
CRYPTIC NOTES ON GROUP COHOMOLOGY

Much more detail given in the talks. These are just reminder notes.

1. Categories and functors

Definition 1.1. Categories: data: objects, morphisms, composition, identity mor-
phisms. Properties: associativity and unit conditions for composition.

Examples 1.2. Sets, groups, abelian groups, rings, fields, (left) R-modules, G-
modules = Z[G]-modules. Categories with one object: monoids and groups.

Definition 1.3. Functors F : C −→ D : data: Objects to objects, morphisms
to morphisms; C (X,Y ) 7→ D(FX,FY ). Properties: F (g ◦ f) = F (g) ◦ F (f);
F (idX) = idF (X).

Examples 1.4. Forgetful (underlying thing) functors: Groups to sets, rings to
abelian groups, R-modules to abelian groups, spaces to sets, unit group functor
from rings to groups.

Examples 1.5. Free functors: sets to groups, sets to abelian groups, sets S to
R-modules R[S], sets to commutative rings, groups to rings (group ring R[G]).

Examples 1.6. Inclusion functors: abelian groups to groups, commutative rings
to rings

Products of categories C ×D : pairs of objects and morphisms.

Definition 1.7. Tensor product: R a ring; left, RM , and right, MR, R-modules:

⊗R : MR ×R M −→ A b.

A b = abelian groups = Z-modules. If R is commutative, can identify RM with
MR and get

⊗R : MR ×MR −→MR.

Contravariant functors and opposite categories C op: same objects, but now
C op(X,Y ) = C (Y,X), obvious composition. F : C op −→ D , C (Y,X) 7→ D(FX,FY ),
F (g ◦ f) = Ff ◦ Fg.

Definition 1.8. Hom functors. R a ring:

HomR(−,−) : (RM )op ×R M −→ A b.

R a commutative ring:

HomR(−,−) : (MR)op ×MR −→MR.

G a group, G-module = Z[G]-module, abbreviate GM for the category:

HomG(−,−) = HomZ[G](−,−) : (GM )op ×GM −→ GM
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Definition 1.9. Natural transformation: η : F −→ G, F,G : C −→ D : maps
ηX : FX −→ GX for all X ∈ C such that the following diagram commutes in D
for all maps f : X −→ Y in C :

FX
Ff //

ηX

��

FY

ηY

��
GX

Gf
// GY.

Examples 1.10. ρ : Id −→ (−)∗∗ on vector spaces over a field K. For a vector
space V and a linear map T : V −→ K, ρV : V −→ V ∗∗ is given by ρV (v)(T ) = T (v)
for a vector v ∈ V and linear map T ∈ V ∗.

2. Begin revisit of Hn : GM −→ A b

Let Sn = (G − {e})n. This is just a set, the empty set if n = 0. We started
with functions f : Sn −→ M , where M is a G-module. Call the abelian group of
such functions Cn(G;M), the cochains of G with coefficients in M . We defined
subgroups of cocycles, Zn(G;M), and subgroups of coboundaries, Bn(G;M):

Bn(G;M) ⊂ Zn(G;M) ⊂ Cn(G;M).

These are all functors G-mod −→ A b. Kind of unnatural to think of functions.
For any set S and abelian group M

HomSets(S,M) ∼= HomZ(Z[S],M).

A function f uniquely determines a homomorphism f̃ via

f̃(
∑
i

nisi) =
∑
i

nif(si).

So our cochains can be thought of as homomorphisms Z[Sn] −→ M rather than
functions Sn −→M .

Still looks strange, there is that gf(−) term and then there are other terms
f(−) in the condition for a cochain to be a cocycle. Here is another free functor,
from abelian groups to Z[G]-modules. It is the tensor product (over Z) Z[G] ⊗ A.
Explicitly, it is the sum of copies of A indexed by the elements of G. Its elements
are linear combinations

∑
g agg, where ag ∈ A and all but finitely many ag = 0.

For h ∈ G, h
∑
g agg =

∑
g aghg. For G-modules M , we now have an isomorphism

of abelian groups

HomZ(A,M) ∼= HomZ[G](Z[G]⊗A,M).

For a homomorphism f : A −→M of abelian groups, there is a unique extension of
f to a homomorphism of f̃ : Z[G]⊗A −→M of G-modules, given explicitly by

f̃(
∑
g

agg) =
∑
g

gf(ag).

