CRYPTIC NOTES ON GROUP COHOMOLOGY

Much more detail given in the talks. These are just reminder notes.

1. CATEGORIES AND FUNCTORS

Definition 1.1. Categories: data: objects, morphisms, composition, identity mor-
phisms. Properties: associativity and unit conditions for composition.

Examples 1.2. Sets, groups, abelian groups, rings, fields, (left) R-modules, G-
modules = Z[G]-modules. Categories with one object: monoids and groups.

Definition 1.3. Functors F: ¥ — %2: data: Objects to objects, morphisms
to morphisms; %(X,Y) — 2(FX,FY). Properties: F(go f) = F(g) o F(f);
F(idx) = idp(x)-

Examples 1.4. Forgetful (underlying thing) functors: Groups to sets, rings to
abelian groups, R-modules to abelian groups, spaces to sets, unit group functor
from rings to groups.

Examples 1.5. Free functors: sets to groups, sets to abelian groups, sets S to
R-modules R[S], sets to commutative rings, groups to rings (group ring R[G]).

Examples 1.6. Inclusion functors: abelian groups to groups, commutative rings
to rings

Products of categories € x Z: pairs of objects and morphisms.
Definition 1.7. Tensor product: R a ring; left, g.#, and right, .#g, R-modules:
Qpr: Mr X M — A b.

&/ b = abelian groups = Z-modules. If R is commutative, can identify r.#Z with
M and get

®RS %R XLWR%%R.

Contravariant functors and opposite categories €°P: same objects, but now
¢°P(X,Y)=%(Y,X), obvious composition. F': €? — 2, € (Y,X) — Z(FX,FY),
F(go f)=FfoFy.

Definition 1.8. Hom functors. R a ring:
Homp(—,—): (rH#)P xXp M — o7 b.
R a commutative ring:
Hompg(—, —=): (AMRr)" x Mpr — Mk.
G a group, G-module = Z[G]-module, abbreviate G.# for the category:
Homg(—, —) = Homgg(—, —): (GA)" x GM — G.M
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Definition 1.9. Natural transformation: n: F — G, F,G: € — 2: maps
nx: FX — GX for all X € € such that the following diagram commutes in 2
for all maps f: X — Y in ¢

Examples 1.10. p: Id — (—)** on vector spaces over a field K. For a vector
space V and alinear map T: V — K, py: V — Vxxis given by py (v)(T) = T'(v)
for a vector v € V and linear map T € V*.

2. BEGIN REVISIT OF H": G.# — /' b

Let S, = (G — {e})™. This is just a set, the empty set if n = 0. We started
with functions f: S,, — M, where M is a G-module. Call the abelian group of
such functions C"(G; M), the cochains of G with coefficients in M. We defined
subgroups of cocycles, Z™(G; M), and subgroups of coboundaries, B"(G; M):

B"(G;M) c Z"(G; M) C C™*(G; M).

These are all functors G-mod — &/ b. Kind of unnatural to think of functions.
For any set S and abelian group M

HomSets(Sa M) = HomZ(Z[SL M)

A function f uniquely determines a homomorphism f via
f(z n;s;) = Z n; f(sq)-

So our cochains can be thought of as homomorphisms Z[S,| — M rather than
functions S,, — M.

Still looks strange, there is that gf(—) term and then there are other terms
f(=) in the condition for a cochain to be a cocycle. Here is another free functor,
from abelian groups to Z[G]-modules. It is the tensor product (over Z) Z[G] ® A.
Explicitly, it is the sum of copies of A indexed by the elements of G. Its elements
are linear combinations 9499 where a, € A and all but finitely many a4, = 0.
For h € G, h Zg ag9 = Zg aghg. For G-modules M, we now have an isomorphism
of abelian groups

Homgz (A, M) = Homg¢)(Z[G] ® A, M).

For a homomorphism f: A — M of abelian groups, there is a unique extension of
f to a homomorphism of f: Z[G] ® A — M of G-modules, given explicitly by

FQ_agg) =) af(ay).

