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Abstract. We analyze a graph that can be constructed a graph G that en-

codes how G can be disconnected by the process of vertex removal. We call
this graph T (G). Using spectral theory and combinatorial analysis, we prove

several theorems about T (G) concerning the cyclomatic number of G, col-

orings of G and how connected G is. We will also discuss useful algorithms
associated with T (G). Finally, this paper will cover computational programs

that were helpful in approaching this problem.
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1. Introduction and Definitions

Many topics in graph theory deal largely with the study of how connected a
graph is. Perhaps a rather simple notion of this is whether or not a graph can
be separated into multiple components. A less trivial notion of connectedness,
however, arises when we have a graph with only one component (i.e. a completely
connected graph). Though we may have two completely connected graphs, one may
be more “disconnectable” than the other. In this context, the term “connected,” is
a superlative, and is difficult to approach; finding an exact measure that detects the
degree to which a graph is connected isn’t a problem with one answer. Since there
are several criteria to measure connectedness by, there are also several established
measures (see Hararay, Ch. 5 [3]). This paper seeks to further the discussion of
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connectedness of a graph through a formalization and quantification of the process
of dismantling a graph. In particular, we will establish a measure of connectedness
through the criterion of completely disconnecting a graph.

We will begin by providing a brief overview of this project and its findings.

2. Overview

Definition 2.1. A graph is a finite collection of points and unordered1 pairs of those
points. We denote a graph G as (V,E), where V (or V (G)) is the set of vertices of
G and E (or E(G)) is the set of edges of G. In particular, E(G) ⊂ V × V . We do
not consider graphs with self loops. We also only consider connected graphs.

Graphs are often represented pictorially as networks. See Figure 1 for some
examples of a graph.

Definition 2.2. The degree of a vertex v is the number of edges incident upon it.

Definition 2.3. The chromatic number of a graph G, denoted as γ(G), is the
number of colors necessary to assign to each vertex such that no two adjacent
vertices have the same color. The multiplicity of a color is the number of vertices
of that color.

Definition 2.4. The cyclomatic number of a graph G, denoted c(G), is the min-
imum number of edges necessary to remove from G so that it has no cycles. For
any connected graph c(G) = 1 + ∣E(G)∣ − ∣V (G)∣ (pg. 27, [1]).

Definition 2.5. A subgraph of a graph G = (V,E) is a graph S = (V ′,E′) such
that V ′ ⊂ V and E′ ⊂ E.

Definition 2.6. An adjacency matrix AG is a symmetric matrix associated to a
graph built in the following way:

AG,(i,j) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if (vi, vj) ∈ E(G)

0 otherwise.

In particular the number of walks between vertices vi and vj of length ` is the (i, j)

entry of AG
` (pg 151, [3]).

This paper addresses the process of deconstructing a graph by removing its
vertices. When we say that we remove a vertex vi, we precisely mean that we are
making the ith row and column of AG all zero. This then means that every new
subgraph created by removing a vertex still has the same number of vertices. In
graph theoretic notation, a graph G with vertex vi removed is denoted as G/vi .

Definition 2.7. We define ΦG to be the set of distinct subgraphs of G attained
by removing any number of vertices of G.

With this, we define a graph associated to a graph G, denoted as T (G), as
follows:

Definition 2.8.

T (G) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

Vi ∈ V (T (G)) iff Vi ∈ ΦG
(Vi, Vj) ∈ E(T (G)) iff Vi = Vj/v for some v ∈ V (G).

1If the combinations are ordered, it is called a directed graph.
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We denote the vertex of T (G) that corresponds to the subgraph of G with no edges
as V0, and we denote the vertex of T (G) that corresponds to G itself as VG. In a
more intuitive sense, T (G) is a graph of the ways to deconstruct G by removing
vertices. As an example, see Figure 1.

This paper will provide theorems about T (G) and how it measures the chro-
matic and cylcomatic numbers of G as well as how connected G is. These theorems
will be proven in later sections.

A vertex of high interest in T (G) is V0, the vertex corresponding to the com-
pletely disconnected graph. The following theorem places bounds on its degree.

Theorem 2.9. For a graph G = (V,E) with the ith vertex having ki adjacent
vertices that are in a triangle2

∑
i∈V (G)

(2deg(i)−ki + ki − 1) ≤ deg(V0) ≤ ∑
i∈V (G)

(2deg(i) − 1).

Moreover, when G is triangle-free, the upper and lower bounds are equal and

deg(V0) = ∑
i∈V (G)

(2deg(i) − 1).

