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Abstract. This paper explores Galois Theory over the complex numbers,

building up from polynomials to corresponding field extensions and examining

these field extensions. Ultimately, the paper proves the Fundamental The-
orem of Galois Theory and provides a basic example of its application to a

polynomial.

Contents

1. Introduction 1
2. Irreducibility of Polynomials 2
3. Field Extensions and Minimal Polynomials 3
4. Degree of Field Extensions and the Tower Law 5
5. Galois Groups and Fixed Fields 7
6. Normality and Separability 8
7. Counting Lemmas 11
8. Field Automorphism Lemmas 12
9. The Fundamental Theorem of Galois Theory 14
10. An Example 16
11. Acknowledgements 18
References 19

1. Introduction

In this paper, we will explicate Galois theory over the complex numbers. We
assume a basic knowledge of algebra, both in the classic sense of division and re-
mainders of polynomials, and in the sense of group theory. Although the build-up
to the result which we want is quite long, the subject matter along with its histori-
cal place in mathematics provide strong motivation. Galois theory has applications
in classic problems such as squaring the circle and determining solvability of poly-
nomials (its original purpose), as well as in number theory, differential equations,
and algebraic geometry. Moreover, in the history of mathematics, Galois theory
was one of the things which sparked the modern understanding of groups, and as
a result Galois is regarded as one of the founders of modern algebra. We will
define more terms later, but to give an idea of where we are going, consider the
polynomial x2 + 2 = 0. It’s roots are plus or minus i

√
2. The smallest subfield

of C which contains these roots is Q(i,
√

2) = {
√

2a + bi | a, b ∈ Q}, which has 4

subfields: Q, Q(i), Q(
√

2), and Q(i,
√

2). Now, consider all of the automorphisms
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of Q(i,
√

2) which fix Q. There is the identity, I, one which sends
√

2 to −
√

2 and

fixes i, τ , one which sends i to −i and fixes
√

2, σ, and one which sends i to −i and√
2 to −

√
2, π. Thus, the functions I, τ, σ,and π form a group under composition

of maps, called the Galois group, which is isomorphic to Z/2Z× Z/2Z. Moreover,
considering the subgroups of the Galois group, we can see that each fixes some
subfield. For example, the subgroup formed by I and τ fixes Q(i). This is an ele-
mentary example of the correspondence between the subfields (called intermediate
fields) of a field extension and the subgroups of the Galois group.

2. Irreducibility of Polynomials

We begin by defining the notion of irreducibility and proving some basic theorems
about irreducibility for later use.

Definition 2.1 (Divisor). Let f, g be polynomials over a field K. f divides g if
there exists a polynomial h over K such that g = fh. This is notated by f | g.

Definition 2.2 (Degree). Let f be a polynomial over C such that f 6= 0. The
degree of f is the power of the highest term with non-zero coefficient. The degree
of a polynomial f is written ∂f

Definition 2.3 (Reducible). Let f be a polynomial over a subring R of C. f is
reducible if it is the product of two polynomials over R of smaller degree. Otherwise
f is irreducible.

Theorem 2.4. Any polynomial over a subring R of C is a product of irreducible
polynomials over R.

Proof. Proof by induction on the degree of polynomials. Polynomials of degree 0
and 1 are clearly irreducible, so we have our base case. Now assume that polyno-
mials of degree up to n− 1 are the product of irreducible polynomials over R. Let
f be a polynomial over R with ∂f = n. If f is irreducible, the theorem is proven.
If f is not irreducible, then it is reducible, so f = hk, where h, k are polynomials
over R with ∂h, ∂k < n. By the inductive hypothesis, h and k are the product of
irreducible polynomials over R, so f is also a product of irreducible polynomials
over R. �

Lemma 2.5 (Gauss’ Lemma). If a polynomial f over Z is irreducible over Z, then
f as a polynomial over Q is irreducible over Q

