CRYPTIC NOTES ON GROUP COHOMOLOGY

Much more detail given in the talks. These are just reminder notes.

1. Categories and functors

Definition 1.1. Categories: data: objects, morphisms, composition, identity morphisms. Properties: associativity and unit conditions for composition.

Examples 1.2. Sets, groups, abelian groups, rings, fields, (left) R-modules, G modules $=\mathbb{Z}[G]$-modules. Categories with one object: monoids and groups.

Definition 1.3. Functors $F: \mathscr{C} \longrightarrow \mathscr{D}$: data: Objects to objects, morphisms to morphisms; $\mathscr{C}(X, Y) \mapsto \mathscr{D}(F X, F Y)$. Properties: $F(g \circ f)=F(g) \circ F(f)$; $F\left(\mathrm{id}_{X}\right)=\operatorname{id}_{F(X)}$.

Examples 1.4. Forgetful (underlying thing) functors: Groups to sets, rings to abelian groups, R-modules to abelian groups, spaces to sets, unit group functor from rings to groups.

Examples 1.5. Free functors: sets to groups, sets to abelian groups, sets S to R-modules $R[S]$, sets to commutative rings, groups to rings (group ring $R[G]$).

Examples 1.6. Inclusion functors: abelian groups to groups, commutative rings to rings

Products of categories $\mathscr{C} \times \mathscr{D}$: pairs of objects and morphisms.
Definition 1.7. Tensor product: R a ring; left, ${ }_{R} \mathscr{M}$, and right, \mathscr{M}_{R}, R-modules:

$$
\otimes_{R}: \mathscr{M}_{R} \times_{R} \mathscr{M} \longrightarrow \mathscr{A} b .
$$

$\mathscr{A} b=$ abelian groups $=\mathbb{Z}$-modules. If R is commutative, can identify ${ }_{R} \mathscr{M}$ with \mathscr{M}_{R} and get

$$
\otimes_{R}: \mathscr{M}_{R} \times \mathscr{M}_{R} \longrightarrow \mathscr{M}_{R} .
$$

Contravariant functors and opposite categories $\mathscr{C}^{o p}$: same objects, but now $\mathscr{C}^{o p}(X, Y)=\mathscr{C}(Y, X)$, obvious composition. $F: \mathscr{C}^{o p} \longrightarrow \mathscr{D}, \mathscr{C}(Y, X) \mapsto \mathscr{D}(F X, F Y)$, $F(g \circ f)=F f \circ F g$.

Definition 1.8. Hom functors. R a ring:

$$
\operatorname{Hom}_{R}(-,-):\left({ }_{R} \mathscr{M}\right)^{o p} \times_{R} \mathscr{M} \longrightarrow \mathscr{A} b
$$

R a commutative ring:

$$
\operatorname{Hom}_{R}(-,-):\left(\mathscr{M}_{R}\right)^{o p} \times \mathscr{M}_{R} \longrightarrow \mathscr{M}_{R}
$$

G a group, G-module $=\mathbb{Z}[G]$-module, abbreviate $G \mathscr{M}$ for the category:

$$
\operatorname{Hom}_{G}(-,-)=\operatorname{Hom}_{\mathbb{Z}[G]}(-,-):(G \mathscr{M})^{o p} \times G \mathscr{M} \longrightarrow G \mathscr{M}
$$

Definition 1.9. Natural transformation: $\eta: F \longrightarrow G, F, G: \mathscr{C} \longrightarrow \mathscr{D}:$ maps $\eta_{X}: F X \longrightarrow G X$ for all $X \in \mathscr{C}$ such that the following diagram commutes in \mathscr{D} for all maps $f: X \longrightarrow Y$ in \mathscr{C} :

Examples 1.10. $\rho: \operatorname{Id} \longrightarrow(-)^{*} *$ on vector spaces over a field K. For a vector space V and a linear map $T: V \longrightarrow K, \rho_{V}: V \longrightarrow V * *$ is given by $\rho_{V}(v)(T)=T(v)$ for a vector $v \in V$ and linear map $T \in V^{*}$.