The triangle-free hypothesis isn’t sharply necessary, and in fact there are many
graphs with triangles that still satisfy this equality. However, it is indeterminate
as to whether or not all graphs will satisfy it.

The next theorem characterizes the chromatic number of T (G) in terms of local
and global properties of G.

Theorem 2.10. For a triangle-free graph G with cyclomatic number c(G), we
have:

γ(T (G)) ≤ c(G) + ∑
i∈V (G)

(2deg(i) − deg(i)).

For similar reasons as above, the triangle-free hypothesis isn’t sharply necessary
here as well. This theorem shows how the chromatic number of T (G) is dependent
on the degrees of vertices in G and how many loops G has.

We will show that deg(V0)
v−1 , (where v is the number of vertices in T (G)) is a

possible measure of how connected G is. The following theorem places bounds on
this quantity based on spectral properties of T (G).

Theorem 2.11. For a graph G and where T (G) has v vertices, µ1 is the highest
eigenvalue of AT (G), and µn is the lowest, we have:

µn
v − 1

≤
deg(V0)

v − 1
≤
vµ1

v − 1
− µn.

2That is, the set of vertices other than i contained in a loop of length 3 from i to itself has size
ki.
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The final theorem we present concerns how T (G) can be used in understanding
colorings of G.

Theorem 2.12. Let G be a colored graph with chromatic number γ(G). Let Γ2

be the number of vertices colored with the color of second highest multiplicity. Also
suppose the distance between V0 and VG in T (G) is d. Then,

Γ2 ≥
d

γ(G) − 1
.

3. Edges and Vertices

Dismantling or disconnecting a graph can be achieved by either removing a
vertex, or removing an edge. Our intent is to represent this deconstruction in
another graph, and thus we define the edge removal graph and the vertex removal
graph:

Definition 3.1. For a graph G = (V,E), the edge removal graph S(G) is defined
as:

S(G) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

Vi ∈ V (S(G)) iff Vi = (V,E′), where E′ ⊂ E
(Vi, Vj) ∈ E(S(G)) iff Vi = Vj/e for some e ∈ E(G).

Recall Definition 2.8 for the definition of the vertex removal graph. See Figure 1
for examples of S(G) and T (G).

Remark 3.2. When two subgraphs of G are connected in T (G) or S(G), it precisely
means that one can remove a vertex or edge from one and get the other. This carries
with it an inherent direction (i.e. Vi → Vj but not Vj → Vi), which therefore means
that T (G) and S(G) are actually directed graphs. In this paper, we ignore this
and nevertheless consider them to be undirected. If we take T (G) to be directed,

we will explicitly denote it as T̃ (G).

G= T(G)= S(G)=

Figure 1. A graph G and its corresponding T (G) and S(G).
Note the multiple edges between certain vertices in T (G).

While both edge and vertex removal processes are natural ways to disconnect
a graph, this paper will only concern T (G). Our reasoning for this is immediate
from the following definition and proposition.
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Definition 3.3. A graph isomorphism between two graphs G = (V1,E1) and F =

(V2,E2) is a bijective map φ ∶ V1 → V2 such φ(v) and φ(w) are connected in F
if and only if v and w are connected in G. If such a map exists between F and
G, they are said to be isomorphic (written G ∼ F ). As such, one typically ignores
differences between isomorphic graphs.

Proposition 3.4. For any G = (V1,E1) and F = (V2,E2) with edge sets of the
same size, we have S(G) ∼ S(F ).

Proof. Since ∣E1∣ = ∣E2∣ = n, we can label the edges in both G and F as {e1, ..., en}.
In S(G), every vertex corresponds to a different subset of its edges (since removing
edges commutes). There are 2n subsets of the edges, and therefore 2n vertices in
both S(G) and S(F ).

Since both S(G) and S(F ) have the number of vertices, we can create a bijection
ω between the vertices of S(G) and S(F ) that maps a vertex in S(G) to the vertex
in S(F ) with the same subset of edges. In particular, if Vi and Vj are connected in
S(G), then ω(Vi) and ω(Vj) must be connected in S(F ) because they each have
the same subset of edges, respectively. The same argument applies in the reverse
direction, therefore (Vi, Vj) ⇐⇒ (ω(Vi), ω(Vj)) and so S(G) ∼ S(F ).

�

This shows how S(G) only depends on the number of edges in G, and therefore
cannot tell us very much. However, the effect of removing a vertex depends highly
on the degree of that vertex as well as other local factors, and thus T (G) is a much
more sophisticated object to merit investigation.

