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1 Modules

For people who have taken the algebra sequence, you can pretty much skip the first section...
Before telling you what a module is, you probably should know what a ring is...

Definition 1.1. A ring is a set R with two operations + and ∗ and two identities 0 and 1
such that

1. (R,+, 0) is an abelian group.

2. (Associativity) (x ∗ y) ∗ z = x ∗ (y ∗ z), for all x, y, z ∈ R.

3. (Multiplicative Identity) x ∗ 1 = 1 ∗ x = x, for all x ∈ R.

4. (Left Distributivity) x ∗ (y + z) = x ∗ y + x ∗ z, for all x, y, z ∈ R.

5. (Right Distributivity) (x+ y) ∗ z = x ∗ z + y ∗ z, for all x, y, z ∈ R.

A ring is commutative if ∗ is commutative. Note that multiplicative inverses do not have to
exist!

Example 1.2. 1. Z,Q,R,C with the standard addition, the standard multiplication, 0,
and 1.

2. Z/nZ with addition and multiplication modulo n, 0, and 1.

3. R [x], the set of all polynomials with coefficients in R, where R is a ring, with the
standard polynomial addition and multiplication.

4. Mn×n, the set of all n-by-n matrices, with matrix addition and multiplication, 0n, and
In.

For convenience, from now on we only consider commutative rings.

Definition 1.3. Assume (R,+R, ∗R, 0R, 1R) is a commutative ring. A R-module is an abelian
group (M,+M , 0M) with an operation · : R×M →M such that
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1. r · (m+M n) = (r ·m) +M (r · n), for all r ∈ R,m, n ∈M .

2. (r +R s) ·m = (r ·m) +M (s ·m), for all r, s ∈ R,m ∈M .

3. (r ∗R s) ·m = r · (s ·m), for all r, s ∈ R,m ∈M .

4. 1R ·m = m

Remark 1.4. When R is a field, an R-module is exactly a R-vector space.

Exercise 1.5. Show that every abelian group can be regarded as a Z-module.

Exercise 1.6. Define what a homomorphism between two rings means. Define what a
homomorphism between two R-modules means.

Definition 1.7. Let M,N be two R-modules, and ϕ : M → N be a homomorphism. The
kernel of ϕ, denoted kerϕ, is defined as

kerϕ = ϕ−1 ({0N})

Exercise 1.8. Show that ϕ is injective if and only if kerϕ = {0M}.

Remark 1.9. From simplicity, we use 0 to denote the trivial subgroup of every group, i.e.,
the subgroup containing only the identity element.

Definition 1.10. We say a homomorphism ϕ : M → N is trivial if it maps everything to
0N .

2 Exact Sequences

From now on R will be a commutative ring.

Definition 2.1. An exact sequence of R-modules consists of a sequence of R-modules {Mi}
and homomorphisms {ϕi} looking like

· · · ϕ−3
//M−2

ϕ−2
//M−1

ϕ−1
//M0

ϕ0
//M1

ϕ1
//M2

ϕ2
// · · ·

such that

kerϕi = imϕi−1, ∀i.

Example 2.2. 1.

0
ϕ0
//M1

ϕ1
// 0

Clearly both ϕ0 and ϕ1 are trivial maps, so kerϕ1 = M1, im ϕ0 = 0. Because the
sequence is exact, M1 must equal to 0.
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2.
0

ϕ0
//M1

ϕ1
//M2

ϕ2
// 0

We know that

imϕ1 = kerϕ2 = M2

kerϕ1 = imϕ0 = 0,

so ϕ1 is both surjective and injective. Hence it is an isomorphism, i.e., M1
∼= M2.

3.
0

ϕ0
//M1

ϕ1
//M2

ϕ2
//M3

ϕ3
// 0

This is called a short exact sequence. Similar to 2, we know that ϕ2 is surjective and
ϕ1 is injective. In fact, short exact sequences contains more information, but we need
the following theorem first.

Definition 2.3. Let N ⊆ M be a submodule. The quotient of M by N , denoted M/N ,
is defined as M/ ∼, where ∼ is the equivalence relation defined as m ∼ n if m − n ∈ N .
(Check that it is indeed an equivalence relation.)

Theorem 2.4. (First Isomorphism Theorem) If ϕ : M → N is a homomorphism, then

imϕ ∼= M/ kerϕ.

Corollary 2.5. If

0
ϕ0
//M1

ϕ1
//M2

ϕ2
//M3

ϕ3
// 0

is an exact sequence, then

M3
∼= M2/M1.

(Technically we should write M3
∼= M2/ϕ1 (M1), but ϕ1 (M1) ∼= M1 since ϕ1 is injective.)

Remark 2.6. You might think that M2
∼= M1 ⊕M3. However, this is not necessarily true.

Check that the following is an exact sequence, but Z and Z⊕Z/2Z are clearly not isomorphic.

n � // 2n

0 // Z // Z // Z/2Z // 0

m � //m+ 2Z

However, if R is a field, then M2
∼= M1 ⊕M3 is always true.
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Theorem 2.7. (Splitting Lemma) For the exact sequence

0 //M1
ϕ
//M2

ψ
//M3

// 0

, the following statements are equivalent.

