## EXERCISES: THE COHOMOLOGY OF GROUPS

J.P. MAY

1. Let $G$ be finite. Define the norm $N \in \mathbb{Z}[G]$ by $N=\sum_{g \in G} g$.
(a) Prove that $(\mathbb{Z}[G])^{G}$ is $\mathbb{Z} N=\{n N \mid n \in \mathbb{Z}\}$.
(b) Prove that $I G$ is the kernel of $N: \mathbb{Z}[G] \longrightarrow \mathbb{Z}[G]$, that is $\{x \mid N x=0\}$.
2. Let $G$ be any infinite group. Prove that $(\mathbb{Z}[G])^{G}=0$.
3. Let $M$ be a trivial $G$-module. Show that $H^{1}(G ; M)$ is the group of homomorphisms $G \longrightarrow M$, which can be identified with $\operatorname{Hom}_{\mathbb{Z}}(G /[G, G], M)$, where $[G, G]$ is the commutator subgroup. In particular $H^{1}(G ; \mathbb{Z})=0$ for any finite group $G$.
4. We prove in class that $\operatorname{Ext}(G ; M)$ is isomorphic as sets to the abelian group $H^{2}(G ; M)$. The following steps show how one one can describe the resulting group structure on $\operatorname{Ext}(G ; M)$.
(a) (Pullback) Let $\alpha: G^{\prime} \longrightarrow G$ be a homorphism of groups. Given the bottom extension $E$ of $G$ by $M$ in the following diagram, construct the top extension and a homomorphism $\beta$ such that the following diagram commutes:


Here $G^{\prime}$ acts through $\alpha$ on $M: g^{\prime} m=\alpha\left(g^{\prime}\right) m$. Show that the construction gives a function $\alpha^{*}: \operatorname{Ext}(G ; M) \longrightarrow \operatorname{Ext}\left(G^{\prime} ; M\right)$.
(b) (Pushout) Let $\gamma: M \longrightarrow M^{\prime}$ be a map of $G$-modules. Given the top extension $E$ of $G$ by $M$ in the following diagram, construct the bottom extension of $G$ by $M^{\prime}$ and a homomorphism $\beta$ such that the following digram commutes:


Show that the construction gives a function $\gamma_{*}: \operatorname{Ext}(G ; M) \longrightarrow \operatorname{Ext}\left(G ; M^{\prime}\right)$.
(c) With the notations of (a) and (b), show that $\gamma_{*}\left(\alpha^{*} E\right) \cong \alpha^{*}\left(\gamma_{*} E\right)$.
(d) (Product) Show that cartesian product of groups gives a product function

$$
\operatorname{Ext}(G ; M) \times \operatorname{Ext}(H ; N) \longrightarrow \operatorname{Ext}(G \times H ; M \oplus N)
$$

for groups $G$ and $H$, a $G$-module $M$, and an $H$-module $N$; here we have identified $M \oplus N$ with $M \times N$.
(e) Let $\Delta: G \longrightarrow G \times G$ be the diagonal map and $\nabla: M \oplus M \longrightarrow M$ the 'fold' map, which is the identity on each copy of $M$. Define the Baer sum

$$
+: \operatorname{Ext}(G ; M) \times \operatorname{Ext}(G ; M) \longrightarrow \operatorname{Ext}(G, M)
$$

to be the composite of $\times$ and $\nabla_{*} \Delta^{*}=\Delta^{*} \nabla_{*}$. Prove that this sum coincides under our bijection with the sum on $H^{2}(G ; M)$. (Hint: do this in three steps, defining $\alpha^{*}, \gamma_{*}$ and $\times$ on $H^{2}$ groups and using factor sets to compare constructions).