4. Properties of T (G)

The vertex removal graph has various properties which we outline in the two
propositions below.

Definition 4.1. A multigraph is a graph with duplicate edges.

Definition 4.2. An isolated edge is an edge (vi, vj) where vi and vj aren’t in any
other edges.

Proposition 4.3. For any G, the vertex removal graph T (G) is a multigraph con-
taining at most one duplicate of any of its edges. In particular, an edge connecting
Vi, Vj ∈ V (T (G)) has a duplicate if and only if Vi contains an isolated edge and Vj
contains one fewer isolated edges.

Proof. We will prove the second statement, then the first.
Ô⇒∶ If Vi contains an isolated edge, then there are two vertices vi and vj that

are only connected to each other. Since Vj contains one fewer isolated edge, then
we must remove either vi or vj in Vi to get to Vj . In particular Vj = Vi/vi and
Vj = Vi/vj , and thus there are two edges connecting Vi and Vj .

⇐Ô∶ In the other direction, suppose Vi and Vj are connected by two edges. Then
there must be two distinct vertices in Vi whose removal will yield Vj ; call these vi
and vj . Since removing either must produce the same graph, we see each vertex
must be contained in the same set of edges. This is only possible when a single
edge connects them.

By similar reasoning, there cannot be three edges connecting some Vi and Vj
because that would imply that there are three vertices in Vi that are part of an
edge. Therefore, every edge of T (G) has at most one duplicate. �
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Proposition 4.4. If G ∼ F , then T (G) ∼ T (F ).

Proof. If F ∼ G, then there exists an isomorphism φ ∶ V (G) → V (F ). Now, define
a map ω ∶ V (T (G)) → V (T (F )) such that, if some subgraph S ∈ ΦG is turned into
to the graph S′ ∈ ΦF by applying φ to every vertex in S, then V (the vertex of
T (G) corresponding to S) is mapped to the vertex in T (F ) that corresponds to
S′. In particular, ω is bijective because φ is bijective.

Now, suppose Vi, Vj ∈ V (T (G)) are adjacent. Then, by definition, Si = Sj/v ,
where Si and Sj are subgraphs that correspond to Vi, Vj and v is some vertex in
G. Now,

φ(Si) = φ(Sj/v) = φ(Sj)/φ(v).

We see that φ(v) is some w ∈ V (F ). We also see that φ(Si) and φ(Sj) correspond
to ω(Vi) and ω(Vj). This means that ω(Vi) and ω(Vj) are adjacent. Thus, we
have shown that there is a bijective map ω such that, if (Vi, Vj) ∈ E(T (G)), then
(ω(Vi), ω(Vj)) ∈ E(T (F )). This proves the first direction. The second direction
can be shown using the same, but reversed, steps. Thus, there is a bijective map
ω ∶ V (T (G)) → V (T (F )) such that

(Vi, Vj) ∈ E(T (G)) ⇐⇒ (ω(Vi), ω(Vj)) ∈ E(T (F ))

and therefore that T (G) ∼ T (F ).
�

Remark 4.5. In the proof of Proposition 4.4, we were careful to differentiate between
a vertex of T (G) and a subgraph of G. For example, we differentiated between the
subgraph S1 and the vertex V1 that corresponds to that subgraph. While these
are essentially the same, we highlighted this difference solely to keep the rigor of
constructing a bijective map between vertices (not between subgraphs). In all other
cases, we consider a vertex of T (G) to be both a vertex and a subgraph of G.

This tells us that T (G) behaves nicely under standard graph invariance and
allows us to ignore vertex ordering in a graph and when considering T (G).

5. Reconstructing G

Here we present an algorithm that allows us to reconstruct G given T̃ (G) (a
directed vertex removal graph).

Theorem 5.1. For some T̃ (G), we can reconstruct G through the following steps:

(1) Locate the vertex with no inward edges on it and the vertex with no outward
edges on it. These are VG and V0, respectively.

(2) The degree of VG is the number of vertices in G; label these {v1, ..., vn}.
Label the vertices connected to VG as {V1, .., Vn} so that removing some vi
in G achieves the subgraph Vi.

(3) The number of multi-edges connected to V0 is the number of edges of G.

Label every vertex in T̃ (G) that is connected to V0 with a multi edge with
{P1, ..., Pq}.

(4) For every Pi ∈ {P1, ..., Pq}, find the two vertices Vi, Vj ∈ {V1, ..., Vn} for
which every path from V0 to VG containing one of these vertices cannot
pass through Pi.

