furthermore, the norm ‖f‖α,p is equivalent to the norm

‖f‖α−1/2,p +

n∑
j=1

∥∥∥∥∥ ∂f∂xj
∥∥∥∥∥
α−1/2,p

.

Once we have proven this, we note that J0f = (I − ∆)0f = f , so L p
0 =

J0(Lp) = Lp. But clearly W 0,p = Lp, so the statement holds for k = 0. If we have
shown that the statement holds for some k ≥ 0, we show that it holds for k + 1
as follows. By the claim, f ∈ L p

k+1 if and only if f ∈ L p
k+1/2 and ∂f

∂xi
∈ L p

k+1/2

for all j. By assumption f, ∂f∂xi ∈ L p
k+1/2 if and only if f, ∂f∂xi ∈ W 2k+1,p (in

particular, f ∈ Lp.) But then we know that f ∈ Lp and ∂f
∂xi
∈W 2k+1,p if and only

if f ∈W 2k+2,p. Thus, it suffices to prove the lemma.
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Proof of lemma. First suppose that f ∈ L p
α , i.e. f = Jαg for g ∈ Lp ∩ C∞c .

Using the fact that Ĝα(x) = (1 + 4π2|x|2)−α, we see that

∂̂f

∂xj
(x) = 2πixj f̂(x)

= 2πixj(1 + 4π2|x|2)−αĝ(x)

=
ixj
|x|

2π|x|
(1 + 4π2|x|2)1/2

(1 + 4π2|x|2)−α+1/2ĝ(x)

= ̂Rj(µ ∗ g)(x)Ĝα−1/2(x),

where Rj is the Riesz transform

Rjh(x) = lim
ε→0

cn

∫
|y|≥ε

yi
|y|n+1

h(x− y) dy

and µ is a finite measure on Rn such that

µ̂(x) =
2π|x|

(1 + 4π2|x|2)1/2

(the existence of such a measure is proven in [3, p. 133]). It is easy to see that this

final equality holds when we note that R̂jh(x) =
ixj
|x| ĥ(x). Thus, we have that

(6.6)
∂f

∂xj
= Jα−1/2(Rj(µ ∗ g)).

To extend this argument to all g ∈ Lp, we proceed as follows. First note that

‖µ ∗ g‖p =

(∫
Rn

∣∣∣∣∣
∫
Rn
g(x− y) dµ(y)

∣∣∣∣∣
p

dx

)1/p

≤
∫
Rn

(∫
Rn
|g(x− y)|p dx

)1/p

dµ(y)

=

∫
Rn
‖g‖p dµ(y)

= C‖g‖p,

since µ is a finite measure. Thus, µ∗g ∈ Lp, so since Rj is a bounded operator from
Lp to Lp (see [3, p. 39]), we have that Rj(µ ∗ g) ∈ Lp. Now we take a sequence
{gm} in C∞c that approximates g in the Lp norm. Then we have

‖Jα−1/2(Rj(µ ∗ g))−Jα−1/2(Rj(µ ∗ gm))‖p ≤ C‖Rj(µ ∗ g)−Rj(µ ∗ gm)‖p
≤ C‖µ ∗ (g − gm)‖p
≤ C‖g − gm‖p.

But this last quantity goes to zero, so we have that

Jα−1/2(Rj(µ ∗ gm))→Jα−1/2(Rj(µ ∗ g))

in the Lp norm, which implies that ∂fm
∂xj
→ ∂f

∂xj
in the Lα−1/2 norm (where fm =

Jαgm). Hence, ∂f
∂xj

= Jα−1/2(Rj(µ ∗ g)) for any g ∈ Lp.
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Moreover, we see that∥∥∥∥∥ ∂f∂xj
∥∥∥∥∥
α−1/2,p

= ‖Rj(µ ∗ g)‖p ≤ ‖µ ∗ g‖p ≤ C‖g‖p = C‖f‖α,p.