2. Begin Revisit of $H^{n}: G \mathscr{M} \longrightarrow \mathscr{A} b$

Let $S_{n}=(G-\{e\})^{n}$. This is just a set, the empty set if $n=0$. We started with functions $f: S_{n} \longrightarrow M$, where M is a G-module. Call the abelian group of such functions $C^{n}(G ; M)$, the cochains of G with coefficients in M. We defined subgroups of cocycles, $Z^{n}(G ; M)$, and subgroups of coboundaries, $B^{n}(G ; M)$:

$$
B^{n}(G ; M) \subset Z^{n}(G ; M) \subset C^{n}(G ; M)
$$

These are all functors G - $\bmod \longrightarrow \mathscr{A} b$. Kind of unnatural to think of functions. For any set S and abelian group M

$$
\operatorname{Hom}_{S e t s}(S, M) \cong \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[S], M)
$$

A function f uniquely determines a homomorphism \tilde{f} via

$$
\tilde{f}\left(\sum_{i} n_{i} s_{i}\right)=\sum_{i} n_{i} f\left(s_{i}\right) .
$$

So our cochains can be thought of as homomorphisms $\mathbb{Z}\left[S_{n}\right] \longrightarrow M$ rather than functions $S_{n} \longrightarrow M$.

Still looks strange, there is that $g f(-)$ term and then there are other terms $f(-)$ in the condition for a cochain to be a cocycle. Here is another free functor, from abelian groups to $\mathbb{Z}[G]$-modules. It is the tensor product (over \mathbb{Z}) $\mathbb{Z}[G] \otimes A$. Explicitly, it is the sum of copies of A indexed by the elements of G. Its elements are linear combinations $\sum_{g} a_{g} g$, where $a_{g} \in A$ and all but finitely many $a_{g}=0$. For $h \in G, h \sum_{g} a_{g} g=\sum_{g} a_{g} h g$. For G-modules M, we now have an isomorphism of abelian groups

$$
\operatorname{Hom}_{\mathbb{Z}}(A, M) \cong \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}[G] \otimes A, M)
$$

For a homomorphism $f: A \longrightarrow M$ of abelian groups, there is a unique extension of f to a homomorphism of $\tilde{f}: \mathbb{Z}[G] \otimes A \longrightarrow M$ of G-modules, given explicitly by

$$
\tilde{f}\left(\sum_{g} a_{g} g\right)=\sum_{g} g f\left(a_{g}\right)
$$

We define a homomorphism $\eta: A \longrightarrow \mathbb{Z}[G] \otimes A$ by $\eta(a)=a e$, and then \tilde{f} is the unique G-homomorphism $\mathbb{Z}[G] \otimes A \longrightarrow M$ such that $\tilde{f} \circ \eta=f$.

3. Chains, cochains, homology, cohomology

Now we can begin to make more sense out of the definition of cohomology.
Define a chain complex X of R-modules to be a sequence of homomorphisms of R-modules

$$
\cdots \longrightarrow X_{n+1} \xrightarrow{d_{n+1}} X_{n} \xrightarrow{d_{n}} X_{n-1} \longrightarrow \cdots \longrightarrow X_{0} \longrightarrow 0
$$

such that $d_{n} \circ d_{n+1}=0$. We often abbreviate d_{n} to d and write $d^{2}=0$. We define the cycles, boundaries, and homology of X by

$$
\begin{gathered}
Z_{n}(X)=\operatorname{Ker}\left(d_{n}\right) \\
B_{n}(X)=\operatorname{Im}\left(d_{n+1}\right) \\
H_{n}(X)=Z_{n}(X) / B_{n}(X) .
\end{gathered}
$$

$H_{n}(X)$ measures how far away X is from being exact at the nth spot. These are functors from chain complexes to abelian groups. They are often written as Z_{*}, B_{*}, H_{*}; then they are functors from chain complexes to graded abelian groups, that is, sequences of abelian groups. Here a map $f: X \longrightarrow Y$ of chain complexes is a sequence of homomorphisms $f_{n}: X_{n} \longrightarrow Y_{n}$ such that the following diagram commutes.