(5) Add (vi, vj) to the set of edges of G.
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(6) Every edge and every vertex of G has been identified, and thus G has been
determined.

Before we prove Theorem 5.1, we introduce a few lemmas.

Lemma 5.2. Given T̃ (G), the vertex with no inward edges is VG and the vertex
with no outward edges is V0.

Proof. The only subgraph in ΦG that cannot be formed by removing a vertex of G
is G itself, therefore, the only vertex in T̃ (G) with no in-edges is VG.

Similarly, the only subgraph in ΦG that cannot form other subgraphs in ΦG by
removing vertices is the empty graph, and so the only vertex in T̃ (G) that has no
outward edges is V0. �

Lemma 5.3. Every vertex connected to V0 with a multi-edge corresponds to a
unique edge of G.

Proof. À la Proposition 4.3, we can say that every vertex connected to V0 with
multiple edges has exactly one more isolated edge than V0. Since V0 is empty, it
follows that every vertex connected to V0 with a multi-edge is a subgraph of G
containing only one edge of G. We can thus correspond every edge of G to a vertex
of T̃ (G) connected to V0 with a multi-edge. �

Proof. (of Theorem 5.1)

(1) This is exactly proved by Lemma 5.2
(2) Since the degree of VG is n, there are n subgraphs that you can attain by

removing one vertex from G. This necessarily means that G has exactly n
vertices.

(3) This is a direct consequence of Lemma 5.3
(4) Every Pi is a subgraph with one edge. If at any point in a path from VG

to V0 one removes one of the vertices in this edge, there will be no paths to
Pi because this edge has already been disconnected. In particular, if one
removes either one of the vertices in this edge as a first step (starting from
VG), there will be no way to get to V0 through Pi. Therefore, there must
be two vertices, vi and vj , in G that cannot be removed if one wishes to
travel through Pi. Thus, traveling through Vi or Vj (i.e. removes vi or vj
from G), prohibits a path through Pi.

(5) In identifying these two vertices, we have exactly determined the vertices
connected by the edge in Pi, and therefore have found the corresponding
edge of G, which is (vi, vj).

(6) Continuing this process for every P will generate all edges of G, since every
P corresponds directly to every edge of G.

�

It’s important to note here the necessity for our proof that T (G) be directed.
The biggest reason for this is from Lemma 5.2, where we depended on knowing the
direction of an edge to determine V0 and VG.

6. Bounding Degrees in T (G)

For small graphs, the author with A. Misrak used computer programs to gener-
ate many examples of T (G) (see Section 11). A compelling pattern that we noticed
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was that V0, the vertex corresponding to the graph with no edges, was always of
much higher degree than any other vertices in T (G). Motivated by this, we present
bounds on the degree of V0 (as stated in Section 2).

Definition 6.1. The girth of a graph is the size of the smallest loop. A graph is
triangle free if it has girth greater than 3.

Theorem 2.9. For a graph G = (V,E) with the ith vertex having ki adjacent
vertices that are in a triangle,

∑
i∈V (G)

(2deg(i)−ki + ki − 1) ≤ deg(V0) ≤ ∑
i∈V (G)

(2deg(i) − 1).

Moreover, when G is triangle-free, the upper and lower bounds are equal and

deg(V0) = ∑
i∈V (G)

(2deg(i) − 1).

Before we prove Theorem 2.9, we’ll introduce a definition and a lemma concern-
ing star graphs.

Definition 6.2. A star graph is a graph consisting only of a vertex surrounded by
leaves.

Lemma 6.3. A graph can be completely disconnected by removing only one vertex
if and only if it is a star graph.

Proof.

Ô⇒∶ In the first direction, suppose a graph can be completely disconnected by re-
moving vi. Then every edge must contain vi, and therefore must be of the form
(vi,w), where w is any other vertex in the graph. Now, we see that there can only
be one distinct edge containing each vertex that isn’t vi. This means that every
vertex except for vi is a leaf. Thus, the graph is a vertex surrounded by leaves.

⇐Ô∶ The other direction is immediate from our definition of a star graph; any
star graph has a vertex that is connected to all other vertices, and all other vertices
are only connected to that vertex. Therefore, removing this vertex will disconnect
the graph. �

Now we proceed to proving the bounds on V0.

Proof. (of Theorem 2.9)
By construction, every subgraph connected to V0 can be disconnected in one

step. By the previous lemma, we see that every subgraph connected to V0 is a star
graph. In particular, we can find the degree of V0 by counting the number of star
graphs centered at each vertex in G. Consider the arbitrary vertex v of G shown
below.