Proof. Proof by contradiction. Let f be a polynomial over Z. Assume f is ir-
reducible over Z, but is reducible over Q as a polynomial over Q. This implies
f = gh where g, h are polynomials over Q with ∂g, ∂h < ∂f . Multiplying f = gh
through by the denomenators of each term of g and h gives nf = g′h′ where
n ∈ Z and g′, h′ are polynomials over Z. Let p be a prime factor of n. If
g′ = g0 + g1t + . . . + gnt

n and h′ = h0 + h1 + . . . + hnt
n, then p divides all the

coefficients of g′ or all the coefficients of h′. If not, then there exist smallest values
i, j such that p - gi and p - hj . But p divides the coefficient of ti+j in g′h′, which is
h0gi+j+h1gi+j−1+. . .+hjgi+. . .+hi+jg0. By our choice of i and j, p divides every
term except perhaps hjgi. But p divides the whole sum, so p | hjgi, contradiction
because p - hj and p - gi. So without loss of generality, p divides every coefficient
gi, which implies g′ = pg′′ where g′′ is a polynomial over Z with the same degree as
g′. Let n = pn1 which implies pn1f = pg′′h′ which implies n1f = g′′h′. Continuing
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the process removes all primes from n, giving f = g∗h∗ where ∂g∗ = ∂g, ∂h∗ = ∂h,
and g∗, h∗ ∈ Z[t] which implies f is reducible over Z. �

The next theorem provides a very practical way to determine irreducibility for
many polynomials with integer coefficients. Note that any polynomial over Q can
be converted into a polynomial over Z multiplied by a constant in Q, which expands
the applicability of the following theorem even further.

Theorem 2.6 (Eisenstein’s Criterion). Let f(t) = a0 + a1t + . . . + ant
n be a

polynomial over Z. Suppose there exists some prime q such that:

(1) q - an
(2) q | ai(i = 0, . . . , n− 1)
(3) q2 - a0

Then f is irreducible over Q.

Proof. Proof by contradiction. By Gauss’s Lemma, it suffices to that f is irreducible
over Z. Assume by way of contradiction that f = gh, where

g = b0 + b1t+ . . .+ brt
r

and

h = c0 + c1t+ . . .+ cst
s

are polynomials of smaller degree over Z. Then r ≥ 1, s ≥ 1, and r+s = n. Because
b0c0 = a0 by condition 1 on f , we have q | b0 or q | c0. By condition 3 on f , q
cannot divide both b0 and c0, so without loss of generality let q | b0 and q - c0. If
all bj are divisible by q, then an is divisible by q, contrary to condition 1 on f . Let
bj be the first coefficient of g not divisible by q. Then

aj = bjc0 + . . .+ b0cj

with j < n. This implies q | c0 because q | aj , q | bi(b = 0, . . . , j − 1), but q - bj .
This is a contradiction, so f is irreducible. �

3. Field Extensions and Minimal Polynomials

Definition 3.1 (Field Extension). Let L and K be subfields of C. A field extension
is a monomorphism i : K → L, written L : K. We call L the large field and K the
small field.

Example 3.2. The inclusion maps i1 : Q→ R, i2 : R→ C, and i3 : Q→ C are all
field extensions

Definition 3.3. Let X be a subset of C. Then the subfield of C generated by X
is the intersection of all subfields of C that contain X.

Because every subfield of C contains Q, we can use the notation

Q(X)

for the subfield of C generated by X. In general, if L : K is a field extension and
Y ⊂ L, then the subfield of C generated by K ∪ Y is written K(Y ). Also, when X
is a set of discrete elements we omit the set brackets.

Example 3.4. Q(i) = {a+ bi | a, b ∈ Q}
Q( 3
√

2) = {a+ b 3
√

2 + c 3
√

4 | a, b, c ∈ Q}
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Definition 3.5 (simple extension). A simple extension is a field extension L : K
such that L = K(α) for some α ∈ L.

Warning 3.6. An extension may be simple without appearing to be. Consider
L = Q(

√
2,
√

3). This does not at first appear to be a simple extension. However,

Q(
√

2+
√

3) = Q(
√

2,
√

3) because (
√

2+
√

3)3 = (5+
√

2
√

3)(
√

2+
√

3) = 8
√

2+7
√

3.

Subtracting 7(
√

2 +
√

3) ∈ Q(
√

2 +
√

3) gives
√

2 ∈ Q(
√

2 +
√

3), and subtracting√
2 from

√
2 +
√

3 gives
√

3 ∈ Q(
√

2 +
√

3). Therefore this is a simple extension.

Definition 3.7 (monic). A polynomial f(t) = a0 + a1t+ . . .+ ant
n over a subfield

K of C is monic if an = 1.