We also have that f = Jαg = Jα−1/2(J1/2g). Thus,

‖f‖α−1/2,p = ‖J1/2g‖p ≤ ‖g‖p = ‖f‖α,p.

But then

‖f‖α−1/2,p +

n∑
j=1

∥∥∥∥∥ ∂f∂xj
∥∥∥∥∥
α−1/2,p

≤ C‖f‖α,p.

This proves the forward direction.
Conversely, suppose that f = Jα−1/2g and ∂f

∂xj
= Jα−1/2gj for g, gj ∈ Lp.

First we wish to show that ∂g
∂xj

= gj , so that g ∈W 1,p. Let ϕ ∈ C∞c . Then∫
Rn
f(x)

∂ϕ

∂xj
(x) dx =

∫
Rn

Jα−1/2g(x)
∂ϕ

∂xj
(x) dx

=

∫
Rn
g(x)Jα−1/2

(
∂ϕ

∂xj

)
(x) dx

=

∫
Rn
g(x)

∫
Rn
Gα−1/2(x− y)

∂ϕ

∂xj
(y) dy dx

= −
∫
Rn
g(x)

∫
Rn

∂Gα−1/2

∂xj
(x− y)ϕ(y) dy dx

= −
∫
Rn
g(x)

∂

∂xj
Jα−1/2ϕ(x) dx.

On the other hand,∫
Rn
f(x)

∂ϕ

∂xj
(x) dx =

∫
Rn

∂f

∂xj
(x)ϕ(x) dx =

∫
Rn

Jα−1/2gj(x)ϕ(x) dx =

∫
Rn
gj(x)Jα−1/2ϕ(x) dx.

Combining these, we have that∫
Rn
gj(x)Jα−1/2ϕ(x) dx = −

∫
Rn
g(x)

∂

∂xj
Jα−1/2ϕ(x) dx.

Now let ψ ∈ C∞c and let ϕ̂(x) = ψ̂(x)(1 + 4π2|x|2)α. Since ψ̂ ∈ C∞c , it follows that

ϕ̂ ∈ C∞c . But then ψ̂(x) = ϕ̂(x)(1 + 4π2|x|2)−α, so ψ = Jαϕ. Hence, Jα maps
C∞c onto C∞c , so ∫

Rn
gj(x)ψ(x) dx =

∫
Rn
gj(x)Jαϕ(x) dx

= −
∫
Rn
g(x)

∂

∂xj
Jαϕ(x) dx

= −
∫
Rn
g(x)

∂ψ

∂xj
(x) dx,

and gj = ∂g
∂xj

. Thus, g ∈W 1,p. Then we can approximate g in the Lp norm by C∞c

functions {gm} such that {∂gm∂xj } converges in the Lp norm to ∂g
∂xj

(see [3, p. 122]

for a discussion of this result). As noted above, J1/2 maps C∞c onto C∞c , so there
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are functions hm ∈ C∞c such that gm = J1/2hm. We will see in Lemma 6.9, below,
that there exist finite measures ν and λ on Rn such that

1

Ĝ1(x)
= ν̂(x) +

λ̂(x)

K̂1(x)
.

If we multiply this equation by ĝm, we get that

ĥm = ν̂ĝm +
λ̂ĝm

K̂1

.

Now note that

ĝm

K̂1

=
Ĝ1

K̂1

ĥm = µ̂ĥm =

n∑
j=1

x2j
|x|2

µ̂ĥm = −
n∑
j=1

̂Rj(Rj(µ ∗ hm)) = −
n∑
j=1

̂
Rj

(
∂

∂xj
gm

)
.

Hence, taking inverse Fourier transforms, we have that

hm = µ ∗ gm − ν ∗

 n∑
j=1

Rj

(
∂

∂xj
gm

) .

Now, the Riesz tranforms are bounded operators from Lp to Lp, so it follows that

‖hm‖p ≤ ‖gm ∗ µ‖p +

n∑
j=1

∥∥∥∥∥Rj
(

∂

∂xj
gm

)∥∥∥∥∥
p

≤
∫
Rn
‖gm‖p dµ(y) + C

n∑
j=1

∥∥∥∥∥∂gm∂xj
∥∥∥∥∥
p

= C

‖gm‖p +

n∑
j=1

∥∥∥∥∥∂gm∂xj
∥∥∥∥∥
p


<∞.