Without loss of generality, we can assume that every vertex can be isolated as
above; that when every edge that does not contain v or one if its neighbors is
removed, we are left with a vertex surrounded by leaves and triangles as shown.
Suppose there are ki surrounding vertices in a triangle; then there are deg(v) − ki
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...

...

v

Figure 2. An arbitrary vertex v in a graph G with both leaves and triangles.

leaves.
An upper bound for the number of star subgraphs centered on this vertex hap-

pens where ki = 0 (i.e. every vertex is a leaf). This means that the number of
leaves is deg(v), and that the number of star graphs associated to v is the number

of subsets of those leaves, or 2deg(v) − 1 (we subtract 1 because we do not consider
the empty subset of leaves). Thus, if we sum this term over all vertices in G, we
obtain the upper bound for the degree of V0:

deg(V0) ≤ ∑
i∈V (G)

(2deg(i) − 1).

The lower bound can be found in a similar way. From the proof of Theorem
5.1, we know that every edge of G corresponds to a multi-edge containing V0.
In particular, for every edge of G, there will be 2 edges added to the degree of
V0. Thus, a lower bound for deg(V0) is 2∣E(G)∣. Here, we have only counted all
star subgraphs of degree 1 (i.e. isolated edges). Using Figure 2, we can improve
this bound by counting all star subgraphs of degree 2 or more. The vertex v has
deg(v) − ki leaves, and therefore there are

2deg(v)−ki − (deg(v) − ki) − 1 = 2deg(v)−ki − deg(v) + ki − 1

subsets of these leaves of size at least 2. We sum this over all vertices and add
2∣E(G)∣ to obtain the lower bound on the degree of V0:

deg(V0) ≥ 2∣E(G)∣ + ∑
i∈V (G)

(2deg(i)−ki − deg(i) + ki − 1).

We can simplify this using ∑deg(i) = 2∣E(G)∣ (see Hararay, pg 14 [3]):

deg(V0) ≥ ∑
i∈V (G)

(2deg(i)−ki + ki − 1).
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In particular, if G has no triangles, every ki vanishes, and the lower bound
becomes:

deg(V0) ≥ ∑
i∈V (G)

(2deg(i)−��>
0

ki +���
0

ki − 1)

≥ ∑
i∈V (G)

(2deg(i) − 1)

Thus, the lower and upper bounds are equal in this case.
�

We can apply a similar process to bound the degree of any other vertex in T (G).

Definition 6.4. The set of active vertices in a graph G = (V,E), denoted Ṽ (G),
is the set of vertices that are contained in at least one edge in E.

Theorem 6.5. For a graph G and any vertex Vi in T (G), which corresponds to
the subgraph Si ∈ ΦG,

∣V (G)∣ ≤ deg(Vi) ≤ ∣Ṽ (Si)∣ + ∑

⎛
⎜
⎝

i ∈ V (G)

i ∉ Ṽ (Si)

⎞
⎟
⎠

(2deg(i) − 1).

Proof. Since Si contains active vertices, we know that there are exactly ∣V (Si)∣
out-paths from Vi. Now we look at all in-paths, ones which create Vi. The only
way to create Si by removing a vertex is to remove a vertex that isn’t in the set
of active vertices of Si (i.e. not in Ṽ (Si)). In other words, we are looking for the

number of star subgraphs centered on vertices not in Ṽ (Si).
A clear lower bound for this is that every vertex only contributes one star. Thus,

CG(Si) has at least ∣V (G)∣ − ∣Ṽ (Si)∣ star subgraphs. Adding this to the number of
out vertices gives us the lower bound:

deg(Vi) ≥ ∣V (G)∣ − ∣Ṽ (Si)∣ + ∣Ṽ (Si)∣ = ∣V (G)∣.

We can use the same reasoning as in the first proof to find an upper bound. Each
vertex will have at most deg(v) leaves, so there are at most 2deg(v) − 1 star graphs

centered on that vertex. Summing over all vertices not in Ṽ (Si) and adding the
out-degree then gives the upper bound:

deg(Vi) ≤ ∣Ṽ (Si)∣ + ∑

⎛
⎜
⎝

i ∈ V (G)

i ∉ Ṽ (Si)

⎞
⎟
⎠

(2deg(i) − 1).

