A Primer on Homological Algebra

Henry Y. Chan

July 12, 2013

1 Modules

For people who have taken the algebra sequence, you can pretty much skip the first section... Before telling you what a module is, you probably should know what a ring is...

Definition 1.1. A ring is a set R with two operations + and * and two identities 0 and 1 such that

- 1. (R, +, 0) is an abelian group.
- 2. (Associativity) (x * y) * z = x * (y * z), for all $x, y, z \in R$.
- 3. (Multiplicative Identity) x * 1 = 1 * x = x, for all $x \in R$.
- 4. (Left Distributivity) x * (y + z) = x * y + x * z, for all $x, y, z \in R$.
- 5. (Right Distributivity) (x + y) * z = x * z + y * z, for all $x, y, z \in R$.

A ring is *commutative* if * is commutative. Note that multiplicative inverses do not have to exist!

Example 1.2. 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ with the standard addition, the standard multiplication, 0, and 1.

- 2. $\mathbb{Z}/n\mathbb{Z}$ with addition and multiplication modulo n, 0, and 1.
- 3. R[x], the set of all polynomials with coefficients in R, where R is a ring, with the standard polynomial addition and multiplication.
- 4. $M_{n \times n}$, the set of all *n*-by-*n* matrices, with matrix addition and multiplication, $\mathbf{0}_n$, and \mathbf{I}_n .

For convenience, from now on we only consider commutative rings.

Definition 1.3. Assume $(R, +_R, *_R, 0_R, 1_R)$ is a commutative ring. A *R*-module is an abelian group $(M, +_M, 0_M)$ with an operation $\cdot : R \times M \to M$ such that

Remark 1.4. When R is a field, an R-module is exactly a R-vector space.

Exercise 1.5. Show that every abelian group can be regarded as a \mathbb{Z} -module.

Exercise 1.6. Define what a homomorphism between two rings means. Define what a homomorphism between two R-modules means.

Definition 1.7. Let M, N be two R-modules, and $\varphi : M \to N$ be a homomorphism. The *kernel* of φ , denoted ker φ , is defined as

$$\ker \varphi = \varphi^{-1}\left(\{0_N\}\right)$$

Exercise 1.8. Show that φ is injective if and only if ker $\varphi = \{0_M\}$.

Remark 1.9. From simplicity, we use 0 to denote the trivial subgroup of every group, i.e., the subgroup containing only the identity element.

Definition 1.10. We say a homomorphism $\varphi : M \to N$ is *trivial* if it maps everything to 0_N .

2 Exact Sequences

From now on R will be a commutative ring.

Definition 2.1. An exact sequence of *R*-modules consists of a sequence of *R*-modules $\{M_i\}$ and homomorphisms $\{\varphi_i\}$ looking like

$$\cdots \xrightarrow{\varphi_{-3}} M_{-2} \xrightarrow{\varphi_{-2}} M_{-1} \xrightarrow{\varphi_{-1}} M_0 \xrightarrow{\varphi_0} M_1 \xrightarrow{\varphi_1} M_2 \xrightarrow{\varphi_2} \cdots$$

such that

$$\ker \varphi_i = \operatorname{im} \varphi_{i-1}, \forall i.$$

Example 2.2. 1.

$$0 \xrightarrow{\varphi_0} M_1 \xrightarrow{\varphi_1} 0$$

Clearly both φ_0 and φ_1 are trivial maps, so ker $\varphi_1 = M_1$, im $\varphi_0 = 0$. Because the sequence is exact, M_1 must equal to 0.

$$\mathbf{2}$$

$$0 \xrightarrow{\varphi_0} M_1 \xrightarrow{\varphi_1} M_2 \xrightarrow{\varphi_2} 0$$

We know that

$$\operatorname{im} \varphi_1 = \operatorname{ker} \varphi_2 = M_2$$
$$\operatorname{ker} \varphi_1 = \operatorname{im} \varphi_0 = 0,$$

so φ_1 is both surjective and injective. Hence it is an isomorphism, i.e., $M_1 \cong M_2$.

3.

$$0 \xrightarrow{\varphi_0} M_1 \xrightarrow{\varphi_1} M_2 \xrightarrow{\varphi_2} M_3 \xrightarrow{\varphi_3} 0$$

This is called a *short exact sequence*. Similar to 2, we know that φ_2 is surjective and φ_1 is injective. In fact, short exact sequences contains more information, but we need the following theorem first.

Definition 2.3. Let $N \subseteq M$ be a submodule. The *quotient* of M by N, denoted M/N, is defined as M/\sim , where \sim is the equivalence relation defined as $m \sim n$ if $m - n \in N$. (Check that it is indeed an equivalence relation.)

Theorem 2.4. (First Isomorphism Theorem) If $\varphi : M \to N$ is a homomorphism, then

$$\operatorname{im} \varphi \cong M / \ker \varphi.$$

Corollary 2.5. If

$$0 \xrightarrow{\varphi_0} M_1 \xrightarrow{\varphi_1} M_2 \xrightarrow{\varphi_2} M_3 \xrightarrow{\varphi_3} 0$$

is an exact sequence, then

 $M_3 \cong M_2/M_1.$

(Technically we should write $M_3 \cong M_2/\varphi_1(M_1)$, but $\varphi_1(M_1) \cong M_1$ since φ_1 is injective.)

Remark 2.6. You might think that $M_2 \cong M_1 \oplus M_3$. However, this is not necessarily true. Check that the following is an exact sequence, but \mathbb{Z} and $\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ are clearly not isomorphic.

$$\begin{array}{c} n \longmapsto 2n \\ 0 \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z} / 2\mathbb{Z} \longrightarrow 0 \\ \\ m \longmapsto m + 2\mathbb{Z} \end{array}$$

However, if R is a field, then $M_2 \cong M_1 \oplus M_3$ is always true.

