
DIRICHLET PRIME NUMBER THEOREM

JING MIAO

Abstract. In number theory, the prime number theory describes the asymp-
totic distribution of prime numbers. We all know that there are infinitely many

primes,but how are they distributed? Dirichlet’s theorem states that for any

two positive coprime integers a and d, there are infinitely many primes which
are congruent to a modulo d. A stronger form of Dirichlet’s theorem states

that the sum of the reciprocals of the prime numbers with the same modulo di-

verges, and different progressions with the same modulus have approximately
the same proportions of primes. We will walk through the proofs of Dirichlet’s

theorem, and introduce some related topics, such as the Riemann-zeta function

and quadratic field.
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1. Introduction: the Euclidean method

Many people know that there are infinitely many primes (Euclid’s Theorem).
The proof is easy. Suppose that there are only finitely many primes, say p1, ..., pr.
Consider N = p1...pr + 1. Then N is a prime that is not included in p1...pr.
Contradiction. Thus we prove Euclid’s Theorem.

What if we want to know how many primes there are that are congruent to a
modulo d (a,d are coprime)? In some cases, we can generalize the Euclidean proof
to prove there are infinitely many such primes. We will show here for d = 3 and 4.
Consider primes of the form n + 2. Assume p1...pr are primes congruent to 2
modulo 3. Take N = 3p1...pr − 1. It is congruent to 2 modulo 3, so if it is not a
prime, it must have a prime factor congruent to 2 modulo 3. Yet all such primes do
not divide N . Contradiction. Thus, there are infinitely many primes of the form
3n + 2. Similar method can be applied to the proof of primes of the form 4n + 3.
Let N = 4p1...pr + 3 where p1...pr are primes of the form 4n+ 3. Then clearly N is
congruent to 3 modulo 4. If N is not a prime, it must have a prime factor congruent
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to 3 modulo 4. Contradiction. Therefore, there are infinitely many primes of the
form 4n + 3. The case of primes of the form 4n + 1 is a little bit tricky, because
a non-prime number that is congruent to 1 modulo 4 can have all prime factors
not congruent to 1 module 4. In this case, we let N = 4p21...p

2
r + 1, and using the

similar idea, we can prove by contradiction (For the proof, see appendix 1).

2. Riemann zeta function

However, not all cases can be shown in the Euclidean way. In this section,
we will introduce Euler’s proof of the infinitude of primes. First, let’s learn the
Riemann-zeta function that will be frequently used in our later proofs.

Definition 2.1. The Riemann zeta function ζ(s), is a function of a complex variable

s that analytically continues the sum of the infinite series

∞∑
n=1

1

ns
.

The summation converges when the real part of s is greater than 1. What
happens when s is very close to 1? Note that ζ(1) is unbounded because we know

that

∞∑
n=1

1

n
does not have an upper bound. Also note that

ζ(1) =

∞∑
n=1

1

n
=

r∏
i=1

1 + p−1i + p−2i + ... =

r∏
i=1

1

1− p−1i
.

Since ζ(1) is unbounded, there are infinitely many primes. Otherwise, the right
hand side will be finite. We can then simpify the Riemann zeta function into

ζ(s) =

∞∑
n=1

1

ns
=

∑
n=pt1...p

t
r∈N

1

(pt1...p
t
r)
s

=
∏
p

(1 +
1

ps
+

1

p2s
+ ...)

=
∏
p

1

1− 1
ps

,

where p is indexed over all prime numbers.
Then we want to see what function ζ(s) converges to. Since

∫ ∞
1

1

ts
dt =

1

−s+ 1
t−s+1 =

1

s− 1
,
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we assume that ζ(s) = 1
s−1 + h(s), where the real part of s is greater than 1.

The function h(s) is a holomorphic function that is bounded. To prove this,

h(s) = ζ(s)− 1

s− 1

=
∑
n∈N

1

ns
−
∫ ∞
1

1

ts
dt

=
∑
n∈N

∫ n+1

n

(
1

ns
− 1

ts
) dt

=
∑
n∈N

∫ 1

0

(
1

ns
− 1

(n+ t)s
) dt.

Denote fn(t) = 1
ns −

1
(n+t)s , fn(0) = 0, f ′n(t) = s

(n+t)s+1 . When 0 < t < 1,

|fn(t)| ≤ sup |f ′n(t)| × 1 ≤ | s

ns+1
|.

