
CONVERGENCE OF FOURIER SERIES

BRYAN RUST

Abstract. The purpose of this paper is to explore the basic question of the
convergence of Fourier series. This paper will not delve into the deeper ques-

tions of convergence that measure theory illuminates, but requires only the

basic principles set out by introductory real and complex analysis.
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1. Introduction

The Fourier series of an integrable function is defined, and with the definition of
Cesàro means and Abel means, this allows the Fourier series to be recognized as an
approximation of the function. We can define a sense of convergence for continuous
periodic functions and a “mean-square convergence” over the entire function for
Riemann integrable functions.

2. Basic Definition of the Fourier Series

We shall refer to all complex-valued 2π-periodic functions on R as functions on
the circle. We will also assume functions on the the circle are Riemann integrable
on some interval of [a, b] with b − a = 2π. This assumption may be repeated by
saying simply a function on the circle is integrable.

Definition 2.1. The Nth Fourier coefficient of f is defined to be

f̂(n) =
1

2π

∫ π

−π
f(x)e−inx/dx, n ∈ Z.

Note that since f is 2π-periodic, we may replace the endpoints in the above integral
with any real a < b such that b− a = 2π.
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Definition 2.2. The Fourier series associated with the function f(x) is
∞∑

n=−∞
f̂(n)einx.

We shall denote this association as

f(x) ∼
∞∑

n=−∞
f̂(n)e2πinx/2π.

The Nth partial sum of the Fourier series or the truncated Fourier series of f is
defined to be is

SNf(x) :=

N∑
n=−N

ˆf(n)e2πinx/2π.

3. Summability and Kernels

It is useful to define certain notions of “means” which will aid in the question
of the convergence of Fourier series. Specifically, convolutions and the notion of a
family of “good kernels” are useful for questions of convergence.

Definition 3.1. The Nth Cesàro mean or the Nth Cesàro sum of the sequence of
partial sums {σn} of the series of complex numbers

∑∞
k=0 ck is defined to be

σN =
a0 + a1 + ...+ aN−1

N
.

where the aN are the Nth partial sums of the given series of complex numbers

It is well known that if
∑
ck converges to a limit σ, then the Cesàro means

converge to σ.

Definition 3.2. A series of complex numbers,
∑∞
k=0 ck, is said to be Abel sum-

mable to s if for every 0 ≤ r < 1, the series

A(r) =

∞∑
k=0

ckr
k

converges, and
lim
r→1

A(r) = s.

The Abel means of the series are defined to be the quantities A(r).

Definition 3.3. The convolution of two functions f and g on the circle (denoted
by f ∗ g) is defined to be

(f ∗ g)(x) =
1

2π

∫ π

−π
f(y)g(x− y)dy.

And as before, since the convolution is a function on the circle we may choose limits
of integration [a, b] such that b− a = 2π.

Proposition 3.4. Given that f , g, are h are integrable functions on the circle, we
have

(1) f ∗ (g + h) = (f ∗ g) + (f ∗ h),
(2) (cf) ∗ g = c(f ∗ g) = f ∗ (cg) for any c ∈ C,
(3) f ∗ g = g ∗ f,
(4) (f ∗ g) ∗ h = f ∗ (g ∗ h),
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(5) f ∗ g is continuous (if either f or g is continuous,

(6) f̂ ∗ g(n) = f̂(n)ĝ(n).

Proof. (1)-(4) follow easily from definitions
(5) Suppose g is continuous and given ε > 0, there exists δ > 0 so that if |s−t| < δ,

then |g(s) − g(t)| < ε. We have |x1 − x2| < δ implies |(x1 − y) − (x2 − y)| < δ for
any y.

So

|(f ∗ g)(x1)− (f ∗ g)(x2)| ≤ 1

2π

∣∣∣∣∫ π

−π
f(y)[g(x1 − y)− g(x2 − y)]dy

∣∣∣∣
≤ 1

2π

∫ π

−π
|f(y)||g(x1 − y)− g(x2 − y)|dy

≤ ε

2π

∫ π

−π
|f(y)|dy ≤ εB

where |f(x)| ≤ B for all x ∈ [−π, π].
(6) This follows from Fubini’s theorem

f̂ ∗ g(n) =
1

2π

∫ π

−π
(f ∗ g)(x)e−inxdx

=
1

2π

∫ π

−π

1

2π

(∫ π

−π
f(y)g(x− y)dy

)
e−inxdx

=
1

2π

∫ π

−π
f(y)e−iny

(
1

2π

∫ π

−π
g(x)e−inxdx

)
dy

=f̂(n)ĝ(n).

�

Definition 3.5. A family of integrable functions {Kn}∞n=1 on the circle is said to
be a family of good kernels if it satisfies the following three properties:

(a) For all n ≥ 1,
1

2π

∫ π

−π
Kn(x)dx = 1.