Definition 3.8 (algebraic). Let K be a subfield of C and let α ∈ C. Then α is
algebraic over K if there exists a nonzero polynomial p over K such that p(α) = 0.
Otherwise, α is transcendental over K.

Definition 3.9 (minimal polynomial). Let L : K be a field extension and suppose
that α ∈ L is algebraic over K. Then the minimal polynomial of α over K is the
unique monic polynomial m of smallest degree such that m(α) = 0.

Example 3.10. i ∈ C is algebraic over R because if p(t) = t2 + 1, p(i) = 0. i /∈ R,
so no polynomial of degree 0 or 1 can have i as a root. Thus, because p(t) is monic
and degree 2, p(t) must be the minimal polynomial for i over R.

Definition 3.11. Two polynomials a, b ∈ K[t] are congruent modulo m if a(t)−b(t)
is divisible by m(t) in K[t]. This is written a ≡ b(mod m).

Lemma 3.12. Suppose a1 ≡ a2(mod m) and b1 ≡ b2(mod m). Then a1 + a2 ≡
b1 + b2(mod m) and a1a2 ≡ b1b2(mod m).

Proof omitted.

Lemma 3.13. Every polynomial a ∈ K[t] is congruent modulo m to a unique
polynomial of degree < ∂m.

Proof. Divide a by m with remainder, so that a = qm + r with q, r ∈ K[t] and
∂r < ∂m. Then a− r = qm, so a ≡ r(mod m). Now we want to show uniqueness.
Suppose r ≡ s(mod m) where ∂r, ∂s < ∂m. Then r − s is divisible by m but has
smaller degree than m. Therefore, r − s = 0, so r = s, proving uniqueness. �

The relation ≡ (mod m) is an equivalence relation on K[t], so it partitions K[t]
into equivalence classes. We write [a] for the equivalence class of a ∈ K[t]. This
means

[a] = {f ∈ K[t] : m | (a− f)}
The sum and product of [a] and [b] can be defined as:

[a] + [b] = [a+ b]

and
[a][b] = [ab]

Each equivalence class contains a unique polynomial of degree < ∂m, the reduced
form of a. This means that to compute in K[t], we can just add and multiply these
reduced polynomials, with m(t) identified with 0. We write

K[t]/(m)

for the set of equivalence classes of K[t] modulo m.
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Theorem 3.14. Let K(α) : K be a simple algebraic extension, and let the min-
imal polynomial of α over K be m. Then K(α) is isomorphic to K[t]/(m). The
isomorphism K[t]/(m)→ K(α) can be chosen to map t to α and be the identity on
K.

Proof. The isomorphism is defined by [p(t)] 7→ p(α), where [p(t)] is the equivalence
class of p(t)(mod m). This map is well-defined becauce p(α) = 0 if and only if
m | p. It is clearly a field monomorphism. It maps t to α, and its restriction to K
is the identity. �

Corollary 3.15. Suppose K(α) : K and K(β) : K are simple algebraic extensions
such that α and β have the same minimal polynomial m over K. Then the two
extensions are isomorphic and the isomorphism of the large fields can be taken to
map α to β and be the identity on K.

Proof. Both extensions are isomorphic to K[t]/(m). The isomorphisms concerned
map t to α and t to β, respectively. Call them i, j, respectively. Then ji−1 is an
isomorphism from K(α) to K(β) that is the identity on K and maps α to β. �

Lemma 3.16. Let K(α) : K be a simple algebraic extension, where the minimal
polynomial of α over K is m and ∂m = n. Then [1, α, . . . , αn−1] is a basis for
K(α) over K. In particular, [K(α) : K] = n.

Proof. Based on the previous theorem and corollary, this is a restatement of lemma
3.13. �

4. Degree of Field Extensions and the Tower Law

Theorem 4.1. If L : K is a field extension, then the operations

(λ, u) 7→ λu

where λ ∈ K,u ∈ L and

(u, v) 7→ u+ v

where u, v ∈ L define on L the structure of a vector space over K.

The theorem follows immediately from the definition of a vector space because
K,L are subfields of C and K ⊂ L

Definition 4.2. The degree [L : K] of a field extension L : K is the dimension of
L considered as a vector space over K.