Note that by repeating this argument, we may prove the same inequalities if we
replace hm with hm − hk and gm by gm − gk. Since {gm} is Cauchy, this shows
that {hm} is Cauchy as well. But then hm → h for some h ∈ Lp. Hence,

‖Jαhm −Jαh‖α,p = ‖Jα(hm − h)‖α,p = ‖hm − h‖p → 0.

Note that Jα−1/2gm = Jα−1/2(J1/2hm) = Jαhm. It follows that Jα−1/2gm →
Jα−1/2g = f in the L p

α norm. But then f ∈ L p
α . Furthermore,

‖f‖α,p = ‖h‖p ≤ C

‖g‖p +

n∑
j=1

∥∥∥∥∥ ∂g∂xj
∥∥∥∥∥
p


= C

‖g‖p +

n∑
j=1

∥∥∥∥∥ ∂g∂xj
∥∥∥∥∥
p


= C

‖f‖α−1/2,p +

n∑
j=1

∥∥∥∥∥ ∂f∂xj
∥∥∥∥∥
α−1/2,p

 ,

so the norms are equivalent and the lemma is proved. �

Corollary 6.7. If α > 0, 1 < p <∞, and f ∈ Lp, then Jαf ∈W 2k,p for k = bαc.
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Proof. First we note that if α < β, then L p
β ⊂ L p

α . This follows from the fact that

Gα ∗Gβ = Gα+β , so Jα ◦Jβ = Jα+β . Then for f ∈ L p
β , we have that f = Jβg

for some g ∈ Lp, so f = Jα(Jβ−αg). But

‖Jβ−αg‖p ≤ ‖Gβ−α‖1‖g‖p = ‖g‖p,
(since ‖Gε‖1 = 1 for any ε) so Jβ−α ∈ Lp. Hence, f ∈Jα, so L p

β ⊂ L p
α .

Now we see that if f ∈ Lp, then

Jαf ∈ L p
α ⊂ L p

k = W 2k,p,

as desired. �

Thus, Jαf has up to α weak derivatives in Lp, even if f has none.

Theorem 6.8. Suppose α > 0 and 1 < p <∞. If p ≤ 2, then

L p
α/2 ⊂ B

α
p,2 and Bαp,p ⊂ L p

α/2.

If p ≥ 2, then
Bαp,2 ⊂ L p

α/2 and L p
α/2 ⊂ B

α
p,p.

Proof. If we prove these inclusions for any particular α > 0, then by Remark 6.2,
and by a similar statement for Bessel potential spaces (under the same assumptions,
Jβ is an isomorphism from L p

α to L p
α+β–see [3, p. 135]), the inclusions will hold

for all α. Thus, we prove these inclusions for α = 1.
For this proof, we will find it convenient to define the operators

Tpf(x) =


(∫∞

0
yp|∇U |2p dyy

)1/p
1 < p <∞

supy>0 y|∇U |2 p =∞

where U = Py ∗ f is the convolution of f ∈ Lp (p < ∞) with the Poisson kernel.
We will use without proof the fact that both ‖T2f‖p and ‖T∞f‖p are equivalent to∑n
j=1 ‖

∂f
∂xj
‖p.

First we show that L p
1/2 ⊂ B1

p,2 for p ≤ 2. Since 2/p ≥ 1, we can apply

Minkowski’s inequality:(∫ ∞
0

y2
(∫

Rn
|∇U |2p dx

)2/p
dy

y

)p/2
≤
∫
Rn

(∫ ∞
0

y2|∇U |4 dy
y

)p/2
dx

= ‖T2f‖2p

≤ C

 n∑
j=1

∥∥∥∥∥ ∂f∂xj
∥∥∥∥∥
p

2

.