We define a homomorphism η : A −→ Z[G] ⊗ A by η(a) = ae, and then f̃ is the
unique G-homomorphism Z[G]⊗A −→M such that f̃ ◦ η = f .
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3. Chains, cochains, homology, cohomology

Now we can begin to make more sense out of the definition of cohomology.
Define a chain complex X of R-modules to be a sequence of homomorphisms of

R-modules

· · · //Xn+1

dn+1 //Xn
dn //Xn−1

// · · · //X0
//0

such that dn ◦ dn+1 = 0. We often abbreviate dn to d and write d2 = 0. We define
the cycles, boundaries, and homology of X by

Zn(X) = Ker(dn)

Bn(X) = Im(dn+1)

Hn(X) = Zn(X)/Bn(X).

Hn(X) measures how far away X is from being exact at the nth spot. These are
functors from chain complexes to abelian groups. They are often written as Z∗,
B∗, H∗; then they are functors from chain complexes to graded abelian groups,
that is, sequences of abelian groups. Here a map f : X −→ Y of chain complexes
is a sequence of homomorphisms fn : Xn −→ Yn such that the following diagram
commutes.

· · · // Xn+1
dn+1 //

fn+1

��

Xn
dn //

fn

��

Xn−1
//

fn−1

��

· · · // X0
//

f0

��

0

· · · // Yn+1
dn+1

// Yn
dn

// Yn−1
// · · · // Y0

// 0

Can “dualize” all of these definitions.
Define a cochain complex X of R-modules to be a sequence of homomorphisms

of R-modules

0 //X0 δ0 // · · · //Xn−1 δn−1
//Xn δn

//Xn+1 // · · · //

such that δn ◦ δn−1 = 0. We often abbreviate δn to δ and write δ2 = 0. We define
the cocycles, coboundaries, and cohomology of X by

Zn(X) = Ker(δn)

Bn(X) = Im(δn−1)

Hn(X) = Zn(X)/Bn(X)

These are functors, as for chain complexes, where a map of cochains is defined in
the evident way.

If we keep on going instead of stopping at X0 or X0, allowing Z-graded chain
and cochain complexes, then the notions are mathematically “the same”. Starting
from a chain complex X∗ we can define a cochain complex X∗ by X−n = Xn and
δ−n = dn, and vice versa.
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4. The bar construction

The bar construction: for a group G, get a chain complex B(G) of FREE Z[G]-
modules, with maps dn of G-modules, and a map ε : B0(G)→ Z of G-modules such
that the following sequence is exact:

· · · //Bn+1(G)
dn+1 //Bn(G)

dn //Bn−1(G) // · · · //B0[G] ε //Z //0.

We write Bn(G) = Z[G]⊗ B̄n(G), where B̄n(G) is the abelian group Z[Sn].
We think of Z as a chain complex with all terms 0 except X0 = Z, so all dn = 0,

and then we think of ε as a map of chain complexes which is 0 in degrees n 6= 0.

· · · // Bn+1(G)
dn+1 //

0

��

Bn(G)
dn //

0

��

Bn−1(G) //

0

��

· · · // B0[G]

ε

��

// 0

· · · // 0 // 0 // 0 // · · · // Z // 0

We must define dn and we must have dn(gx) = gdn(x) for g ∈ G and x ∈ B̄n(G).
With the original Eilenberg-Mac Lane “bar” notation [g1| · · · |gn] for elements of
B̄n(G),

dn[g1| · · · |gn] = g1[g2| · · · |gn]

+
∑

1≤i≤n−1

(−1)i[g1| · · · |gi−1|gigi+1|gi+2| · · · |gn]

+(−1)n[g1| · · · |gn−1].

Here B0(G) = Z[G] and ε(g)[ ] = 1 for g ∈ G; d1[g] = g[ ] − [ ]. We define
η : Z −→ B∗(G), a map of chain complexes, by letting η = 0 in degrees n 6= 0 and
by η(1) = [ ]. Then ε ◦ η = id: Z −→ Z. Why is our original sequence exact?

5. Chain homotopies and chain homotopy equivalence

Suppose we have two chain complexes X and Y and two maps of chain complexes
f, g : X −→ Y , all of R-modules. We say that f is homotopic to g if there are maps
of R-modules

sn : Xn −→ Yn+1

such that
dn+1sn + sn−1dn = fn − gn

for n ≥ 0, where s−1 = 0 by convention It follows that the induced maps of
homology f∗ and g∗ from Hn(X) to Hn(Y ) are equal for all n. Here f∗ sends the
homology class [x] of a cycle x to the homology class [f(x)] of the cycle f(x). Since
df(x) = fd(x) = 0, f takes cycles to cycles. Similarly, since fd(x) = df(x), f takes
boundaries to boundaries. Therefore f∗ is well-defined. Given the chain homotopy
s and a cycle x ∈ Xn, dn+1sn(x) = fn(x) − gn(x) since dn(x) = 0, and this says
that f∗ = g∗ : Hn(X) −→ Hn(Y ).