Example 4.3. A basis for C over R is {1, i}, so [C : R] = 2

Theorem 4.4 (Short Tower Law). If K,L,M are subfields of C and K ⊂ L ⊂M ,
then:

[M : K] = [M : L][L : K]

Proof. Let (xi)i∈I be a basis for L as a a vector space over K and let (yj)j∈J be a
basis for M over L, so for all i ∈ I and j ∈ J we have xi ∈ L, yi ∈M . We want to
show (xiyj)i∈I,j∈J is a basis for M over K, with xiyi the product in M because the
dimensions are cardinalities of the bases. First we will show linear independence.
Suppose: ∑

i,j

kijxiyj = 0
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where kij ∈ K. We can rearrange this as∑
j

(
∑
i

kijxi)yj = 0

Since the coefficients
∑
kijxi are in L and the yj are linearly independent over L,

we have ∑
i

kijxi = 0

By similar argument with
∑
kijxi, we find kij = 0 for all i ∈ I, j ∈ J . So the

elements xi, yj are linearly independent over K. Now we want to show that the
xiyj span M over K. We can write any m ∈M as

m =
∑
j

λjyj

for some λj ∈ L because the yj span M over L. Similarly, for any j ∈ J

λj =
∑
i

λijxi

for λij ∈ K. This gives

m =
∑
i,j

λijxiyj

so the xiyj span M over K �

Corollary 4.5 (Tower Law). If K0 ⊂ K1 ⊂ . . . ⊂ Kn are subfields of C, then

[Kn : K0] = [Kn : Kn−1][Kn−1 : Kn−2] . . . [K1 : K0]

Proof. This follows easily by induction from the Short Tower Law. �

Theorem 4.6. Let K(α) : K be a simple extension. If it is transcendental, then
[K(α) : K] =∞. If it is algebraic, then [K(α) : K] = ∂m, where m is the minimal
polynomial of α over K.

Proof. For the transcendental case, it suffices to note that the elements 1, α, α2, . . .
are linearly independent over K. For the algebraic case, see lemma 3.16 �

Using the tower law along with this theorem, we can actually compute the degree
of an extension quite easily if we know what simple extensions it is composed of.

Example 4.7. [Q(
√

2, i)] : Q] = [Q(
√

2, i) : Q(
√

2)][Q(
√

2) : Q] = 2 · 2 = 4

Definition 4.8. A finite extension is one whose degree is finite.

Definition 4.9. An extension L : K is algebraic if every element of L is algebraic
over K.

Lemma 4.10. L : K is a finite extension if and only if L is algebraic over K and
there exist finitely many elements α1, . . . , αs ∈ L such that L = K(α1, . . . , αs)

Proof. Induction using the Short Tower Law and theorem 4.6 shows that any alge-
braic extension K(α1, . . . , αs) : K is finite. Conversely, let L : K be a finite exten-
sion. Then there is a basis {α1, . . . , αn} for L over K, whence L = K(α1, . . . , αs).
It remains to show that L : K is algebraic. Let x be any element of L and let
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n = [L : K]. The set {1, x, . . . , xs} contains n + 1 elements, which must therefore
be linearly dependent over K. Hence

k0 + k1x+ . . .+ knx
n = 0

for k0, . . . , kn ∈ K and x is algebraic over K. �

5. Galois Groups and Fixed Fields

Now we will finally define the objects which we want to study along with a few
basic properties. First we define a special kind of automorphism.

Definition 5.1 (K-automorphism of L). Let L : K be a field extension, so that K
is a subfield of the subfield L of C. A K-automorphism of L is an automorphism α
of L such that

α(k) = k for all k ∈ K
We say that α fixes k ∈ K if this equation holds.

Theorem 5.2. If L : K is a field extension, then the set of all K-automorphisms
of L forms a group under composition of maps

Proof. Suppose that α and β are K-automorphisms of L. Then αβ is clearly an au-
tomorphism; further, if k ∈ K, then αβ(k) = α(k) = k, so αβ is a K-automorphism.
The identity map on L is obviously a K-automorphism. Finally, α−1 is an auto-
morphism of L, and for any k ∈ K we have

k = α−1α(k) = α−1(k)

so α−1 is a K-automorphism. Composition of maps is associative, so the set of all
K-automorphisms of L is a group. �

Definition 5.3 (Galois group!). The Galois group Γ(L : K) of a field extension
L : K is the group of all K-automorphism of L under the operation of composition
of maps

