EXERCISES: THE COHOMOLOGY OF GROUPS

J.P. MAY

1. Let \(G \) be finite. Define the norm \(N \in \mathbb{Z}[G] \) by \(N = \sum_{g \in G} g \).
 (a) Prove that \((\mathbb{Z}[G])^G = \{ nN | n \in \mathbb{Z} \} \).
 (b) Prove that \(IG \) is the kernel of \(N: \mathbb{Z}[G] \to \mathbb{Z}[G] \), that is \(\{ x | Nx = 0 \} \).

2. Let \(G \) be any infinite group. Prove that \((\mathbb{Z}[G])^G = 0 \).

3. Let \(M \) be a trivial \(G \)-module. Show that \(H^1(G; M) \) is the group of homomorphisms \(G \to M \), which can be identified with \(\text{Hom}_{\mathbb{Z}}(G/[G,G], M) \), where \([G,G] \) is the commutator subgroup. In particular \(H^1(G; \mathbb{Z}) = 0 \) for any finite group \(G \).

4. We prove in class that \(\text{Ext}(G; M) \) is isomorphic as sets to the abelian group \(H^2(G; M) \). The following steps show how one can describe the resulting group structure on \(\text{Ext}(G; M) \).
 (a) (Pullback) Let \(\alpha: G' \to G \) be a homorphism of groups. Given the bottom extension \(E \) of \(G \) by \(M \) in the following diagram, construct the top extension and a homomorphism \(\beta \) such that the following diagram commutes:

 \[
 \begin{array}{c}
 0 \to M \overset{\subset}{\to} E' \overset{q}{\to} G' \to 1 \\
 0 \to M \overset{\subset}{\to} E \overset{q}{\to} G \to 1.
 \end{array}
 \]

 Here \(G' \) acts through \(\alpha \) on \(M \): \(g'm = \alpha(g')m \). Show that the construction gives a function \(\alpha^*: \text{Ext}(G; M) \to \text{Ext}(G'; M) \).
 (b) (Pushout) Let \(\gamma: M \to M' \) be a map of \(G \)-modules. Given the top extension \(E \) of \(G \) by \(M \) in the following diagram, construct the bottom extension of \(G \) by \(M' \) and a homomorphism \(\beta \) such that the following diagram commutes:

 \[
 \begin{array}{c}
 0 \to M \overset{\subset}{\to} E \overset{q}{\to} G \to 1 \\
 0 \to M' \overset{\subset}{\to} E' \overset{q}{\to} G \to 1.
 \end{array}
 \]

 Show that the construction gives a function \(\gamma_*: \text{Ext}(G; M) \to \text{Ext}(G; M') \).
 (c) With the notations of (a) and (b), show that \(\gamma_*(\alpha^*E) \cong \alpha^*(\gamma_*E) \).
 (d) (Product) Show that cartesian product of groups gives a product function

 \[\text{Ext}(G; M) \times \text{Ext}(H; N) \to \text{Ext}(G \times H; M \oplus N) \]

 for groups \(G \) and \(H \), a \(G \)-module \(M \), and an \(H \)-module \(N \); here we have identified \(M \oplus N \) with \(M \times N \).
(e) Let $\Delta: G \to G \times G$ be the diagonal map and $\nabla: M \oplus M \to M$ the ‘fold’ map, which is the identity on each copy of M. Define the Baer sum

$$+ : \Ext(G; M) \times \Ext(G; M) \to \Ext(G, M)$$

to be the composite of \times and $\nabla^* \Delta^* = \Delta^* \nabla^*$. Prove that this sum coincides under our bijection with the sum on $H^2(G; M)$. (Hint: do this in three steps, defining α^*, γ^* and \times on H^2 groups and using factor sets to compare constructions).