(b) There exists M > 0 such that for all n ≥ 1,∫ π

−π
|Kn(x)|dx ≤M.

(c) For every δ > 0, ∫
δ≤|x|≤π

|Kn(x)|dx→ 0

as n→∞.

The significance of good kernels in the context of Fourier analysis is seen in their
connection with convolutions.

Theorem 3.6. Let {Kn}∞n=1 be a family of good kernels, and let f be an integrable
function on the circle. Then whenever f is continuous at x,

lim
n→∞

(f ∗Kn)(x) = f(x).

If f is continuous, then convergence is uniform on [−π, π].
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Proof. If ε > 0 and f is continuous at x, choose δ such that if |y| < δ, then
|f(x− y)− f(x)| < ε.

Using the first property of good kernels, we can write

(f ∗Kn)(x)− f(x) =
1

2π

∫ π

−π
Kn(y)f(x− y)dy − f(x)

=
1

2π

∫ π

−π
Kn(y)[f(x− y)− f(x)]dy.

Taking the absolute value,

|(f ∗Kn)(x)− f(x)| =| 1

2π

∫ π

−π
Kn(y)[f(x− y)− f(x)]dy|

≤ 1

2π

∫
|y|<δ

|Kn(y)||f(x− y)− f(x)|dy

+
1

2π

∫
δ≤|y|≤π

|Kn(y)||f(x− y)− f(x)|dy

≤ ε

2π

∫ π

−π
|Kn(y)|dy +

2B

2π

∫
δ≤|y|≤π

|Kn(y)|dy,

where B is a bound for |f |. The second property of good kernels shows that

ε

2π

∫ π

−π
|Kn(y)|dy ≤ εM

2π
,

for all n ≥ 1. The third property of good kernels shows that

2B

2π

∫
δ≤|y|≤π

|Kn(y)|dy ≤ ε,

for all n ≥ N(δ). Therefore we have

|(f ∗Kn)(x)− f(x)| ≤ Cε.
This proves the first part of the theorem. For the second part, we note that if f is
continuous on [−π, π], then δ can be chosen independent of x. �

The Nth Dirichlet kernel is defined to be

DN (x) =

N∑
n=−N

einx

Its definition is motivated by writing the Nth partial sum of the Fourier series of
fas a convolution:

SN (f)(x) =

N∑
n=−N

f̂(n)einx

=

N∑
n=−N

(
1

2π

∫ π

−π
f(y)e−inyd

)
einx

=
1

2π

∫ π

−π
f(y)

(
N∑

n=−N
ein(x−y)

)
dy

=(f ∗DN )(x).
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If the Dirichlet kernels were a good family of kernels, then we could develop a
sense of convergence from the partial sums of the Fourier series. However, we will
see that the family of Dirichlet kernels is not a family of good kernels. In particular,
the Dirichlet family of kernels does not satisfy the second property of good kernels.
First, we have a closed form expression for the Nth Dirichlet kernel,

DN (x) =
sin((N + 1/2)x)

sin(x/2)

We can derive this using the geometric series identity and trigonometric identities,

DN (x) =

N∑
n=−N

einx

=

N∑
n=0

einx +

N−1∑
n=0

e−i(n+1)x

=
1− ei(N+1)x

1− eix
+

1− e−iNx

1− e−ix

=
sin((N + 1/2)x)

sin(x/2)

Now ∫ π

−π
|DN (x)|dx =

∫ π

−π

∣∣∣∣ sin((N + 1/2)x)

sin(x/2)

∣∣∣∣
We can bound the integrand from below and change variables to obtain∫ π

−π
|DN (x)|dx| ≥c

∫ π

−π

| sin((N + 1/2)x)|
|x|

dx

≥c
∫ Nπ

π

| sin(x)|
|x|

dx

=c

N−1∑
k=1

∫ (k+1)π

kπ

1

k

≥c log(n)

where c > 0. This implies that the Dirichlet kernels are not a family of good kernels.
However, using the summing techniques previously developed, we can define good
families of kernels related to the Dirichlet kernels and the Fourier series.

We now present two families of kernels that are good kernels: (1) the Fejér family
of kernels and (2) the Poisson family of kernels

(1) Our first example’s definition is motivated by writing the Nth Cesàro mean
of the Fourier series as a convolution.

σN (f)(x) =
S0(f)(x) + S1(f)(x) + ...+ SN−1(f)(x)

N
.

We have Sn(f) = f ∗Dn. Hence

σN (f)(x) = (f ∗ FN )(x)

The Nth Fejér kernel is defined to be

FN (x) =
D0(x) + ...+DN−1(x)

N
.
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A closed form expression for the Fejèr kernels is given by

FN (x) =
1

N

sin2(Nx/2)

sin2(x/2)
.