Example 5.4. Consider the extension C : R. Suppose that α is an R-automorphism
of C. Let j = α(i), where i =

√
−1. We have

j2 = (α(i))2 = α(i2) = α(−1) = −1

since −1 ∈ R and α fixes R. Hence, either j = i or j = −i. Now for any x, y ∈ R,
we have

α(x+ iy) = α(x) + α(i)α(y) = x+ jy

Thus we have two candidates for R-automorphisms:

α1 : x+ iy 7→ x+ iy

and

α2 : x+ iy 7→ x− iy
α1 is the identity, and hence an R-automorphism of C, while α2 is complex conju-
gation, also an R-automorphism of C. α2

2 = α1, so the Galois group Γ(C : R) is a
cyclic group of order 2.

Definition 5.5 (intermediate field). Let L : K be a field extension. If M is a field
such that K ⊂M ⊂ L, then M is an intermediate field.
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If G = Γ(L : K), then to each intermediate field we associate the group GM =
Γ(L : M). Thus GK is the whole Galois group and GL = 1. This mapping reverses
inclusions because if M ⊂ N , then GM ⊃ GN because any automorphism of L that
fixes the elements of N fixes the elements of M . Conversely, to each subgroup H
of Γ(L : K) we associate the set LH of all elements x ∈ L such that α(x) = x for
all α ∈ H. In fact, this set is an intermediate field.

Lemma 5.6. If H is a subgroup of Γ(L : K), then H� is a subfield of L containing
K.

Proof. Let x, y ∈ LH and α ∈ H. Then

α(x+ y) = α(x) + α(y) = x+ y

so x + y ∈ H�. Similarly, H� is closed under subtraction, multiplication, and
division (by nonzero elements), so LH is a subfield of L. Since α ∈ Γ(L : K), we
have α(k) = k for all k ∈ K, so K ⊂ LH �

Definition 5.7. With the above notation, LH is the fixed field of H.

6. Normality and Separability

Definition 6.1 (splits). If K is a subfield of C and f is a polynomial over K, then
f splits over K if it can be expressed as a product of linear factors

f(t) = k(t− α1) . . . (t− αn)

where k, α1, . . . , αn ∈ K.

This means that the zeroes of f in K are α1, . . . , αn. By The Fundamental
Theorem of Algebra, f splits over K if and only if all of its zeroes in C lie in K.
This means that K must contain the subfield generated by all the zeroes of f .

Definition 6.2 (splitting field). A subfield Σ of C is a splitting field for the poly-
nomial f over the subfield K of C if K ⊂ Σ and

(1) f splits over Σ.
(2) If K ⊂ Σ′ ⊂ Σ and f splits over Σ′, then Σ′ = Σ.

The second condition is equivalent to the condition that Σ = K(σ1, . . . , σn)
where σ1, . . . , σn are the zeroes of f in Σ. Clearly, every polynomial over a subfield
K of C has a splitting field.

Example 6.3. The polynomial f(t) = t3− 1 ∈ Q[t] splits over C because it can be
written as

f(t) = (t− 1)(t− ω)(t− ω2)

where ω = e
2πi
3 ∈ C. This implies that f also splits over Q(i,

√
3) and Q(ω)

because 1, ω, and ω2 are elements of all three of these fields. In particular, Q(ω) is
the splitting field for f .

Theorem 6.4. If K is any subfield of C and f is any polynomial over K, then
there exists a unique splitting field Σ for f over K. Moreover, [Σ : K] is finite.

Proof. We can take Σ = K(σ1, . . . , σn) where the σj are the zeroes of f in C. In
fact, this is the only possibility, so Σ is unique. The degree [Σ : K] is finite because
K(σ1, . . . , σn) is finitely generated and algebraic, so lemma 4.10 applies. �
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Definition 6.5. A field extension L : K is normal if every irreducible polynomial
f over K that has at least one zero in L splits in L

Example 6.6. C : R is normal since every polynomial (irreducible or not) splits

in C. However, the extension Q( 3
√

2) : Q is not normal because the irreducible

polynomial t3 − 2 has a zero in Q( 3
√

2), but it does not split in Q( 3
√

2)

Lemma 6.7. Suppose that i : K → K ′ is an isomorphism of subfields of C. Let
f be a polynomial over K and let Σ ⊃ K be the splitting field for f . Let L be any
extension field of K ′ such that i(f) splits over L. Then there exists a monomorphism
j : Σ→ L such that f �K= i