Can "dualize" all of these definitions.
Define a cochain complex X of R-modules to be a sequence of homomorphisms of R-modules

$$
0 \longrightarrow X^{0} \xrightarrow{\delta^{0}} \cdots \longrightarrow X^{n-1} \xrightarrow{\delta^{n-1}} X^{n} \xrightarrow{\delta^{n}} X^{n+1} \longrightarrow \cdots \longrightarrow
$$

such that $\delta^{n} \circ \delta^{n-1}=0$. We often abbreviate δ^{n} to δ and write $\delta^{2}=0$. We define the cocycles, coboundaries, and cohomology of X by

$$
\begin{gathered}
Z^{n}(X)=\operatorname{Ker}\left(\delta^{n}\right) \\
B^{n}(X)=\operatorname{Im}\left(\delta^{n-1}\right) \\
H^{n}(X)=Z^{n}(X) / B^{n}(X)
\end{gathered}
$$

These are functors, as for chain complexes, where a map of cochains is defined in the evident way.

If we keep on going instead of stopping at X_{0} or X^{0}, allowing \mathbb{Z}-graded chain and cochain complexes, then the notions are mathematically "the same". Starting from a chain complex X_{*} we can define a cochain complex X^{*} by $X^{-n}=X_{n}$ and $\delta^{-n}=d_{n}$, and vice versa.

4. The bar construction

The bar construction: for a group G, get a chain complex $B(G)$ of FREE $\mathbb{Z}[G]$ modules, with maps d_{n} of G-modules, and a map $\varepsilon: B_{0}(G) \rightarrow \mathbb{Z}$ of G-modules such that the following sequence is exact:

$$
\cdots \longrightarrow B_{n+1}(G) \xrightarrow{d_{n+1}} B_{n}(G) \xrightarrow{d_{n}} B_{n-1}(G) \longrightarrow B_{0}[G] \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

We write $B_{n}(G)=\mathbb{Z}[G] \otimes \bar{B}_{n}(G)$, where $\bar{B}_{n}(G)$ is the abelian group $\mathbb{Z}\left[S_{n}\right]$.
We think of \mathbb{Z} as a chain complex with all terms 0 except $X_{0}=\mathbb{Z}$, so all $d_{n}=0$, and then we think of ε as a map of chain complexes which is 0 in degrees $n \neq 0$.

We must define d_{n} and we must have $d_{n}(g x)=g d_{n}(x)$ for $g \in G$ and $x \in \bar{B}_{n}(G)$. With the original Eilenberg-Mac Lane "bar" notation $\left[g_{1}|\cdots| g_{n}\right]$ for elements of $\bar{B}_{n}(G)$,

$$
\begin{aligned}
d_{n}\left[g_{1}|\cdots| g_{n}\right]= & g_{1}\left[g_{2}|\cdots| g_{n}\right] \\
& +\sum_{1 \leq i \leq n-1}(-1)^{i}\left[g_{1}|\cdots| g_{i-1}\left|g_{i} g_{i+1}\right| g_{i+2}|\cdots| g_{n}\right] \\
& +(-1)^{n}\left[g_{1}|\cdots| g_{n-1}\right]
\end{aligned}
$$

Here $B_{0}(G)=\mathbb{Z}[G]$ and $\varepsilon(g)[]=1$ for $g \in G ; d_{1}[g]=g[]-[]$. We define $\eta: \mathbb{Z} \longrightarrow B_{*}(G)$, a map of chain complexes, by letting $\eta=0$ in degrees $n \neq 0$ and by $\eta(1)=[]$. Then $\varepsilon \circ \eta=\mathrm{id}: \mathbb{Z} \longrightarrow \mathbb{Z}$. Why is our original sequence exact?