�

These bounds aren’t good enough to allow us to claim that deg(V0) ≥ deg(Vi)
for any T (G). Thus, we only leave this as a conjecture:

Conjecture 6.6. For a graph G, the maximum degree of T (G) is deg(V0).
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7. Special Case

Fortunately, we can assume a special case for which Conjecture 6.6 is true. If we
do not allow any triangles in G, then Theorem 2.9 tells us that

deg(V0) = ∑
i∈V (G)

(2deg(i) − 1).

Splitting the sum over some subgraph Si ∈ ΦG corresponding to the vertex Vi:

deg(V0) = ∑
i∈Ṽ (Si)

(2deg(i) − 1) + ∑

⎛
⎜
⎝

i ∈ V (G)

i ∉ Ṽ (Si)

⎞
⎟
⎠

(2deg(i) − 1).

If we subtract off the upper bound for the degree of the vertex Vi (corresponding
to Si), given by Theorem 6.5, we have:

deg(V0) − deg(Vi) ≥ ∑
i∈Ṽ (Si)

(2deg(i) − 1) + ∑

⎛
⎜
⎝

i ∈ V (G)

i ∉ Ṽ (Si)

⎞
⎟
⎠

(2deg(i) − 1) − ∣Ṽ (Si)∣

− ∑

⎛
⎜
⎝

i ∈ V (G)

i ∉ Ṽ (Si)

⎞
⎟
⎠

(2deg(i) − 1)

≥ ∑
i∈Ṽ (Si)

(2deg(i) − 1) − ∣Ṽ (Si)∣.

The smallest that the left sum can be happens when every degree is 1, so∑21−1 =
∣Ṽ (Si)∣. Therefore this quantity is always greater than or equal to 0. So,

deg(V0) − deg(Vi) ≥ 0,

and thus V0 is the maximal degree.

8. A Cyclomatic Corollary

For a triangle-free graph, not only is V0 the vertex with the maximum degree,
but we have an exact value for this degree. Also, recall Definition 2.4, which says
that the cyclomatic number of a graph is the minimum number of edges necessary
to remove so that G has no loops and that it can be calculated as 1+∣E(G)∣−∣V (G)∣.
With this, consider the following theorem:

Theorem 2.10. For a graph G with girth greater than 3 and cyclomatic number
c(G), we have:

γ(T (G)) ≤ c(G) + ∑
i∈V (G)

(2deg(i) − deg(i)).

Proof. Brooks shows that, for a graph of maximum degree d, the chromatic number
is at most d + 1 (pg. 194, [2]). This comes from assigning a color to the vertex of
largest degree and all those connected to it. Thus, we start with a bound on the
chromatic number of T (G) of
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γ(T (G)) ≤ 1 + ∑
i∈V (G)

(2deg(i) − 1).

However, we know that there are ∣E(G)∣ multi-edges connected to V0, and that
there are actually only deg(V0) − ∣E(G)∣ adjacent vertices to V0. Thus,

γ(T (G)) ≤ 1 − ∣E(G)∣ + ∑
i∈V (G)

(2deg(i) − 1).

We can split up the sum and rewrite:

γ(T (G)) ≤ 1 − ∣E(G)∣ + ∑
i∈V (G)

1 + ∑
i∈V (G)

2deg(i) + 2∣E(G) − 2∣E(G)∣

≤ 1 + ∣E(G)∣ − ∣V (G)∣ + ∑
i∈V (G)

(2deg(i) − deg(i)).

We recognize the quantity 1 + ∣E(G)∣ − ∣V (G)∣ to be the cyclomatic number of G.
Thus,

γ(T (G)) ≤ c(G) + ∑
i∈V (G)

(2deg(i) − deg(i)).

�

9. T (G) and the Connectedness of G

We now pose a new way to measure the connectedness of a graph. Consider the
star graph and complete graph, shown below.

Figure 3. A star graph G (left) and a complete graph F (right),
each on 5 vertices

The star graph can be completely disconnected in one step. In fact, every sub-
graph can be completely disconnected in one step, which means that every vertex
in T (G) is adjacent to V0. The complete graph, however, cannot be disconnected
nearly as easily; very few of the subgraphs in T (F ) can be disconnected in one step,
and so V0 is much less centrally located. In both cases, this property is gauged by
the degree of V0. We define a new quantity that measures this property in a graph:

α =
deg(V0)

v − 1
;
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where v is the number of vertices in T (G). This can be thought of as the “normal-
ized degree” of V0 because it measures the ratio of subgraphs attached to V0 to the
total number of subgraphs.