Proof. We will construct j : Σ → L using induction on ∂f . As a polynomial over
Σ,

f(t) = k(t− σ1) . . . (t− σn)

The minimal polynomial m of σ1 over K is an irreducible factor of f . Now i(m)
divides i(f) which splits over L, so that over L,

i(m) = (t− α1) . . . (t− αr)

where α1, . . . , αr ∈ L. Since i(m) is irreducible over K ′, it must be the minimal
polynomial of α1 over K ′. So there is an isomorphism

j1 : K(α1)→ K ′(α1)

such that j1 �K= i and j1(σ1) = α1. Now Σ is a splitting field over K(σ1) of the
polynomial g = f/(t− σ1). By induction there exists a monomorphism j : Σ → L
such that j �K(σ1)= j1. But then j �K= i and we are finished. �

This enables us to prove the uniqueness theorem.

Theorem 6.8. Let i : K → K ′ be an isomorphism. Let Σ be the splitting field
for f over K, and let Σ′ be the splitting field for i(f) over K ′. Then there is an
isomorphism j : Σ→ Σ′ such that j �K= i.

Proof. We want to find j : Σ → Σ′. By the previous lemma, there is a monomor-
phism j : Σ→ Σ′ such that j �K= i. But j(Σ) is clearly the splitting field for i(f)
over K ′, and is contained in Σ′. Since Σ′ is also the splitting field for i(f) over K ′,
we have j(Σ) = Σ′, so that j is onto. Hence j is an isomorphism. �

Normality will be essential for creating good Galois groups, but luckily we have
an easy way of checking that an extension is normal.

Theorem 6.9. A field extension L : K is normal and finite if and only if L is a
splitting field for some polynomial over K.

Proof. Suppose L : K is normal and finite. By lemma 4.10, L = K(α1, . . . , αs) for
certain αj algebraic over K. Let mj be the minimal polynomial of αj over K and
let f = m1 . . .ms. Each mj is irreducible over K and has a zero αj ∈ L. Since L is
generated by K and the zeroes of f , it is the splitting field for f over K. To prove
the converse, suppose that L is the splitting field for some polynomial g over K.
The extension L : K is then obviously finite; we must show that it is normal. To
do this we will take an irreducible polynomial f over K with a zero in L and show
that it splits in L. Let M ⊃ L be a splitting field for fg over K. Suppose that θ1



10 JULIAN MANASSE-BOETANI

and θ2 are zeroes of f in M . By irreducibility, f is the minimal polynomial of θ1
and θ2 over K. We claim that

[L(θ1) : L] = [L(θ2) : L]

To prove this, consider the subfields K,L,K(θ1), L(θ1),K(θ2), L(θ2) of M and the
towers

K ⊂ K(θ1) ⊂ L(θ1) ⊂M
K ⊂ K(θ2) ⊂ L(θ2) ⊂M

We also know that K ⊂ K(θi) and L ⊂ L(θj) for j = 1, 2, and K ⊂ L ⊂ M . The
claim will follow from computation of degrees. For j = 1, 2, we have

(6.10) [L(θj) : L][L : K] = [L(θj) : K] = [L(θj) : K(θj)][K(θj) : K]

By theorem 4.6, [K(θ1) : K] = [K(θ2) : K]. Clearly, L(θj) is the splitting field for
g over K(θj), and so by corollary 3.15 K(θ1) is isomorphic to K(θ2). Therefore by
theorem 6.8 the extensions L(θj) : K(θj) are isomorphic for j = 1, 2, and hence
have the same degree. Substituting into equation 6.10 and cancelling we get

[L(θ1) : L] = [L(θ2) : L]

as claimed. The rest is easy. If θ1 ∈ L, then [L(θ1) : L] = 1, so [L(θ2) : L] = 1 and
θ2 ∈ L. Hence L : K is normal. �

Definition 6.11 (normal closure). Let L be a finite extension of K. A normal
closure of L : K is an extension N of L such that

(1) N : K is normal.
(2) If L ⊂M ⊂ N and M : K is normal, then M = N .

Thus N is the smallest extension of L that is normal over K.

Within C we can always find unique normal closures, as per the next theorem.

Theorem 6.12. If L : K is a finite extension in C, then there exists a unique
normal closure N ⊂ C of L : K, which is a finite extension of K.