1. (Left Split) There exists a homomorphism f : M2 →M1 such that f ◦ ϕ = idM1.

2. (Right Split) There exists a homomorphism g : M3 →M2 such that ψ ◦ g = idM3.

3. M2
∼= M1 ⊕M3.

We say the exact sequence splits if the above conditions hold.

The following is by far the most important theorem regarding exact sequences!

Theorem 2.8. (The Five Lemma) Given two exact sequences A → B → C → D → E,
A′ → B′ → C ′ → D′ → E ′ and five homomorphisms α, β, γ, δ, ε such that the following
diagram commutes. (That means all possible compositions of homomorphisms from X to Y
must be the same.)

A //

α
��

B //

β
��

C //

γ
��

D //

δ
��

E

ε
��

A′ // B′ // C ′ // D′ // E ′

Then

1. If β and δ are surjective, and ε is injective, then γ is surjective.

2. If β and δ are injective, and α is surjective, then γ is injective.

In particular, if α, β, δ, ε are all isomorphisms, then γ is an isomorphism.

3 Chain Complex and Homology

Definition 3.1. A chain complex C• consists of a sequence of R-modules {Ci} and boundary
homomorphisms {di} looking like

· · · d−3
// C−2

d−2
// C−1

d−1
// C0

d0 // C1
d1 // C2

d2 // · · ·

such that

di ◦ di−1 = 0,∀i.

The condition is called the boundary condition.
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Exercise 3.2. Show that the boundary condition is equivalent to

im di−1 ⊆ ker di,∀i.

Hence every exact sequence is a chain complex. (We will see that exact sequences are
extremely uninteresting chain complexes...)

Definition 3.3. Given a chain complex C•. The homology of this chain complex, denoted
H• (C•) is defined as

Hi (C•) = ker di/ im di−1

Exercise 3.4. Show that the homology of an exact sequence is all zero. Moreover, show
that if a chain complex has zero homology, then it is an exact sequence.

Definition 3.5. Given a homomorphism ϕ : M → N , the cockerel of ϕ is defined as

cokerϕ = N/ imϕ.

Exercise 3.6. Show that cokerϕ = 0 if and only if ϕ is surjective.

Exercise 3.7. Show that every homomorphism ϕ : M → N induces the following exact
sequence.

0 // kerϕ i //M
ϕ
// N

q
// cokerϕ // 0

Where i : kerϕ→M and q : N → cokerϕ are inclusion map and quotient map, respectively.

Theorem 3.8. (The Snake Lemma) Given two exact sequences A → B → C → 0, 0 →
A′ → B′ → C ′ and homomorphisms α, β, γ such that the following diagram commutes.

A
f
//

α
��

B
g
//

β
��

C //

γ
��

0

0 // A′
f ′
// B′

g′
// C ′

Then there is an exact sequence

kerα
f̃
// ker β

g̃
// ker γ δ // cokerα

f̃ ′
// coker β

g̃′
// coker γ

5



, where δ is called the connecting homomorphism. It is called Snake Lemma because the
induced exact sequence zig zags through the original diagram.

0

��

0

��

0

��

kerα

��

// ker β

��

// ker γ

��

A //

��

B //

��

C //

��

0

0 // A′ //

��

B′ //

��

C ′

��

cokerα

��

// coker β

��

// coker γ

��

0 0 0

Definition 3.9. We say that 0 → A• → B• → C• → 0 is a short exact sequence of chain
complexes if there exist homomorphisms fi : Ai → Bi and gi : Bi → Ci such that the
following diagram commutes and every row is an exact sequence.

...
...

��

...

��

...

��

...

0 // A2
f2
//

��

B2
g2
//

��

C2
//

��

0

0 // A1
f1
//

��

B1
g1
//

��

C1
//

��

0

0 // A0
f0
//

��

B0
g0
//

��

C0
//

��

0

...
...

...
...

...
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Corollary 3.10. A short exact sequence of chain complexes 0 → A• → B• → C• → 0
induces a long exact sequence in their homologies.

· · · · · · · · ·
δ3

//H2 (A•)
f2
// H2 (B•)

g2
// H2 (C•)

δ2

H1 (A•)
f1
// H1 (B•)

g1
// H1 (C•)

δ1

H0 (A•)
f0
// H0 (B•)

g0
// H0 (C•)

δ0

...
...

...
...

4 Cochain Complex and Cohomology

Cochain complexes and cohomologies are nothing special but chain complexes and homologies
with arrows reversed.

Definition 4.1. A cochain complex C• consists of a sequence of R-modules {Ci} and
coboundary homomorphisms {di} looking like

· · · d3 // C2 d2 // C1 d1 // C0 d0 // C−1 d−1
// C−2 d−2

// · · ·

such that

di ◦ di+1 = 0,∀i.

The condition is called the coboundary condition.

Definition 4.2. Given a cochain complex C•. The cohomology of this cochain complex,
denoted H• (C•) is defined as

H i (C•) = ker di/ im di+1
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