5. Chain homotopies and chain homotopy equivalence

Suppose we have two chain complexes X and Y and two maps of chain complexes $f, g: X \longrightarrow Y$, all of R-modules. We say that f is homotopic to g if there are maps of R-modules

$$
s_{n}: X_{n} \longrightarrow Y_{n+1}
$$

such that

$$
d_{n+1} s_{n}+s_{n-1} d_{n}=f_{n}-g_{n}
$$

for $n \geq 0$, where $s_{-1}=0$ by convention It follows that the induced maps of homology f_{*} and g_{*} from $H_{n}(X)$ to $H_{n}(Y)$ are equal for all n. Here f_{*} sends the homology class $[x]$ of a cycle x to the homology class $[f(x)]$ of the cycle $f(x)$. Since $d f(x)=f d(x)=0, f$ takes cycles to cycles. Similarly, since $f d(x)=d f(x), f$ takes boundaries to boundaries. Therefore f_{*} is well-defined. Given the chain homotopy s and a cycle $x \in X_{n}, d_{n+1} s_{n}(x)=f_{n}(x)-g_{n}(x)$ since $d_{n}(x)=0$, and this says that $f_{*}=g_{*}: H_{n}(X) \longrightarrow H_{n}(Y)$.

Two chain complexes X and Y are chain homotopy equivalent if there are maps $f: X \longrightarrow Y$ and $g: Y \longrightarrow X$ such that $f \circ g \simeq \mathrm{id}_{Y}$ and $g \circ f \simeq \mathrm{id}_{X}$. Then $f_{*}: H_{*}(X) \longrightarrow H_{*}(Y)$ and $g_{*}: H_{*}(Y) \longrightarrow H_{*}(X)$ are inverse isomorphisms of homology groups.

6. The chain homotopy for the bar construction

Define a homomorphism of abelian groups (NOT of G-modules)

$$
s_{n}: B_{n}(G) \longrightarrow B_{n+1}(G)
$$

by

$$
s_{n}\left(g\left[g_{1}|\cdots| g_{n}\right]\right)=\left[g\left|g_{1}\right| \cdots \mid g_{n}\right] .
$$

Then

$$
\left(d_{1} s_{0}+s_{-1} d_{0}\right)(g[])=g[]-\varepsilon(g)[]=g[]-\eta \varepsilon(g[])
$$

and

$$
d_{n+1} s_{n}+s_{n-1} d_{n}=\mathrm{id}: B_{n}(G) \longrightarrow B_{n}(G)
$$

if $n>0$: the first term of $d_{n+1} s_{n}$ gives you back what you start with, and all the rest of the terms in $d_{n+1} s_{n}+s_{n-1} d_{n}$ cancel in pairs because of our choice of signs; it is a fun exercise to see that this is true. That proves the following result.

Theorem 6.1. s is a chain homotopy between id and $\eta \circ \varepsilon$ mapping $B(G)$ to itself.
Since $\varepsilon \circ \eta=\mathrm{id}$ on the chain complex \mathbb{Z}, this has the following implication.
Corollary 6.2. $B(G)$ and \mathbb{Z} are chain homotopy equivalent via η and ε.
In particular, $H_{n}(B(G))=0$ for $n>0$ and $\varepsilon_{*}: H_{0}(B(G)) \longrightarrow \mathbf{Z}$ is an isomorphism. Therefore our original chain complex is exact.

A comparison of definitions now shows that we have the following interpretation of $H^{*}(G ; M)$.

Theorem 6.3. $\operatorname{Hom}_{\mathbb{Z}[G]}(B(G), M)$ is a cochain complex whose cohomology is $H^{*}(G ; M)$.
This is exactly the definition we first gave, but it is now reinterpreted a bit more conceptually, heading towards a truly conceptual definition.