Proof. Let x1, . . . , xr be a basis for L over K, and let mj be the minimal polynomial
of xj over K. Let N be the splitting field for f = m1m2 . . .mr over L. Then N is
also the splitting field for f over K, so N : K is normal and finite by theorem 6.9.
Suppose that L ⊂ P ⊂ N where P : K is normal. Each polynomial mj has a zero
xj ∈ P so by normality f splits in P . Since N is the splitting field for f , we have
P = N . Therefore N is a normal closure. Now suppose that M and N are both
normal closures. f splits in M and N , so both M and N contain the splitting field
for f over K. This splitting field contains L and is normal over K, so it must be
equal to both M and N . �

Definition 6.13 (separable). An irreducible polynomial f over a subfield K of C
is separable over K if it has simple zeroes in C, or equivalently, simple zeroes in its
splitting field, so

f(t) = k(t− σ1) . . . (t− σn)

where the σj are different.

Although separability is also critical for having a nice Galois group, we will
largely ignore it because separability is automatic over C
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7. Counting Lemmas

First we present some lemmas without proof which rely on basic linear algebra.

Lemma 7.1 (Dedekind). If K and L are subfields of C, then every set of distinct
monomorphisms K → L is linearly independent over L.

Lemma 7.2. If n > m, then a system of m homogenous linear equations

am1x1 + . . .+ amnxn = 0

in n unknowns x1, . . . , xn, with complex xoefficients aij, has a solution in which the
xi are not all zero.

Now a quick group-theoretic lemma.

Lemma 7.3. If G is a group whose distinct elements are g1, . . . , gn, and if g ∈ G,
then as j varies from 1 to n the elements ggj run through the whole of G, each
element of G occurring precisely once.

Proof. If h ∈ G, then g−1h = gj for some j and h = ggj . If ggi = ggj , then
gi = g−1ggi = g−1ggj = gj . Thus the map gi 7→ ggi is a bijection G→ G, and the
theorem follows. �

With all of this, we can prove the following key theorem.

Theorem 7.4. Let G be a finite subgroup of the group of automorphisms of a field
K, and let K0 be the fixed field of G. Then [K0 : K] = |G|.

Proof. Let |G| = n, and suppose that the elements of G are g1, . . . , Gn, where
g1 = 1. We will show [K0 : K] ≥ n, then [K0 : K] ≤ n 1. Suppose for contradiction
that [K0 : K] = m, with m < n. Let [x1, . . . , xm] be a basis for K over K0. By
lemma 7.2 there exist y1, . . . , yn ∈ K, not all zero, such that

(7.5) y1g1(xj) + . . .+ yngn(xj) = 0

for j = 1, . . . ,m. Let x be any element of K. Then

x = α1x1 + . . .+ αmxm

where α1, . . . , αm ∈ K0. Hence

y1g1(x) + . . .+ yngn(x) = y1g1
(∑

l

αlxl
)

+ . . .+ yngn
(∑

l

αlxl
)

=
∑
l

αl[y1g1(xl) + . . .+ yngn(xl)]

= 0

using equation 7.5. Hence the distinct monomorphisms g1, . . . , gn are linearly inde-
pendent, contrary to lemma 7.1. Therefore m ≥ n. 2. Suppose for contradiction
that [K0 : K] > n. There there exists a set of n+ 1 elements of K that are linearly
independent over K0; let such a set be {x1, . . . , xn+1}. By lemma 7.1 there exist
y1, . . . , yn+1 ∈ K, not all zero, such that for j = 1, . . . , n

(7.6) y1gj(x1) + . . .+ yn1
gj(xn+1) = 0

Now choose y1, . . . , yn+1 so that as few as possible are nonzero, and renumber so
that

y1, . . . , yr 6= 0
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and

yr+1, . . . , yn+1 = 0

Thus equation 7.6 becomes

(7.7) y1gj(x1) + . . .+ yrgj(xr) = 0

Let g ∈ G and operate on equation 7.7 with g. This gives a system of equations

g(y1)ggj(x1) + . . .+ g(yr)ggj(xr) = 0

By lemma 7.3, as j varies, this system of equations is equivalent to the system

(7.8) g(y1)gj(x1) + . . .+ g(yr)gj(xr) = 0

Multiply equation 7.7 by g(y1) and equation 7.8 by y1 and subtract, to get

[y2g(y1)− g(y2)y1]gj(x2) + . . .+ [yrg(y1 − g(yr)y1]gj(xr) = 0

This is a system of equations like equation 7.7 but with fewer terms, which is a
contradiction unless all the coefficients