Theorem 2.7. (Splitting Lemma) For the exact sequence

$$0 \longrightarrow M_1 \xrightarrow{\varphi} M_2 \xrightarrow{\psi} M_3 \longrightarrow 0$$

, the following statements are equivalent.

- 1. (Left Split) There exists a homomorphism $f: M_2 \to M_1$ such that $f \circ \varphi = id_{M_1}$.
- 2. (Right Split) There exists a homomorphism $g: M_3 \to M_2$ such that $\psi \circ g = id_{M_3}$.
- 3. $M_2 \cong M_1 \oplus M_3$.

We say the exact sequence splits if the above conditions hold.

The following is by far the most important theorem regarding exact sequences!

Theorem 2.8. (The Five Lemma) Given two exact sequences $A \to B \to C \to D \to E$, $A' \to B' \to C' \to D' \to E'$ and five homomorphisms $\alpha, \beta, \gamma, \delta, \epsilon$ such that the following diagram commutes. (That means all possible compositions of homomorphisms from X to Y must be the same.)

Then

- 1. If β and δ are surjective, and ϵ is injective, then γ is surjective.
- 2. If β and δ are injective, and α is surjective, then γ is injective.

In particular, if $\alpha, \beta, \delta, \epsilon$ are all isomorphisms, then γ is an isomorphism.

3 Chain Complex and Homology

Definition 3.1. A chain complex C_{\bullet} consists of a sequence of *R*-modules $\{C_i\}$ and boundary homomorphisms $\{d_i\}$ looking like

$$\cdots \xrightarrow{d_{-3}} C_{-2} \xrightarrow{d_{-2}} C_{-1} \xrightarrow{d_{-1}} C_0 \xrightarrow{d_0} C_1 \xrightarrow{d_1} C_2 \xrightarrow{d_2} \cdots$$

such that

$$d_i \circ d_{i-1} = 0, \forall i.$$

The condition is called the *boundary condition*.

Exercise 3.2. Show that the boundary condition is equivalent to

$$\operatorname{im} d_{i-1} \subseteq \operatorname{ker} d_i, \forall i$$

Hence every exact sequence is a chain complex. (We will see that exact sequences are extremely uninteresting chain complexes...)

Definition 3.3. Given a chain complex C_{\bullet} . The homology of this chain complex, denoted $H_{\bullet}(C_{\bullet})$ is defined as

$$H_i(C_{\bullet}) = \ker d_i / \operatorname{im} d_{i-1}$$

Exercise 3.4. Show that the homology of an exact sequence is all zero. Moreover, show that if a chain complex has zero homology, then it is an exact sequence.

Definition 3.5. Given a homomorphism $\varphi: M \to N$, the *cockerel* of φ is defined as

$$\operatorname{coker} \varphi = N / \operatorname{im} \varphi.$$

Exercise 3.6. Show that coker $\varphi = 0$ if and only if φ is surjective.

Exercise 3.7. Show that every homomorphism $\varphi : M \to N$ induces the following exact sequence.

 $0 \longrightarrow \ker \varphi \xrightarrow{i} M \xrightarrow{\varphi} N \xrightarrow{q} \operatorname{coker} \varphi \longrightarrow 0$

Where $i : \ker \varphi \to M$ and $q : N \to \operatorname{coker} \varphi$ are inclusion map and quotient map, respectively.

Theorem 3.8. (The Snake Lemma) Given two exact sequences $A \to B \to C \to 0, 0 \to A' \to B' \to C'$ and homomorphisms α, β, γ such that the following diagram commutes.

$$A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$
$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma} \\ 0 \longrightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C'$$

Then there is an exact sequence

$$\ker\alpha \xrightarrow{\widetilde{f}} \ker\beta \xrightarrow{\widetilde{g}} \ker\gamma \xrightarrow{\delta} \operatorname{coker} \alpha \xrightarrow{\widetilde{f'}} \operatorname{coker} \beta \xrightarrow{\widetilde{g'}} \operatorname{coker} \gamma$$

, where δ is called the connecting homomorphism. It is called Snake Lemma because the induced exact sequence zig zags through the original diagram.

Definition 3.9. We say that $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ is a short exact sequence of chain complexes if there exist homomorphisms $f_i : A_i \to B_i$ and $g_i : B_i \to C_i$ such that the following diagram commutes and every row is an exact sequence.

Corollary 3.10. A short exact sequence of chain complexes $0 \to A_{\bullet} \to B_{\bullet} \to C_{\bullet} \to 0$ induces a long exact sequence in their homologies.

4 Cochain Complex and Cohomology

Cochain complexes and cohomologies are nothing special but chain complexes and homologies with arrows reversed.

Definition 4.1. A cochain complex C^{\bullet} consists of a sequence of *R*-modules $\{C^i\}$ and coboundary homomorphisms $\{d^i\}$ looking like

$$\cdots \xrightarrow{d^3} C^2 \xrightarrow{d^2} C^1 \xrightarrow{d^1} C^0 \xrightarrow{d^0} C^{-1} \xrightarrow{d^{-1}} C^{-2} \xrightarrow{d^{-2}} \cdots$$

such that

$$d^i \circ d^{i+1} = 0, \forall i.$$

The condition is called the *coboundary condition*.

Definition 4.2. Given a cochain complex C^{\bullet} . The cohomology of this cochain complex, denoted $H^{\bullet}(C^{\bullet})$ is defined as

$$H^i(C^{\bullet}) = \ker d^i / \operatorname{im} d^{i+1}$$