This is finite if f ∈W 1,p, so we then have that ‖f‖B1
p,2

<∞. Thus, L p
1/2 = W 1,p ⊂

B1
p,2.

Next we show that if p ≤ 2, then B1
p,p ⊂ L p

1/2. Note that∫ ∞
0

(y|∇U |2)2
dy

y
≤
(

sup
y>0

y|∇U |2
)2−p ∫ ∞

0

(y|∇U |2)p
dy

y
.

It follows that T2f ≤ (T∞f)1−p/2(Tpf)p/2. Then by Hölder’s inequality,

‖T2f‖p ≤ ‖(Tpf)p
2/2‖1/pr ‖(T∞f)p(1−p/2)‖1/pq = ‖Tpf‖p/2p2r/2‖T∞f‖

1−p/2
pq(1−p/2)
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for r and q any conjugate exponents. If we choose r = 2/p and q = 1/(1 − p/2),

then we get that the right side of this equation is equal to ‖Tpf‖p/2p ‖T∞f‖1−p/2p .
By the equivalence of norms mentioned above, we then have that

C

n∑
j=1

∥∥∥∥∥ ∂f∂xj
∥∥∥∥∥
p

≤ ‖T2f‖p ≤ ‖Tpf‖p/2p ‖T∞f‖1−p/2p

≤ C ′‖Tpf‖p/2p

 n∑
j=1

∥∥∥∥∥ ∂f∂xj
∥∥∥∥∥
p

1−p/2

,

which implies that C ′′
(∑n

j=1 ‖
∂f
∂xj
‖p
)
≤ ‖Tpf‖p. Hence, we are left with

C ′′
n∑
j=1

∥∥∥∥∥ ∂f∂xj
∥∥∥∥∥
p

≤ ‖Tpf‖p =

(∫ ∞
0

yp‖|∇U |2‖pp
dy

y

)1/p

≤ C ′′′
∫ ∞

0

yp

∥∥∥∥∥∂2U∂y2
∥∥∥∥∥
p

p

dy

y

1/p

≤ C ′′′‖f‖B1
p,p
.

Therefore,

‖f‖W 1,p = ‖f‖p +

n∑
j=1

∥∥∥∥∥ ∂f∂xj
∥∥∥∥∥
p

≤ ‖f‖p +

∫ ∞
0

y2

∥∥∥∥∥∂2U∂y2
∥∥∥∥∥
p

p

dy

y

1/p

= ‖f‖B1
p,2
.

Thus, B1
p,2 ⊂W 1,p = L p

1/2.

Now we will prove that B1
p,2 ⊂ L p

1/2 if p ≥ 2. Since p/2 ≥ 1, we can apply

Minkowski’s inequality to see that

‖T2f‖2p =

(∫
Rn

(∫ ∞
0

y2|∇U |4 dy
y

)p/2
dx

)2/p

≤
∫ ∞
0

(∫
Rn
yp|∇U |2p dx

)2/p
dy

y

=

∫ ∞
0

y2‖|∇U |2‖p
dy

y

≤ C
∫ ∞
0

y2

∥∥∥∥∥∂2U∂y2
∥∥∥∥∥
2

p

dy

y
.

But then we have that

C

 n∑
j=1

∥∥∥∥∥ ∂f∂xj
∥∥∥∥∥
p

2

≤ ‖T2f‖2p ≤
∫ ∞
0

y2

∥∥∥∥∥∂2U∂y2
∥∥∥∥∥
2

p

dy

y
.

Hence,

‖f‖W 1,p = ‖f‖p +

n∑
j=1

∥∥∥∥∥ ∂f∂xj
∥∥∥∥∥
p

≤ ‖f‖p +

∫ ∞
0

y2

∥∥∥∥∥∂2U∂y2
∥∥∥∥∥
2

p

dy

y

1/2

= ‖f‖B1
p,2
.
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Then by Theorem 6.4, we have that

B1
p,2 ⊂W 1,p = L p

1/2.