We define a homomorphism 7: A — Z[G] ® A by n(a) = ae, and then f is the

unique G-homomorphism Z[G] ® A — M such that fon = f.
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3. CHAINS, COCHAINS, HOMOLOGY, COHOMOLOGY

Now we can begin to make more sense out of the definition of cohomology.
Define a chain complex X of R-modules to be a sequence of homomorphisms of
R-modules

dn41 dn

XnJrl Xn anl e XO 0

such that d,, o d,, ;1 = 0. We often abbreviate d,, to d and write d?> = 0. We define
the cycles, boundaries, and homology of X by

Zn(X) = Ker(d,,)
Bn(X) = Im(dn-‘rl)

Hn(X) = Zn(X)/Bn(X)

H,(X) measures how far away X is from being exact at the nth spot. These are
functors from chain complexes to abelian groups. They are often written as Z,,
B., H,; then they are functors from chain complexes to graded abelian groups,
that is, sequences of abelian groups. Here a map f: X — Y of chain complexes
is a sequence of homomorphisms f,: X, — Y, such that the following diagram
commutes.

dn n
Xn+1 - Xn a Xn-1 e XO 0
\Lfn«#l ifﬂ lf’nl lfo
Yn+1 dn+1 Yn 4. Yn71 . YO 0

Can “dualize” all of these definitions.
Define a cochain complex X of R-modules to be a sequence of homomorphisms
of R-modules

60 X’n,fl 671.71 Xn s

X+l o o

0 X0

such that 6™ o "~ ! = 0. We often abbreviate " to § and write 6> = 0. We define
the cocycles, coboundaries, and cohomology of X by

Z™"(X) =Ker(d")
B"(X) =Im(6" 1)

H"(X) = Z2"(X)/B"(X)

These are functors, as for chain complexes, where a map of cochains is defined in
the evident way.

If we keep on going instead of stopping at X, or X, allowing Z-graded chain
and cochain complexes, then the notions are mathematically “the same”. Starting
from a chain complex X, we can define a cochain complex X* by X" = X, and
6~ "™ =d,, and vice versa.
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4. THE BAR CONSTRUCTION

The bar construction: for a group G, get a chain complex B(G) of FREE Z[G]-
modules, with maps d,, of G-modules, and a map ¢ : Bo(G) — Z of G-modules such
that the following sequence is exact:

e By (Q) R B (G)— "By 1 (G)——> - - ——> By |G — 0.

We write B, (G) = Z[G] ® B,(G), where B, (G) is the abelian group Z[S,].
We think of Z as a chain complex with all terms 0 except Xq = Z, so all d,, = 0,
and then we think of € as a map of chain complexes which is 0 in degrees n # 0.

dniy1 dn
-+ ——> B,11(G) — B, (G) —> B, 1(G) — - — Bo[G] —>0

S S )

0 0 0 e Z 0
We must define d,, and we must have d,,(gr) = gd,(z) for g € G and = € B, (G).
With the original Eilenberg-MacLane “bar” notation [g1]--|gn] for elements of
Bn(G),
dnlga]---1gn] = g1lg2]---1gn]
+ > (ol 1gi-1l9igiralgival - |gn]
1<i<n—1

+(=1)"[g1| - - |gn—1]-

Here By(G) = Z[G] and ¢(g)[ ] = 1 for g € G; di[g] = g[ ] — [ ]- We define
n: Z — B.(G), a map of chain complexes, by letting n = 0 in degrees n # 0 and
by (1) =[]. Then eon =id: Z — Z. Why is our original sequence exact?

5. CHAIN HOMOTOPIES AND CHAIN HOMOTOPY EQUIVALENCE

Suppose we have two chain complexes X and Y and two maps of chain complexes
f,9: X — Y, all of R-modules. We say that f is homotopic to g if there are maps
of R-modules

Sp t Xn I YnJrl
such that
dn+15n + Sp—1dn = fr — gn

for n > 0, where s_; = 0 by convention It follows that the induced maps of
homology f. and g. from H,(X) to H,(Y) are equal for all n. Here f. sends the
homology class [z] of a cycle « to the homology class [f(z)] of the cycle f(z). Since
df (x) = fd(xz) =0, f takes cycles to cycles. Similarly, since fd(z) = df (x), f takes
boundaries to boundaries. Therefore f, is well-defined. Given the chain homotopy
s and a cycle x € X, dpy15n(2) = fn(2) — gn(z) since dy,(z) = 0, and this says
that f« = go: Hp(X) — Hp(Y).