7. Free, projective, and injective modules

The functor $\operatorname{Hom}_{R}(-,-)$ is left exact but not right exact. This means two things. For any short exact sequence of (left, say) R-modules

$$
0 \longrightarrow L \longrightarrow M \longrightarrow N \longrightarrow 0
$$

and any R-modules P and I, the following sequences are exact, up to and not including the dotted arrow at the end.

$$
\begin{gathered}
0 \longrightarrow \operatorname{Hom}_{R}(P, L) \longrightarrow \operatorname{Hom}_{R}(P, M) \longrightarrow \operatorname{Hom}_{R}(P, N)-->0 \\
0 \longrightarrow \operatorname{Hom}_{R}(N, I) \longrightarrow \operatorname{Hom}_{R}(M, I) \longrightarrow \operatorname{Hom}_{R}(L, I)-->0
\end{gathered}
$$

Proof is an exercise (partly done in the talk), but the thing to focus on is that non-exactness at the end. Take $R=\mathbb{Z}$, for example. Consider the epimorphism $\mathbb{Z} \longrightarrow \mathbb{Z} /(n) \longrightarrow 0$. The identity map is an element of $\operatorname{Hom}_{R}(\mathbb{Z} /(n), \mathbb{Z} /(n))$ that is not the image of any element of $\operatorname{Hom}((n), \mathbb{Z})$ since there are no non-zero homomorphisms $\mathbb{Z} / n \mathbb{Z} \longrightarrow \mathbb{Z}$. Similarly, consider the monomorphism $0 \longrightarrow(n) \longrightarrow \mathbb{Z}$. The identity map is an element of $\operatorname{Hom}_{R}((n),(n))$ that is not the image of any element of $\operatorname{Hom}(\mathbb{Z},(n))$, since if there were such an $f, f(1)=m n$ would have to be divisible by n.

Definition 7.1. An R-module P is projective if $\operatorname{Hom}_{R}(P,-)$ preserves epimorphisms. An R-module I is injective if $\operatorname{Hom}_{R}(-, I)$ converts monomorphisms to epimorphisms.

Lemma 7.2. An R-module P is projective if and only if it is a direct summand of a free R-module. Every module is a quotient of a projective (indeed, a free) R-module.

Proof. Easy and done in class. Free implies projective is immediate by freeness. Direct summand of free implies projective follows. Projective implies direct summand by choosing an epimorphism $F \longrightarrow P$ and lifting the identity map of P.
Lemma 7.3. Every module is a submodule of an injective R-module.
Sketch proof. Much harder since no obvious characterization of injectives. Baer's criterion: I is injective if and only if for every ideal J, every map $J \longrightarrow I$ extends to a map $R \longrightarrow I$. This implies that injective abelian groups are the same as a divisible abelian groups, and that leads to a proof for \mathbb{Z}-modules: An abelian group A is a quotient $\mathbb{Z}[S] / K$, and thus embeds in $\mathbb{Q}[S] / K$, which is divisible and hence injective. Now let M be an R-module, embed the abelian group M in a divisible abelian group D. Have a composite inclusion of R-modules

$$
0 \longrightarrow M \xrightarrow{i} \operatorname{Hom}_{\mathbb{Z}}(R, M) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(R, D),
$$

Here $i(m)(r)=r m$. On the middle and right, $(s f)(r)=f(r s)$ for $r, s \in R$ and $f: R \longrightarrow M$. A "change of rings" argument shows that $\operatorname{Hom}_{\mathbb{Z}}(R, D)$ is an injective R-module because D is an injective \mathbb{Z}-module. See Tor - Ext notes for details.

8. Projective and injective Resolutions

9. The axiomatic definition of $H^{*}(G ; M)$

10. Cyclic group calculations

11. Natural transformations and chain homotopies are homotopies
