DUAL SPACES

In this handout we assume all vector spaces are over the field k.

1 Some Set Theoretical Thing

Definition 1.1. Let X, Y be two sets, the function set (this is not a standard term though), denoted Fun (X, Y), or Y^X , is just the set of all functions from X to Y.

Exercise 1.2. Show that $[2]^X$ is just the power set of X.

Exercise 1.3. Show that if X, Y are finite sets, then $|\operatorname{Fun}(X, Y)| = |Y|^{|X|}$. (This is why we use the exponential notation.)

Example 1.4. Composition of functions can be easily described as a function

$$\circ$$
: Fun $(Y, Z) \times$ Fun $(X, Y) \rightarrow$ Fun (X, Z)

Exercise 1.5. Let X, Y, Z be sets, define a function

$$\Phi : \operatorname{Fun}(X, \operatorname{Fun}(Y, Z)) \to \operatorname{Fun}(X \times Y, Z)$$

as

$$\left(\Phi\left(f\right)\right)\left(x,y\right)=\left(f\left(x\right)\right)\left(y\right),\forall f\in\operatorname{Fun}\left(X,\operatorname{Fun}\left(Y,Z\right)\right)$$

First, figure out what I meant in the definition above... Then show that Φ is a bijection. Note that this is the same as saying that

$$\left(Z^Y\right)^X = Z^{(X \times Y)}$$

(Again, this is why we use the exponential notation.)

2 Hom Set

Definition 2.1. Let V, W be two vector spaces. We denote Hom(V, W) to be the set of all homomorphisms from V to W.

Exercise 2.2. Show that $\operatorname{Hom}(V,W)$ is a vector space with the operations defined as

$$(\varphi + \psi)(v) = \varphi(v) + \psi(v)$$
$$(\lambda \varphi)(v) = s\varphi(v)$$

Exercise 2.3. Show that $\operatorname{Hom}(k, V) \cong V$.

Exercise 2.4. Show that $\dim(V, W) = \dim V \dim W$.

3 Dual Spaces

Definition 3.1. Let V be a vector space. The dual space of V, denoted V^* , is defined as

$$V^* = \operatorname{Hom}(V, k)$$

An element in V^* is also called a *linear functional* on V. For $v \in V, \varphi \in V^*$, for convenience, sometimes we use the bracket notation $\langle \varphi, v \rangle$ to denote $\varphi(v)$.

Exercise 3.2. Assume V has a basis $\mathcal{B}_V = \{e_1, e_2, \cdots, e_n\}$. Define $\varphi_1, \varphi_2, \cdots, \varphi_n \in V^*$ as

$$\langle \varphi_i, v_j \rangle = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Show that $\mathcal{B}_V^* = \{\varphi_1, \varphi_2, \cdots, \varphi_n\}$ is a basis of V^* . In particular, dim $V^* = \dim V$. We call \mathcal{B}_V^* the dual basis of \mathcal{B}_V .

Since dim $V^* = \dim V$, there exists an isomorphism between V and V^* . However, V and V^* are **not** canonically isomorphic. That is, the isomorphism does not preserve the vector space structures.

Exercise 3.3. Define a function $J: V \to (V^*)^*$ by

$$\langle J(v), \varphi \rangle = \langle \varphi, v \rangle$$

First, figure out what I meant in the definition above... Then show that J is an injective homomorphism. Moreover, show that J is an isomorphism if V is finite dimensional.

Exercise 3.4. Let V, W, U be vector spaces. Show that

$$\operatorname{Hom}(V, W^* \otimes U) \cong \operatorname{Hom}(V \otimes W, U)$$

In particular, $\operatorname{Hom}(W,U)\cong W^*\otimes U$. (Hint: It uses the same idea as Exercise 1.5.)

Exercise 3.5. Let V, W be finite dimensional vector spaces with bases $\mathcal{B}_V, \mathcal{B}_W$. Recall Exercise that we have dual bases $\mathcal{B}_V^*, \mathcal{B}_W^*$. Now given a homomorphism $f: V \to W$. Define the dual of f, denoted f^* , by

$$f^*:W^* \to V^*$$
$$f^*(\psi) = \psi \circ f$$

Show that f^* is a homomorphism. Also, show that the following always holds.

$$\langle f^*(\psi), v \rangle = \langle \psi, f(v) \rangle$$

Assume $\operatorname{Rep}_{\mathcal{B}_{V},\mathcal{B}_{W}}(f)=M.$ What is $\operatorname{Rep}_{\mathcal{B}_{W}^{*},\mathcal{B}_{V}^{*}}(f^{*})$ in terms of M?

Exercise 3.6. Let $f: V \to W, g: W \to U$. Show that

$$(g\circ f)^*=f^*\circ g^*$$