Thus, h(s) ≤
∑
n∈N |

s
ns+1 |, which converges when the real part of s is greater than

0. Thus, log ζ(s) ≈ log 1
s−1 . On the other hand, we have

log ζ(s) = log
∏
p

1

1− p−s

= −
∑
p

log(1− p−s)

=
∑
p

(p−s + 1/2p−2s + 1/3p−3s + ...).

Note that when real part of s is greater than 1/2,

|1/2p−2s + 1/3p−3s + ...| ≤ |p−2s|| 1

1− p−s
| ≤ 2|p−2s|.

Thus,
∑
p(1/2p

−2s + 1/3p−3s + ...) converges. Therefore,
∑
p p
−s ≈ log 1

s−1 .

3. Dirichlet characters

We showed in the previous section that
∑
pprime

1
ps ≈ ln 1

s−1 . Now we want to

show that for any (a, b) = 1,
∑
p≡amodb

1
ps ≈

1
φ(b) ln

1
s−1 as s goes to 1, where φ(b)

is the number of a < b, such that (a, b) = 1. The infinitude of primes of the form
a + bn follows from this. Thus, we want a nice way to write the characteristic
function, such that

1(x) =

{
1 : n ≡ a mod b
0 : n 6≡ a mod b.

Then
∑
p≡a mod b

1
ps =

∑
p

1(p)
ps . Such characteristic functions are called Dirichlet

characters χ. There are two basic properties of Dirichlet characters: χ(1) = 1; if
a ≡ b mod N , then χ(a) = χ(b).

Theorem 3.1. If (a,N) = 1, then aφ(N) ≡ 1 mod N . This is called Euler’s
Thoerem.

Thus, χ(a) is a φ(N)-th root of unity.
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Definition 3.2. A congruent class g mod N is called a primitive root mod N if
for any a ∈ Z and (a,N) = 1, a ≡ gk( mod N) for some k.

The result is that there exists a unique k in the interval 0 ≤ k ≤ φ(N)− 1, such
that a ≡ gk(mod N). We label such k: k = indga and call it the index of a to base
gmodN . So a ≡ gindga.

Proposition 3.3. Let g be a primitive root modulo N , and (a,N) = (b,N) = 1.
Then

indg(ab) = indga+ indgb mod φ(N),

indg(a
k) = kindga mod φ(N),

If g′ is another primitive root, then indga = indgg
′ × indg′a mod φ(N).

So for general natural numberN , do primitive roots exist? The answer is that
they do not always exist.

Theorem 3.4. For only N = 1, 2, 4, pα, 2pα, where p is an odd prime and α ≥ 1 ∈
N,there exists a primitive root.

Proof. It is easy to check that 1,2,4 have primitive roots. Then we shall prove that
all odd primes have primitive roots. Let n be the least universal exponent for p,
i.e. n is the smallest positive integer such that xn ≡ 1 mod p, for all non-zero
x ∈ 0, 1...p− 1. Notice that there is some element g ∈ 1, 2...p− 1, such that gn ≡ 1
but gm 6≡ 1 mod p for any m < n, i.e. the multiplicative order of g is precisely n.
Also, notice that by Euler’s theorem, n ≤ p − 1.Now, notice that the polynomial
f(x) = xn− 1 has at most n roots over the field Zp.(The proof is in the appendix.)
f(x) ≡ 0 mod p for all non-zero x mod p. Thus, n ≥ p− 1. Hence, n = p− 1 and
g is of exact order p− 1. Therefore, g is a primitive root. �

Next we shall show that numbers of the form of pα have primitive roots. First,
we shall show if a is a primitive root of p, then a is a primitive root of p2. Let
n ≡ amodp. Then n ≡ (a+kp)modp for some k < p. By Euler’s theorem, we know
(a+kp)p(p−1) ≡ 1modp2. By contradiction, if a is not a primitive root, there exists
some f |p − 1 such that (a + kp)p(p−1)/f ≡ 1modp2. Since f |p − 1, p = tf + 1 for
some integer t.Then

(a+ kp)p(p−1)/f = (a+ kp)p−1)(t+1/f)

≡ (i+ kp)t+1/f

= (1 + kp)t(1 + kp)1/f

≡ (1 +mp) · (b)
6≡ 1 mod p2,

where b is any number but not 1 that is congruent to p. This is a contradiction.
Thus, a is a primitive root of p2. Then we will prove if a is a primitive root of p2,
a is also a primitive root of pα. Using similar method, we can prove that a is also
a primitive root for pα.