Two chain complexes X and Y are chain homotopy equivalent if there are maps
fi X — Y and g: Y — X such that fog ~ idy and go f ~ idx. Then
fe: Ho(X) — H.(Y) and ¢g.: H,(Y) — H.(X) are inverse isomorphisms of
homology groups.
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6. THE CHAIN HOMOTOPY FOR THE BAR CONSTRUCTION
Define a homomorphism of abelian groups (NOT of G-modules)
Sn: Bn(G) — Bpy1(G)

by
sn(glg1] - -1gn]) = lglg1] -~ gn].
Then
(diso+s-1do)(g[]) = g[] —e(g@)[] = g[] —ne(gl])
and

dp+18n + Sn—1d,, = id: B,(G) — B,(G)

if n > 0: the first term of d,, 415, gives you back what you start with, and all the
rest of the terms in d,, 415, + Sp—1d, cancel in pairs because of our choice of signs;
it is a fun exercise to see that this is true. That proves the following result.

Theorem 6.1. s is a chain homotopy between id and noe mapping B(G) to itself.
Since € o n = id on the chain complex Z, this has the following implication.
Corollary 6.2. B(G) and Z are chain homotopy equivalent via 1 and €.

In particular, H,(B(G)) = 0 for n > 0 and ¢,: Ho(B(G)) — Z is an isomor-
phism. Therefore our original chain complex is exact.

A comparison of definitions now shows that we have the following interpretation
of H*(G; M).

Theorem 6.3. Homgy ¢ (B(G), M) is a cochain complex whose cohomology is H*(G; M).

This is exactly the definition we first gave, but it is now reinterpreted a bit more
conceptually, heading towards a truly conceptual definition.

7. FREE, PROJECTIVE, AND INJECTIVE MODULES

The functor Hompg(—, —) is left exact but not right exact. This means two things.
For any short exact sequence of (left, say) R-modules

0O—L—M-—N—0

and any R-modules P and I, the following sequences are exact, up to and not
including the dotted arrow at the end.

0 — Homp(P,L) — Homp(P, M) — Hompr(P,N) — — >0
0 — Hompg(N,I) — Homp(M,I) — Hompg(L,I) — — >0

Proof is an exercise (partly done in the talk), but the thing to focus on is that
non-exactness at the end. Take R = Z, for example. Consider the epimorphism
Z — 7Z/(n) — 0. The identity map is an element of Homg(Z/(n),Z/(n)) that is
not the image of any element of Hom((n), Z) since there are no non-zero homomor-
phisms Z/nZ — Z. Similarly, consider the monomorphism 0 — (n) — Z. The
identity map is an element of Hompg((n), (n)) that is not the image of any element
of Hom(Z, (n)), since if there were such an f, f(1) = mn would have to be divisible
by n.
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Definition 7.1. An R-module P is projective if Hompg (P, —) preserves epimor-
phisms. An R-module I is injective if Hompg(—, ) converts monomorphisms to
epimorphisms.

M 0
I
v
s
s
P——N L——1
L
v
s
0 M

Lemma 7.2. An R-module P is projective if and only if it is a direct summand
of a free R-module. Every module is a quotient of a projective (indeed, a free)
R-module.

Proof. Easy and done in class. Free implies projective is immediate by freeness. Di-
rect summand of free implies projective follows. Projective implies direct summand
by choosing an epimorphism F' — P and lifting the identity map of P. O

Lemma 7.3. Every module is a submodule of an injective R-module.

Sketch proof. Much harder since no obvious characterization of injectives. Baer’s
criterion: I is injective if and only if for every ideal J, every map J — I extends
to a map R — I. This implies that injective abelian groups are the same as a
divisible abelian groups, and that leads to a proof for Z-modules: An abelian group
A is a quotient Z[S]/K, and thus embeds in Q[S]/K, which is divisible and hence
injective. Now let M be an R-module, embed the abelian group M in a divisible
abelian group D. Have a composite inclusion of R-modules

0—>M—"s Homy (R, M)—— Homyz(R, D),

Here i(m)(r) = rm. On the middle and right, (sf)(r) = f(rs) for r,s € R and
f: R— M. A “change of rings” argument shows that Homy(R, D) is an injective
R-module because D is an injective Z-module. See Tor — Ext notes for details. [

8. PROJECTIVE AND INJECTIVE RESOLUTIONS
9. THE AXIOMATIC DEFINITION OF H*(G; M)
10. CYCLIC GROUP CALCULATIONS

11. NATURAL TRANSFORMATIONS AND CHAIN HOMOTOPIES ARE HOMOTOPIES