Remark 9.1. This ratio does’t measure the exact ratio of subgraphs attached to V0
to the total number of subgraphs, since there are some subgraphs connected to V0
with two edges. Instead, it is measuring a weighted ratio of subgraphs, because it
gives more weight to subgraphs that can be disconnected in more than one way
(those with multi-edges to V0).

The following theorem placed bounds on α using spectral properties of T (G).

Theorem 2.11. For a graph G, where T (G) has v vertices, µ1 is the highest
eigenvalue of AT (G), and µn is the lowest, we have:

µn
v − 1

≤ α ≤
vµ1

v − 1
− µn.

Before proving Theorem 2.11, we introduce a definition.

Definition 9.2. For a complex Hermitian matrix M and a non-zero complex vector
x⃗, the Rayleigh quotient is:

R(M, x⃗) ∶=
x⃗⊺Mx⃗

x⃗⊺x⃗
.

The Courant-Fischer theorem states that, if µ1 ≥ ... ≥ µn are the eigenvalues of
M , then

µn ≤ R(M, x⃗) ≤ µ1 ∀x⃗ ∈ Cn.

Proof. (of Theorem 2.11)
Since AT (G) is a symmetric, v × v matrix with real entries, it is Hermitian.

Therefore, by Courant-Fischer,

1⃗⊺AT (G)1⃗

1⃗⊺1⃗
≤ µ1,

where 1⃗ is the vector whose entries are all 1. Right multiplying this by any adjacency
matrix yields a vector whose ith entry is the degree of the ith vertex of the graph.
Multiplying this by the transpose of 1⃗ simply sums the degrees of all vertices.
Therefore:

∑i∈V (T (G)) deg(i)

v
≤ µ1.

Rewriting:

deg(V0) + ∑
i≠V0

deg(i) ≤ vµ1

deg(V0)

v − 1
≤
vµ1

v − 1
−
∑i≠V0

deg(i)

v − 1
.

If we now consider the graph T (G)/V0
, we see that
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∑
i∈V (T (G)/V0

)
deg(i) ≤ ∑

⎛
⎜
⎝

i ∈ V (T (G))

i ≠ V0

⎞
⎟
⎠

deg(i).

And so,

(9.3)
deg(V0)

v − 1
≤
vµ1

v − 1
−
∑i∈V (T (G)/V0

) deg(i)

v − 1
.

Now, we use another Rayleigh quotient: R(T (G), y⃗), where y⃗ is the vector of all
one’s except for a zero at the entry corresponding to V0. Again by Courant-Fischer,

µn ≤ R(T (G), y⃗) =
y⃗⊺AT (G)y⃗

y⃗⊺y⃗
.

Right multiplying y⃗ by AT (G) will return a vector whose ith entry is the degree of
the ith vertex in T (G)/V0

. Left multiplying this by y⃗⊺ sums these degrees. Thus,

µn ≤
∑i∈V (T (G)/V0

) deg(i)

v − 1
.

Substituting this into (9.3) leaves:

deg(V0)

v − 1
≤
vµ1

v − 1
− µn.

The lower bound for α can be found by recognizing that R(T (G), 1⃗ − y⃗) =

deg(V0) ∶

R(T (G), 1⃗ − y⃗) = [0 ... 1 ... 0]AT (G)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
⋮

1
⋮

0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= deg(V0).

Once again by Courant-Fischer:

µn ≤ R(T (G), 1⃗ − y⃗) = deg(V0).

dividing both sides by v − 1 ∶

µn
v − 1

≤
deg(V0)

v − 1
.

�

Remark 9.4. The number of vertices in T (G) goes approximately as 2n, where n
the number of vertices in G. Thus, for moderately large graphs G, v is very large,
and the upper bound for α becomes nearly µ1 −µn. So, for larger and larger G, the
upper bound for α approaches the size of the spectrum of T (G) very quickly.
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10. Distances in T (G) and Coloring G

Another aspect of T (G) is how it encodes the possible ways to travel from VG to
V0 (to completely disconnect a graph). For example, the fewest number of vertices
required to completely disconnect G is the lowest value of ` for which the (G,0)

entry of AG
` is non-zero.

The following theorem addresses the distance between VG and V0 and how it
relates to coloring G.

Theorem 2.12. Let G be a colored graph with chromatic number γ(G). Let Γ2

be the number of vertices colored with the color of second highest multiplicity. Also
suppose the distance between V0 and VG is d. Then,

Γ2 ≥
d

γ(G) − 1
.