Next we will prove that if pα has primitive root, then 2pα also has primitive root.
If the primitive root a is an odd number, since pα and 2pα have the same order, a
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must also be a primitive root for 2pα. If a is even, take a′ = a+ pα, a′ is odd and
(a′, 2pα) = 1. Consider (a + pα)φ(2p

α)/f , it is not congruent to 1 mod 2Pα.Thus,
2pα has primitive roots.

We also have to show that 2n(n > 2) and any other composite numbers except
the power of prime numbers do not have primitive. First, consider 2n. For any odd

number 2k+1, (2k+1)2
n−2 ≡ 1 mod 2n. So 2n does not have primitive root. Then,

consider composite number N = pt11 ...p
tr
r . The order of N is the multiplication of

the orders of p
tj
j , which are all even number. So there is no primitive roots. Thus,

we finish the proof of this theorem.
Now let’s learn how to construct the Dirichlet characters. Let g be a primitive

root of of pα where p is odd. For any (n, p) = 1, we write b(n) = indgn. So

g ≡ gb(n) mod pα. For h = 0, ..., φ(pα)− 1, define

χh(n) =

{
e2πihb(n)/φ(p

α) : (n, pα) = 1
0 : (n, pα) 6= 1.

Examples 3.5. Take p = 5, α = 1, g = 3. Thus, b(1) = 4, b(2) = 3, b(3) = 1, b(4) =
2.

Notice that if (nm, pα) = 1,

χh(nm) = e
2πihb(nm)
φ(pα) = e

2πih(b(n)+b(m))
φ(pα = χh(m)χh(n).

As there are φ(pα) h’s, there exist φ(pα) distinct Dirichlet characters. This con-
struction also works for 2,4. However, there is no primitive root for modulo 2n when
n ≥ 3. Similarly, for N = pα1

1 pα2
2 ...pαrr , there is no primitive root. If χi is a Dirich-

let character modulo pαii , then χ = χ1χ2...χr. Since φ(pαii p
αj
j ) = φ(pαii )φ(p

αj
j ), we

know that φ(N) = φ(pα1
1 )φ(pα2

2 )...φ(pαrr ).
It is easy to check that if χ, ψ are Dirichelet characters, then φ · ψ is also a

Dirichlet character. This property is very useful. Now consider
∑
χmodN χ(x). If

we multiply it with ψ(x) for some ψ(x) 6= 1, we get

ψ(x)
∑

χ mod N

χ(x) =
∑

χ mod N

ψ(x)χ(x) =
∑

χ mod N

(ψ · χ)(x) =
∑

χ mod N

χ(x),

(ψ(x)− 1)
∑

χ mod N

χ(x) = 0,

∑
χ mod N

χ(x) = 0 if x 6≡ 1 mod N.

If x ≡ 1 mod N , then
∑
χmodN χ(x) = φ(N). Thus,we have

1

φ(N)

∑
χ

(x) =

{
1 : χ ≡ 1 mod N
0 : χ 6≡ 1 mod N.
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Thus, we have for (a, b) = 1,

∑
p≡a mod b

1

ps
=

∑
pa′≡1 mod b

1

ps
where aa′ ≡ 1 mod b

=
∑
p

1

ps
(

1

φ(b)

∑
χ mod b

χ(pa′))

=
1

φ(b)

∑
χ mod b

(χ(a′)
∑
p

χ(p)

ps
).

4. Dirichlet L function

In this section, we introduce the Dirichlet L function. We want to show that
L(s, χ) is finite near s = 1, and also L(1, χ) 6= 0.

Definition 4.1. A Dirichlet L-series is a function of the form L(s, χ) =
∑∞
n=1

χ(n)
ns ,

where χ is a Dirichlet character and s a complex variable with real part greater
than 1.

Since we proved in the previous section that

1

φ(N)

∑
χ

(x) =

{
1 : χ ≡ 1 mod N
0 : χ 6≡ 1 mod N,

we can write I(x) = 1
φ(N)

∑
χ χ(a′)χ(x), where I(x) is the identity function, and

a′ ∈ Zp, such that xa′ ≡ 1 mod N . Then let x = ay. If a = 1, then a′ = 1. Thus
Ia(y) = 1

φ(N)

∑
χ χ(y), when y ≡ 1 mod N . Now,

∑
p≡a mod N

1

ps
=
∑
p

Ia(p)

ps

=
1

φ(N)

∑
χ

χ(a′)
∑
p

χ(p)

ps

=
1

φ(N)

∑
p-N

1

ps
+

1

φ(N)

∑
χ nontrivial

χ(a′)
∑
p

χ(p)

ps
.