We have shown previously that DN = sin((N+1/2)x)
sin(x/2) . Using the first expression

for the Nth Fejér kernel,

NFN (x) =

N−1∑
n=0

Dn

=
sin(x/2)

sin(x/2)
+ ...+

sin((N − 1/2)x)

sin(x/2)

=
sin2(x/2)

sin2(x/2)
+

sin(3x/2) sin(x/2)

sin2(x/2)
+ ...+

sin((N − 1/2)x) sin(x/2)

sin2(x/2)
.

We have the identity

sin((k + 1/2)x) sin(x/2) = 1/2(cos(kx)− cos((k + 1)x).

Thus, we have telescoping, and our previous expression becomes

NFN (x) =
1/2(1− cos(Nx))

sin2(x/2)

or

FN (x) =
1

N

sin2(Nx/2)

sin2(x/2)
.

(2) The definition of the second family is motivated by writing the Abel mean
of the Fourier series as a convolution f(x) ∼

∑∞
n=−∞ ane

inx, which is

Ar(f)(x) =

∞∑
n=−∞

r|n|ane
inx

This is defined to be

Ar(f)(x) = (f ∗ Pr)(x)

The Nth Poisson kernel is defined to be

Pr(x) =

∞∑
n=−∞

r|n|einx.

If 0 ≤ r < 1, then we have a closed form expression

Pr(x) =
1− r2

1− 2r cos(x) + r2

To see this, split the kernel into the expression:
∞∑
n=0

(
reiθ

)n
+

∞∑
n=1

(
re−iθ

)n
By DeMoivre’s formula and by summing a geometric series, we obtain the desired
closed form.

Proposition 3.7. The Fejér family of kernels and the Poisson family of kernels
are families of good kernels.
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Proof. We first study the Fejér family of kernels.
We obtain the first property by direct computation (the first holds for a similar

identity for Dirichlet kernel)

1

2π

∫ π

−π
FN (x)dx = 1

Since FN is positive, this also shows the second property. If δ > 0, then we have a
lower bound: sin2(x/2) ≥ cδ > 0. For |x| ≥ δ, we have

lim
N→∞

∫
δ≤|x|≤π

|FN (x)|dx ≤ 2π

cN

which proves the third property. Therefore the Fejér family of kernels is a family
of good kernels.

We now proceed to study the Poisson family of kernels.
Similar to the Fejér kernels, we can see that

1

2π

∫ π

−π
Pr(x)dx =

1

2π

∫ π

−π

∞∑
n=−∞

r|n|einxdx = 1

since ∫ π

−π

(
einx + e−inx

)
= 0, for all n 6= 0

which proves the first property. If 0 ≤ r < 1, the Poisson kernels are positive which
proves the second property.

To show the third property, assume 1/2 ≤ r ≤ 1 and δ ≤ |x| ≤ π, we have
1 − 2r cos(x) + r2 ≥ cδ > 0. This implies Pr(x) ≤ (1 − r2)/cδ. Therefore, the
Poisson family of kernels is a family of good kernels.

�

4. The Fourier Series of a Continuous Function

Given the formal definition, one could ask whether a given function f(x) is
uniquely determined by its associated Fourier series. In particular, if f and g have
the same Fourier coefficients does it follow f = g? Strictly speaking, no.

Example 4.1. Let

f(x) =

{
1 : x 6= 0
0 : x = 0

}
g(x) = 1

and extend f, g to 2π-periodic functions on R.
Computing either set of Fourier coefficients we see f(x) ∼ 1 and g(x) ∼ 1.
Thus we can find two functions that differ at a finite set of points that have

the same Fourier series. However, if f, g are continuous, the answer to the above
question is yes.

Theorem 4.2. If f is a continuous function on the circle and
∑∞
n=−∞ | ˆf(n) |<∞,

then the Fourier series converges uniformly to f .

We state a lemma that essentially proves the above theorem.

Lemma 4.3. Suppose that h is an integrable function on the circle with ĥ(n) = 0
for all n ∈ Z. Then h(x0) = 0 whenever h is continuous at the point x0.
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With this lemma we first prove Theorem 4.2.

Proof of Theorem 4.2. Define

g(x) =

∞∑
n=−∞

f̂(n)einx.

Note convergence is uniform on [−π, π] by our hypothesis. Then

g(x) ∼
∞∑

m=−∞

(
1

2π

∫ π

−π
g(x)e−imx

)
eimx

=

∞∑
m=−∞

(
1

2π

∫ π

−π

( ∞∑
n=−∞

f̂(m)einx

)
e−imx

)
eimx

=

∞∑
m=−∞

( ∞∑
n=−∞

f̂(m)

(
1

2π

∫ π

−π
einxe−imx

))
eimx

By uniform convergence, the interchange of summation and integration is allowed.
For all n 6= m, we have the above integrals are equal to 0. Thus,

g(x) ∼
∞∑

m=−∞
f̂(m)eimx.