Finally, we show that L p
1/2 ⊂ B

1
p,p if p ≥ 2. Since∫ ∞

0

(y|∇U |2)p
dy

y
≤
(

sup
y>0

y|∇U |2
)p−2 ∫ ∞

0

(y|∇U |2)2
dy

y
,

we have that Tpf ≤ (T∞f)(p−2)/p(T2f)2/p. Applying Hölder’s inequality for conju-
gate exponents p/(p− 2) and p/2, we find that

‖Tpf‖p ≤ ‖T∞‖1−2/pp ‖T2‖2/pp ≤ C
n∑
j=1

∥∥∥∥∥ ∂f∂xj
∥∥∥∥∥
p

.

This is finite if f ∈ W 1,p. But ‖Tpf‖pp ≥
∫∞
0
yp‖ ∂U∂y2 ‖

2
p
dy
y . Hence, ‖f‖B1

p,p
<∞, so

L p
1/2 = W 1,p ⊂ B1

p,p. �

Theorems 6.4 and 6.8 give us a relationship between certain Sobolev and Besov
spaces. Together with Theorem 6.8, Corollary 6.7 implies that if f ∈ Lp, then
Jαf ∈ B2α

p,q, where q = 2 if p ≤ 2 and q = p if p ≥ 2. We wish to show that these
results also hold for Iα. First we state a lemma.

Lemma 6.9. Let α > 0. Then there exist finite measures µα and να on Rn such
that

(6.10)
1

Ĝα(x)
= µ̂α(x) +

ν̂α(x)

K̂α(x)
,

where Kα and Gα are the kernels corresponding to Iα and Jα.

For a proof of this lemma, see [3, p. 133].
We will see that (6.10) illustrates a useful relationship between Jα and Iα.

Putting the right side of (6.10) over a common denominator and cross multiplying,
we get that

K̂α(x) = K̂α(x)Ĝα(x)µ̂α(x) + Ĝα(x)ν̂α(x).

Multiplying both sides by f̂ , we get that

K̂α ∗ f(x) = K̂α ∗ f(x)Ĝα(x)µ̂α(x) + Ĝα ∗ f(x)ν̂α(x).

Taking inverse Fourier transforms, this yields

(6.11) Iαf = Jα(Iαf) ∗ µα + Jαf ∗ να,
or, since convolution with Kα and Gα commutes, this also implies that

(6.12) Iαf = Iα(Jαf) ∗ µα + Jαf ∗ να.
Suppose f ∈ Lp. Then by Corollary 6.7, we have that Jαf ∈ W 2α,p. Now,

for 1
q = 1

p −
2α
n , with q < ∞, we have that W 2α,p ⊂ Lq(Rn) (this is the so-called

Sobolev Embedding Theorem–see [3, p. 124]). Thus, Jαf ∈ Lq(Rn). Then by
Theorem 3.1 (which can easily be extended to show that Iα is bounded from Lq to
Lp as well), Iα(Jαf) ∈ Lp(Rn). Hence, from (6.12) it is clear that Iαf ∈ Lp(Rn).
But then Jα(Iαf) and Jαf are both in W 2α,p by Corollary 6.7. It follows from
(6.11) that Iαf ∈ W 2α,p as well. Thus, Corollary 6.7 holds if we replace Jα with
Iα. Using this and Theorem 6.8, we obtain the following result for Iα:
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Theorem 6.13. Let α > 0 and f ∈ Lp for 1 < p <∞. If p ≤ 2, then Iαf ∈ B2α
p,2.

If φ ≥ 2, then Iαf ∈ B2α
p,p.

Proof. This follows from the fact that Iαf ∈W 2α,p = L p
α ⊂ B2α

p,q, for q = 2 if p ≤ 2
and q = p if p ≥ 2. �

Thus, we see that for f ∈ Lp, solutions of the fractional Laplace equation have
up to 2α derivatives in Lp, even if f has none. Furthermore, they gain additional
smoothness as measured by Besov spaces.
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