The first term is the summation of the trivial character (χ(p) = 1 ). This is the
case when h = 0. And the second is the summation of non-trivial characters. We
will show later that the contribution of the second term is finite, thus, implying
that different progressions with the same modulo diverge, and different progressions
with the same modulus have approximately the same proportions of primes. We
will show that for each χ,

∑
p χ(p)/ps is bounded as s goes to 1.

Since as s goes to 1, 1
ps is unbounded, while 1

p2s , 1
p3s ... are all bounded, we have
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∑
p

χ(p)

ps
≈
∑
p

χ(p)

ps
+

1

2

∑
p

χ(p)

p2s
+

1

3

∑
p

χ(p)

p3s
+ ...

=
∑
p

− log(1− χ(p)

ps
)

= log
∏
p

1

1− χ(p)
ps

= log
∏
p

(1 +
χ(p)

ps
+
χ(p2)

p2d
+ ...)

= log
∑
n

χ(n)

ns
since χ(n) · χ(m) = χ(nm).

Notice that what is inside the ln is L(s, χ). We will show that L(s, χ) is finite
and non-zero for s > 0 when χ is non-trivial. Notice that∑

x∈ZN χ(x) = 0 when χ is non-trivial;
∑
x∈ZN χ(x) = φ(N) when χ is trivial.∑

χ χ(x) = 0 when x 6≡ 1 mod N;
∑
χ χ(x) = φ(N) when x ≡ 1 mod N .

We will first prove the finitude of the Dirichlet L-function when χ is non-trivial.

L(s, χ) =

∞∑
n=1

χ(n)

ns
=

∞∑
m=0

N∑
i=1

χ(i)

(i+mN)s

=

N∑
m=0

(

N∑
i=1

χ(i)

(i+mN)s
− (

N∑
i=1

χ(i)) · 1

(mN)s
)

=

∞∑
m=0

N∑
i=1

χ(i)(
1

(i+mN)s
− 1

(mN)s
).

The second step is true because
∑N

1 χ(i) = 0. Note that | 1
(i+mN)s −

1
(mN)s | =

| 1−(1+
i

mN )s

(i+mN)s |. Let x = 1
m . i

mN ≤
N
mN = 1

m . Since s > 0, (i + mN)s ≥ ms = 1
xs .

Thus, we have

| 1

(i+mN)s
− 1

(mN)s
| = |

1− (1 + i
mN )s

(i+mN)s
| ≤ |1− (1 + x)s

x−s
| ≈ |1−(1+sx)||xs| = s·xs+1,

∞∑
m=0

|
N∑
i=1

χ(i)

(i+mN)s
− (

N∑
i=1

χ(i)) · 1

(mN)s
| ≤

∞∑
m=0

c

ms+1
,

where c is some finite number. The right hand side of the above equation converges
absolutely when Re(s) > 0. Thus, L(s, χ) has the least upper bound.

Next, we want to show L(1, χ) 6= 0. First, suppose that χ is not quadratic,

i.e. χ is not real-valued. Then
∑
n≥1

χ(n)
ns =

∑
n≥1

χ(n)
ns when s is real. Thus,

L(s, χ) = L(s, χ). In particular, if we assume L(1, χ) = 0, then L(1, χ) = 0. Then
we have at least two specific characters ,χ, χ, such that L(1, χ) = L(1, χ) = 0. By
the equation ∑

p≡amodN

1

ps
=

1

φ(N)

∑
p-N

1

ps
+

1

φ(N)

∑
χnontrivial

χ(a′)
∑
p

χ(p)

ps
,
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we have

φ(N)
∑

p≡1 mod N

1

ps
=
∑ 1

ps
+ logL(s, χ) + logL(s, χ) + other characters.

