DUAL SPACES

In this handout we assume all vector spaces are over the field k.

1 Some Set Theoretical Thing

Definition 1.1. Let X, Y be two sets, the function set (this is not a standard term though), denoted $\operatorname{Fun}(X, Y)$, or Y^{X}, is just the set of all functions from X to Y.
Exercise 1.2. Show that $[2]^{X}$ is just the power set of X.
Exercise 1.3. Show that if X, Y are finite sets, then $|\operatorname{Fun}(X, Y)|=|Y|^{|X|}$. (This is why we use the exponential notation.)
Example 1.4. Composition of functions can be easily described as a function

$$
\circ: \operatorname{Fun}(Y, Z) \times \operatorname{Fun}(X, Y) \rightarrow \operatorname{Fun}(X, Z)
$$

Exercise 1.5. Let X, Y, Z be sets, define a function

$$
\Phi: \operatorname{Fun}(X, \operatorname{Fun}(Y, Z)) \rightarrow \operatorname{Fun}(X \times Y, Z)
$$

as

$$
(\Phi(f))(x, y)=(f(x))(y), \forall f \in \operatorname{Fun}(X, \operatorname{Fun}(Y, Z))
$$

First, figure out what I meant in the definition above... Then show that Φ is a bijection. Note that this is the same as saying that

$$
\left(Z^{Y}\right)^{X}=Z^{(X \times Y)}
$$

(Again, this is why we use the exponential notation.)

2 Hom Set

Definition 2.1. Let V, W be two vector spaces. We denote $\operatorname{Hom}(V, W)$ to be the set of all homomorphisms from V to W.

Exercise 2.2. Show that $\operatorname{Hom}(V, W)$ is a vector space with the operations defined as

$$
\begin{aligned}
(\varphi+\psi)(v) & =\varphi(v)+\psi(v) \\
(\lambda \varphi)(v) & =s \varphi(v)
\end{aligned}
$$

Exercise 2.3. Show that $\operatorname{Hom}(k, V) \cong V$.
Exercise 2.4. Show that $\operatorname{dim}(V, W)=\operatorname{dim} V \operatorname{dim} W$.

3 Dual Spaces

Definition 3.1. Let V be a vector space. The dual space of V, denoted V^{*}, is defined as

$$
V^{*}=\operatorname{Hom}(V, k)
$$

An element in V^{*} is also called a linear functional on V. For $v \in V, \varphi \in V^{*}$, for convenience, sometimes we use the bracket notation $\langle\varphi, v\rangle$ to denote $\varphi(v)$.

Exercise 3.2. Assume V has a basis $\mathcal{B}_{V}=\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}$. Define $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n} \in V^{*}$ as

$$
\left\langle\varphi_{i}, v_{j}\right\rangle=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Show that $\mathcal{B}_{V}^{*}=\left\{\varphi_{1}, \varphi_{2}, \cdots, \varphi_{n}\right\}$ is a basis of V^{*}. In particular, $\operatorname{dim} V^{*}=\operatorname{dim} V$. We call \mathcal{B}_{V}^{*} the dual basis of \mathcal{B}_{V}.

Since $\operatorname{dim} V^{*}=\operatorname{dim} V$, there exists an isomorphism between V and V^{*}. However, V and V^{*} are not canonically isomorphic. That is, the isomorphism does not preserve the vector space structures.

Exercise 3.3. Define a function $J: V \rightarrow\left(V^{*}\right)^{*}$ by

$$
\langle J(v), \varphi\rangle=\langle\varphi, v\rangle
$$

First, figure out what I meant in the definition above... Then show that J is an injective homomorpshism. Moreover, show that J is an isomorphism if V is finite dimensional.

Exercise 3.4. Let V, W, U be vector spaces. Show that

$$
\operatorname{Hom}\left(V, W^{*} \otimes U\right) \cong \operatorname{Hom}(V \otimes W, U)
$$

In particular, $\operatorname{Hom}(W, U) \cong W^{*} \otimes U$. (Hint: It uses the same idea as Exercise 1.5.)
Exercise 3.5. Let V, W be finite dimensional vector spaces with bases $\mathcal{B}_{V}, \mathcal{B}_{W}$. Recall Exercise that we have dual bases $\mathcal{B}_{V}^{*}, \mathcal{B}_{W}^{*}$. Now given a homomorphism $f: V \rightarrow W$. Define the dual of f, denoted f^{*}, by

$$
\begin{gathered}
f^{*}: W^{*} \rightarrow V^{*} \\
f^{*}(\psi)=\psi \circ f
\end{gathered}
$$

Show that f^{*} is a homomorphism. Also, show that the following always holds.

$$
\left\langle f^{*}(\psi), v\right\rangle=\langle\psi, f(v)\rangle
$$

Assume $\operatorname{Rep}_{\mathcal{B}_{V}, \mathcal{B}_{W}}(f)=M$. What is $\operatorname{Rep}_{\mathcal{B}_{W}^{*}, \mathcal{B}_{V}^{*}}\left(f^{*}\right)$ in terms of M ?
Exercise 3.6. Let $f: V \rightarrow W, g: W \rightarrow U$. Show that

$$
(g \circ f)^{*}=f^{*} \circ g^{*}
$$