Two chain complexes X and Y are chain homotopy equivalent if there are maps
f : X −→ Y and g : Y −→ X such that f ◦ g ' idY and g ◦ f ' idX . Then
f∗ : H∗(X) −→ H∗(Y ) and g∗ : H∗(Y ) −→ H∗(X) are inverse isomorphisms of
homology groups.
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6. The chain homotopy for the bar construction

Define a homomorphism of abelian groups (NOT of G-modules)

sn : Bn(G) −→ Bn+1(G)

by
sn(g[g1| · · · |gn]) = [g|g1| · · · |gn].

Then
(d1s0 + s−1d0)(g[ ]) = g[ ]− ε(g)[ ] = g[ ]− ηε(g[ ])

and
dn+1sn + sn−1dn = id: Bn(G) −→ Bn(G)

if n > 0: the first term of dn+1sn gives you back what you start with, and all the
rest of the terms in dn+1sn + sn−1dn cancel in pairs because of our choice of signs;
it is a fun exercise to see that this is true. That proves the following result.

Theorem 6.1. s is a chain homotopy between id and η ◦ ε mapping B(G) to itself.

Since ε ◦ η = id on the chain complex Z, this has the following implication.

Corollary 6.2. B(G) and Z are chain homotopy equivalent via η and ε.

In particular, Hn(B(G)) = 0 for n > 0 and ε∗ : H0(B(G)) −→ Z is an isomor-
phism. Therefore our original chain complex is exact.

A comparison of definitions now shows that we have the following interpretation
of H∗(G;M).

Theorem 6.3. HomZ[G](B(G),M) is a cochain complex whose cohomology is H∗(G;M).

This is exactly the definition we first gave, but it is now reinterpreted a bit more
conceptually, heading towards a truly conceptual definition.

7. Free, projective, and injective modules

The functor HomR(−,−) is left exact but not right exact. This means two things.
For any short exact sequence of (left, say) R-modules

0 −→ L −→M −→ N −→ 0

and any R-modules P and I, the following sequences are exact, up to and not
including the dotted arrow at the end.

0 −→ HomR(P,L) −→ HomR(P,M) −→ HomR(P,N)−− > 0

0 −→ HomR(N, I) −→ HomR(M, I) −→ HomR(L, I)−− > 0

Proof is an exercise (partly done in the talk), but the thing to focus on is that
non-exactness at the end. Take R = Z, for example. Consider the epimorphism
Z −→ Z/(n) −→ 0. The identity map is an element of HomR(Z/(n),Z/(n)) that is
not the image of any element of Hom((n),Z) since there are no non-zero homomor-
phisms Z/nZ −→ Z. Similarly, consider the monomorphism 0 −→ (n) −→ Z. The
identity map is an element of HomR((n), (n)) that is not the image of any element
of Hom(Z, (n)), since if there were such an f , f(1) = mn would have to be divisible
by n.
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Definition 7.1. An R-module P is projective if HomR(P,−) preserves epimor-
phisms. An R-module I is injective if HomR(−, I) converts monomorphisms to
epimorphisms.

M

��
P //

>>}
}

}
}

N

��
0

0

��
L //

��

I

M

??~
~

~
~

Lemma 7.2. An R-module P is projective if and only if it is a direct summand
of a free R-module. Every module is a quotient of a projective (indeed, a free)
R-module.

Proof. Easy and done in class. Free implies projective is immediate by freeness. Di-
rect summand of free implies projective follows. Projective implies direct summand
by choosing an epimorphism F −→ P and lifting the identity map of P . �

Lemma 7.3. Every module is a submodule of an injective R-module.

Sketch proof. Much harder since no obvious characterization of injectives. Baer’s
criterion: I is injective if and only if for every ideal J , every map J −→ I extends
to a map R −→ I. This implies that injective abelian groups are the same as a
divisible abelian groups, and that leads to a proof for Z-modules: An abelian group
A is a quotient Z[S]/K, and thus embeds in Q[S]/K, which is divisible and hence
injective. Now let M be an R-module, embed the abelian group M in a divisible
abelian group D. Have a composite inclusion of R-modules

0 //M
i // HomZ(R,M) // HomZ(R,D),

Here i(m)(r) = rm. On the middle and right, (sf)(r) = f(rs) for r, s ∈ R and
f : R −→M . A “change of rings” argument shows that HomZ(R,D) is an injective
R-module because D is an injective Z-module. See Tor−Ext notes for details. �

8. Projective and injective resolutions

9. The axiomatic definition of H∗(G;M)

10. Cyclic group calculations

11. Natural transformations and chain homotopies are homotopies