We have proved that
∑

1
ps ≈ log 1

s−1 . Since the following two L functions have

pole at s = 1, logL(s, χ) = logL(s, χ) ≈ log(s− 1) when s approaches to 1. Thus,
the first two terms on the right hand side cancel, leaving the third term and the
remaining other L functions from other characters. When s is very close to 1, say
1.0001, the LHS > 0 while the RHS < 0. There is a contradiction. Thus, when χ
is not real-valued, the Dirichlet L-function can never be 0.

5. nonvanishing of L(χ, 1) when χ is real-valued

In order to prove the nonvanishing of L(χ, 1),we introduce the Dedekind zeta
function: ζN (s) =

∏
χ L(χ, s) near s = 1. We know that for each nontrivial χ,

L(χ, s) is holomorphic at s = 1, whereas for trivial χ we get essentially the Riemann
zeta function, which we have seen has a simple pole at s = 1. We have seen that

(s− 1)ζ(s)→ 1

as s → 1. It follows from basic function theory that ζN (s) has at most a simple
pole at s = 1, and it has a pole iff L(χ, 1) 6= 0 for all nontrivial χ. Thus, our goal
is to show that the Dedekind zeta function ζN (s) has a singularity at s = 1.

The key is that the Dirichlet series ζN (s) has a very particular form. To see this,
we need just a little notation: for a prime p not dividing N , let f(p) denote the

order of p in the unit group U(N), and put g(p) = φ(N)
f(P ) , which is a positive integer.

Proposition 5.1. a) We have ζN (s) =
∏
p-N

1
(1− 1

pf(p)s
)g(p)

.

b) Therefore, ζN (s) is a Dirichlet series with non-negative integral coefficients,
converging absolutely when the real part of s is greater than 1.

Proof. Let µf(p) be the group of f(p)-th roots of unity as roots (with multiplicity
one). Then for all p - N we have the polynomial identity∏

w∈µf(p)

(1− wT ) = 1− T f(p).

Indeed, both sides have the f(p)th roots of unity as roots (with multiplicity one),
so they differ at most by a multiplicative constant; but both sides evaluate to 1
when T = 0. Now by the Character Extension Lemma, for all w ∈ µf(p) there are
precisely g(p) elements χ ∈ X(N) such that χ(p) = w. This establishes part a),
and part b) follows from the explicit formula of part a). �

Since we know that ζN (s) has non-negative real coefficients, therefore we can
apply Landau’s Theorem: if σ is the abscissca of convergence of the Dirichlet series,
then the function ζn(s) has a singularity at σ. Clearly σ ≥ 1, so, if ζN (s) does not
have a singularity at s = 1, then not only does ζN (s) extend analytically to some
larger halfplane where the real part of s is greater than 1− ε, but it extends until it
meets a singularity on the real line. But we have already seen that each Dirichlet
L-function is holomorphic when the real part of s is greater than 0 and less than 1,
so Landau’s theorem tells us that σ ≤ 0. However, in our cases, it is unlikely that
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a Dirichlet series with non-negative integral coefficients has absissca of convergence
σ ≤ 0. To see it more explicitly,

1

(1− 1
pf(p)s

)g(p)
= (1 +

1

pf(p)s
+

1

p2f(p)s
+ ...)g(p)

≥ 1 +
1

pf(p)s
+

1

p2f(p)s
+ ....

Ignoring all the crossterms gives a crude upper bound: this quantity is at least

1 +
1

pφ(N)s
+

1

p2φ(N)s
+ ....

Multiplying this over all p, it follows that

ζN (s) ≥
∑

n|(n,N)=1

1

nφ(N)s
.

When we evaluate at s = 1
φ(N) , we get

∑
(n,N)=1

1
n . Since the set of integers

prime to N has positive density, it is substantial. More concretely, since every n of
the form Nk+ 1 is coprime to N , this last sum is at least as large as

∑∞
k=1

1
Nk+1 =

∞. Thus, the ζN (s) has a singularity at s = 1. Therefore, L(χ, 1) 6= 0 for all
nontrivial χ.

In conclusion, if we define the density of the primes of the form p ≡ a mod b

to be ρ(a mod b) =
∑
p≡a mod b

1
p∑

p
1
p

, then we get the result of Dirichlet’s Theorem:

different progressions (different a) with the same modulus have the same density.
This is true because∑

p≡amodN

1

ps
=

1

φ(N)

∑
p-N

1

ps
+

1

φ(N)

∑
χnontrivial

χ(a′)
∑
p

χ(p)

ps
,

and the second term on the right hand side is finite. Thus, we complete the proof
of Dirichlet’s Theorem on the density of primes.
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Appendix A. Proofs of Theorems and Lemma

Theorem A.1. In number theory, Euler’s theorem states that if n and a are co-
prime positive integers, then

aφ(n) ≡ 1 mod n

where φ(n) is the number of all integers less than n that are coprimes to n.