Proof. Let G be colored with γ(G) colors. Now suppose we remove all vertices
except for those of a given color. Clearly, G must now be disconnected, since all
remaining vertices, by construction, are not connected. Now order the multiplicities
of the colors as Γ1 ≥ ... ≥ Γγ(G). Then, removing all but the kth color takes at most

γ(G)

∑
i≠k

Γi

steps. This is clearly smallest when k = 1. Thus, the fastest way to disconnect G
by removing all but one color is at most:

γ(G)

∑
i=2

Γi.

This must be bounded below by the actual fewest number of steps required to
disconnect G, which is d. Therefore,

d ≤
γ(G)

∑
i=2

Γi.

This sum is bounded above by the largest value of Γi times the interval length,
(γ(G) − 1). Therefore,

d ≤ Γ2(γ(G) − 1) Ô⇒ Γ2 ≥
d

γ(G) − 1
.

�

Example 10.1.
Suppose you are a test administrator and you are giving a test to a group of

students who have already been seated. You don’t want any cheating, so you have
to make multiple versions of a test and hand them out so that no two adjacent
students have the same version. You took a topology course in college, and you
were smart to realize that you could represent the seating arrangement in a graph
and then find the chromatic number of that graph to find out how many versions
of the test you would have to make.

Unfortunately, the copier room is very busy and the most amount of copies of
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any given test you can make is n. Assuming at least two of the versions of the test
get printed n times, how many versions of the test will you need now?

In the terms of our above theorem, we know that Γ2 = n, because the two largest
multiplicities of the versions will be n. Then, we can write down (or more likely
put into a computer) the vertex removal graph T (G) of the seating arrangement
graph G. Once we know the distance between VG and V0 is d, then the chromatic
number of the graph, γ2, under this constraint is:

n = Γ2 ≥
d

γ2(G) − 1
Ô⇒ γ2(G) ≥

d

n
+ 1.

We are most interested in the lowest value that γ2(G) must have, so therefore
we must make d

n
+ 1 versions of the test (rounded up, if it isn’t an integer).

Remark 10.2. It is certainly possible to choose n such that d
n
+ 1 is lower than the

actual chromatic number of G; this means we must pick the lowest allowed number
satisfying the above inequality. In general, the actual new chromatic number is
max(γ(G), γ2(G)).

11. Computational Methods

We referenced several times the usefulness of computers in this project. Indeed,
computing vertex removal graphs is very tedious by hand, especially on graphs ex-
ceeding 5 vertices. Appended to this paper is a program written in Python (using
a Sage platform) that takes the adjacency matrix of a graph G and returns the ad-
jacency matrix of T (G). It also has the option of outputting all elements of ΦG in
a list (named K in the code). Due to the exponential nature of T (G), any program
like this will be limited to working with relatively small graphs (∼13 vertices) where
significant computing power isn’t available.

12. Future Directions

There is still a lot of potential for further investigation of T (G). One compelling
topic is the diameter of T (G) (the closest distance between the furthest two ver-
tices). While we have conjectured some preliminary results about what affects the
diameter of T (G), many examples have shown that it is highly non-trivial.

Another compelling avenue is the question of reconstructing G from an undi-
rected T (G). Recall in Section 4 that we required a directed T (G), but we haven’t
yet seen whether this is always necessary. A similar sort of question is whether G
is always uniquely associated to T (G), or if there is some non-isomorphic F such
that T (F ) ∼ T (G).
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Appendix

Program to compute the adjacency matrix of T (G):

def Tau(G):

n=len(G.rows())

for k in range(n):

G[k,k]=k+1

L=[0]*(2^n)

K=[0]

K[0]=G

L[0]=G

C=Combinations(G.rows())

for i in range(n):

H=copy(G)

H[i]=0

H[:,i]=0

L[i+1]=H

for i in range(2^n-n-1):

j=i+n+1

H=copy(G)

for k in range(len(C[j])):

for m in range(n):

if C[j][k]==H[m]:

H[m]=0

L[j]=H

for i in range(2^n):

for m in range(n):

if L[i][m]==0:

L[i][:,m]=0

for q in range(2^n):

for p in range(n):

L[q][p,p]=0

for i in range(2^n):

c=0;

for m in range(len(K)):

if L[i]==K[m]:

c=c+1

if c==0:

K.append(L[i])

m=len(K)

T=Matrix(QQ,m,[0]*(m^2))

for i in range(m):

for p in range(n):

B=copy(K[i])

B[p]=0

B[:,p]=0

for q in range(m):

if B==K[q]:
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T[i,q]=T[i,q]+1

T[q,i]=T[q,i]+1

for i in range(m):

T[i,i]=0

return T