Lemma 4.3 gives the result. �

Proof of Lemma 4.3. This is an application of Theorem 3.6. Recall that the Fejér
kernels are good kernels. By Theorem 3.6, if h is continuous at x0, then

lim
n→∞

(h ∗ Fn)(x0) = h(x0).

Since all the Cesàro averages are zero, we are done. �

There is an immediate corollary that follows from the proof of the lemma.

Corollary 4.4. Continuous functions on the circle can be uniformly approximated
by trigonometric polynomials.

We just note that the partial sums are trigonometric polynomials.

5. The Mean-Square Convergence

This section explores a more general idea of global convergence of the Fourier
series. A continuous function may have a Fourier series that fails to converge at a
point, but perhaps there may be a way of determining if the Fourier series converges
to the function globally in a certain sense. The main result of this section is a type
of “mean-square convergence”.

The following result actually holds for merely integrable functions, but for sim-
plicity we state and prove it for continuous functions.

Theorem 5.1. Suppose f is continuous on the circle. Then

1

2π

∫ π

−π
|f(x)− SN (f)(x)|2dx→ 0 as N →∞

The proof requires some understanding of inner product spaces. Specifically the
delicateness of the global convergence of Fourier series could be attributed to the
difference between Hilbert-spaces and pre-Hilbert-spaces.
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Definitions 5.2. A Hilbert space is a complex inner product space which is com-
plete with respect to the norm induced by the inner product. If the inner product
space is not complete, we say that it is a pre-Hilbert space.

Examples 5.3. It is trivial exercise in linear algebra to show that Cn, with the
usual inner product is a Hilbert space.

We define `2(Z), to be the set of all two-sided infinite sequences of complex
numbers {an}∞n=−∞ such that ∑

n∈Z
|an|2 <∞.

The inner product is defined to be

〈A,B〉`2(Z) =
∑
n∈Z

anbn

where A = {an} and B = {bn}.
The norm is therefore

‖A‖`2(Z) = 〈A,A〉1/2 =

(∑
n∈Z
|an|2

)1/2

.

It is straightforward to show `2(Z) is a Hilbert space.
An important pre-Hilbert space is the space of integrable functions on the circle

with inner product

〈f, g〉L2([−π,π]) =
1

2π

∫ π

−π
f(x)g(x)dx

and norm

‖f‖2L2([−π,π]) = 〈f, f〉 =
1

2π

∫ π

−π
|f(x)|2dx

The proof that this is not a Hilbert-space is simple and we will omit it here.

The following lemma used to prove Theorem 5.1 is sometimes referred to as the
“Best Approximation Lemma.”

Lemma 5.4. If f is continuous on the circle with Fourier coefficients f̂(n), then

‖f − SN (f)‖L2([−π,π]) ≤ ‖f −
∑
|n|≤N

cnen‖

for any complex numbers cn. Moreover, equality holds if and only if cn = f̂(n) for
all |n| ≤ N.

Proof. For each integer n, let en(x) = einx. Note

〈en, em〉 =

{
1 : if n = m
0 : if n 6= m

If f is a continuous function on the circle, we may write f̂(n) using the L2([−π, π])
inner product

f̂(n) = 〈f, en〉
and the truncated Fourier series as SN (f) =

∑
|n|≤N f̂(n)en.
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Since the set {en}|n|≤N is an orthonormal set, we can apply the Pythagorean
Theorem to the decomposition:

f −
∑
|n|≤N

cnen = f − SN (f) +
∑
|n|≤N

(f̂(n)− cnen)

We get

‖f −
∑
|n|≤N

cnen‖2L2([−π,π]) = ‖f − SN (f)‖2 +
∑
|n|≤N

|f̂(n)− cn|2

thus demonstrating the lemma. �

Proof of Theorem 5.1. Suppose f is continuous on the circle. Let ε > 0, There
exists by Corollary 4.4 a trigonometric polynomial P of degree D such that

|f(x)− P (x)| < ε

for all x ∈ [−π, π]. Then choose {cn} of complex numbers such that
∑
|n|≤N cnen =

P Then whenever we have N ≥ D,

‖f − SN (f)‖ ≤ ‖f − P‖ < ε

And we are done. �

What we have shown for continuous functions on the circle in this paper may be
extended in some sense to merely integrable functions and with the introduction of
Lebesgue integration, one may see that the pre-Hilbert space with L2([−π, π]) norm
may be completed as the inner product space `2(Z), opening up deeper questions
of convergence.
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