Proof. This theorem can be proven using concepts from the theory of groups: The
residue classes (mod n) that are coprime to n form a group under multiplication.
The order of any subgroup of a finite group divides the order of the entire group,
in this case φ(n). If a is any number coprime to n, then a is in one of these residue
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classes, and its powers a, a2, ..., ak ≡ 1 mod n are a subgroup. Then k must divide
φ(n), i.e. there is an integer M such that kM = φ(n). Then

aφ(n) = akM = (ak)M ≡ 1M = 1 mod n

. �

Theorem A.2. Let F be a field and let p(x) be a non-zero polynoial in F[x] of
degree n ≥ 0. Then p(x) has at most n roots in F (counted with multiplicity).

Proof. We proceed by induction. The case n = 0 is trivial since p(x) is a non-zero
constant, thus p(x) cannot have any roots.

Suppose that any polynomial in F[x] of degree n has at most n roots and let
p(x) ∈ F[x] be a polynomial of degree n+ 1. If p(x) has no roots then the result
is trivial, so let us assume that p(x) has at least one root a ∈ F . Then,there
exists a polynomial q(x) such that p(x) = (x− a) · q(x). Hence,q(x) ∈ F[x] is a
polynomial of degree n. By the induction hypothesis, the polynomial q(x) has at
most n roots. It is clear that any root of q(x) is a root of p(x) and if b 6= a is a
root of p(x) then b is also a root of q(x). Thus, p(x) has at most n + 1 roots,
which concludes the proof of the theorem. �

Lemma A.3. (Character Extension Lemma) Let H be a subgroup of a finite com-
mutative group G. For any character ψ : H → C, there are [G : H] characters
ψ : G→ C such that ψ|H = ψ.

Proof. The result is clear if H = G, so we may assume that there exists g ∈ G\H.
Let Gg =< g,H > be the subgroup generated by H and g. Now we may or may not
have Gg = G, but suppose that we can establish the result for the group Gg and
its subgroup H. Then the general case follows by induction, since for any H ∈ G,
choose g1, ..., gn such that G =< H, g1, ..., gn >. Then we can define G0 = H and
for 1 ≤ i ≤ n, Gi =< Gi−1, gi >. Applying the Lemma in turn to Gi−1 as a
subgroup of Gi gives that in all the number of ways to extend the character ψ of
H = G0 is

[G1 : H][G2 : G1]...[Gn : Gn−1] = [G : G0] = [G : H].

�

So let us now prove that the number of ways to extend ψ fromH toGg =< H, g >
is [Gg : H]. For this, let d be the order of g in G, and consider Ḡ := H× < g >.
The number of ways to extend a character ψ of H to a character of Ḡ is equal to
# < g >= d: such a homomorphism is uniquely specified by the image of (1, g) in
µd ∈ C, and all d such choices give rise to homomorphisms.

Moreover, there is a surjective homomorphism ψ : H× < g > to Gg: we just
take (h, gi) 7→ hg−i. The kernel of ψ is the set of all pairs (h, gi) such that gi = h.
In other words, it is precisely the intersection H∩ < g >, which has cardinality, say
e, some divisor of d. It follows that

#Hg =
#H× < g >

#H∩ < g >
=
d

e
·#H,

so

[Hg : H] =
d

e
.

But a homomorphism f : H× < g >→ C descends to a homomorphism on the
quotient Hg iff it is trivial on the kernel of the quotient map, i.e., is trivial on
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H∩ < g >. In other words, the extensions of ψ to a character of Hg correspond

precisely to the number of ways to map the order d element g into C such that g
d
e

gets mapped to 1. Thus we must map g to a d
e th root of unity, and conversely all

such mappings induce extensions of ψ. Thus the number of extensions is d
e = [Hg :

H].

Theorem A.4. Let σk(x) be the number of integers n ≤ x which are the product
of just k prime factors so that n = p1p2...pk, and let πk(x) be the number of such
n for which all the pi are different. The behavior of πk(x) and σk(x) as x→∞ is
given by

πk(x) ∼ σk(x) ∼ x(loglogx)k−1

(k − 1)!logx
.

Proof. A.Selberg found an elementary proof of
∑
p≤x logp x, which is equivalent

to the Prime Number Theorem. We use an elementary deduction of the Landau’s
Theorem for k ≥ 2 from the above finding and the well-known elementary result∑
p≤x

1
p ∼ loglogx.

We wrtie cn for the number of ways of expressing n in the form of n = p1p2...pk,
order being relevant. Clearly cn = 0, unless n is a product of just k prime factors;
in this case, cn = k! or 1 ≤ cn < k! according as the k primes are or are not, all
different. We write ∏

k

(x) =
∑
n≤x

cn =
∑

p1p2...pk≤x

1,

and so have

(A.5) k!πk(x) ≤
∏
k

(x) ≤ k!σk(x).

Again, there are just σk(x)−πk(x) values of n ≤ x, each of which is representable
in the form n = p1p2...pk with two at least of the pi eqaul. We may take pk−1 = pk
and so

(A.6) σk(x)− πk(x) ≤
∑

p1p2...pk−2p2k−1

1 ≤
∑

p1...pk−1

1 =
∏
k−1

(x)

We write Ω0(x) = 1 and ,for k ≥ 1,

Ωk(x) =
∑
n≤x

cn
n

=
∑

p1...pk≤x

1

p1...pk
,

so that

kϑk+1(x) =
∑

p1...pk+1≤x

log(p2p3...pk+1) + log(p1p3...pk+1) + ...+ log(p1p2...pk)

= (k + 1)
∑
p≤x

ϑ(
x

p
).

Hence, if

φk(x) = ϑk(x)− kxΩk−1x),

we have

kφk+1(x) = (k + 1)
∑
p≤x

φk(
x

p
), (k ≥ 1).
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If, for some fixed k ≥ 1,

(A.7) φk(x) = o(loglogx)k−1,

it follows that

|φk+1(x)| ≤ x(loglogx)k−1
∑
p≤x

1

p
f(
x

p
),

where, for any ε > 0,

0 < f(x) ≤ A(x ≥ 1), f(x) < ε(x ≥ x0 = x0(ε)).

Hence ∑
p≤x

1

p
f(
x

p
) ≤ ε

∑
p≤x/x0

1

p
+A

∑
x/x0≤pleqx

1

p

≤ εloglog(
x

x0
) +Alog(

logx

logx− logx0
) +O(1)

≤ 2εloglogx

. for x ≥ x1 ≥ x0, and so

φk+1(x) = o[x(loglogx)k],

which is (A.7) with k+1 for k. But, for k = 1, (A.7) is equivalent to
∑
p≤x logp ∼ x.

Hence (A.7) is true for all k ≥ 1.
Next we have

(
∑
p

1

p
)k ≤ Ωk(x) ≤ (

∑
p≤x

1

p
)k

and so, by
∑
p≤x

1
p ∼ loglogx,

Ωk(x) ∼ (loglogx)k.

Hence, by (A.7),

ϑk(x) ∼ kx(loglogx)k−1.

Trivially,

(A.8) ϑk(x) =
∑
n≤x

cnlogn ≤
∏
k

(x)logx

and, if X = x
logx ,

ϑ(x) ≥
∑

X<n≤x

cnlogn ≥ Πk(x)−Πk(X)logX.

But logX ∼ logx and ,for k ≥ 2,

Πk(X) = O(X) = O(
x

logx
) = o(

ϑk(x)

logx
) = o(ΠK(x))

by (A.8). Hence

Πk(x) ∼ ϑk(x)

logx
∼ kx(loglogx)k−1

logx
.

and so, by (A.5) and (A.6),

πk(x) ∼ σk(x) ∼ x(loglogx)k−1

(k − 1)!logx
, (k ≥ 2).

This completes our proof. �
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Lemma A.9. There are infinitely many primes of the form 4n+ 1.

Proof. For every k, all prime divisors of k2 + 1 are ≡ 1mod4. This is because any
p|n2 + 1 fulfills n2 ≡ −1modp and therefore (−1p ) = 1, which is, since p must be

odd, equivalent to p ≡ 1mod4. Assume that there are only t primes p1, ..., pt of
the form 4m + 1, where m is a prime. Then we can derive a contradiction from
considering the prime factors of (2p1...pt)

2 + 1. �
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