yig(y1)− y1g(yi)

are zero. However, if this happens, then

yiy
−1
1 = g(yiy

−1
1 )

for all g ∈ G, so that yiy
−1
1 ∈ K0. Thus there exist z1, . . . , zr ∈ K0 and an element

k ∈ K such that yi = kzi, for all i. Then equation 7.7 with j = 1 becomes

x1kz1 + . . .+ zrkzr = 0

and since k 6= 0 we may divide by k, so the xi are linearly dependent over K0,
contradiction. Therefore [K0 : K] = n = |G| �

Corollary 7.9. If G is the Galois group of the finite extension L : K, and H is a
finite subgroup of G, then

[LH : K] = [L : K]/|H|

Proof. By the tower law, [L : K] = [L : LH ][LH : K], so [LH : K] = [L : K]/[L :
LH ]. But this equals [L : K]/|H| by theorem 7.4. �

8. Field Automorphism Lemmas

Definition 8.1 (K-Monomorphisms). Suppose that K is a subfield of each of
the subfields M and L of C. Then a K-monomorphism of M into L is a field
monomorphism φ : M → L such that φ(k) = k for every k ∈ K.

Theorem 8.2. Suppose that L : K is a finite normal extension and K ⊂ M ⊂ L.
Let τ be any K-monomorphism M → L. Then there exists a K-automorphism σ
of L such that σ �M= τ .

Proof. By theorem 6.9, L is the splitting field over K of some polynomial f over
K. Hence it is both the splitting field over M for f and over τ(M) for f . But τ �K
is the identity, so τ(f) = f . By theorem 6.8, there is an isomorphism σ : L → L
such that σ �M= τ . Therefore, σ is an automorphism of L, and since σ �K= τ �K
is the identity, σ is a K-automorphism of L. �

Using this we can construct K-automorphisms.



AN INTRODUCTION TO GALOIS THEORY 13

Theorem 8.3. Suppose that L : K is a finite normal extension, and α, β are zeroes
in L of the irreducible polnomial p over K. Then there exists a K-automorphism
σ of L such that σ(α) = β.

Proof. By corollary 3.13 there is an isomorphism τ : K(α)→ K(β) such that τ �K
is the identity and τ(α) = β. By theorem 11.3, τ extends to a K-automorphism σ
of L. �

Now we can explore the theme of K-monomorphisms as they relate to normal
closures.

Lemma 8.4. Suppose that K ⊂ L ⊂ N ⊂ M where L : K is finite and N is the
normal closure of L : K. Let τ be any K-monomorphism L→M . Then τ(L) ⊂ N .

Proof. Let α ∈ L. Let m be the minimal polynomial of α over K. Then m(α) =
0 so τ(m(α)) = 0. But τ(m(α)) = m(τ(α)) since τ is a K-monomorphism, so
m(τ(α)) = 0 and τ(α) is the zero of m. Therefore τ(α) lies in N since N : K is
normal. Therefore, τ(L) ⊂ N . �

Theorem 8.5. For a finite extension L : K the following are equivalent:

(1) L : K is normal.
(2) There exists a finite normal extension N of K containing L such that every

K-monomorphism τ : L→ N is a K-automorphism of L.
(3) For every finite extension M of K containing L, every K-monomorphism

τ : L→M is a K-automorphism of L.

Proof. We wll show (1) =⇒ (3) =⇒ (2) =⇒ (1). First (1) =⇒ (3). If L : K
is normal, then L is the normal closure of L : K, so by lemma 8.4, τ(L) ⊂ L. But
τ is a K-linear map define on the finite dimensional vector space L over K, and is
a monomorphism. Therefore τ(L) has the same dimension as L, so τ(L) = L and
τ is a K-automorphism of L.
Now (3) =⇒ (2). Let N be the normal closure for L : K. Then N exists by
theorem 6.12, and has the necessary properties by (3)
Now (2) =⇒ (1). Suppose that f is any irreducible polynomial over K with a
zero α ∈ L. Then f splits over N by normality, and if β is any zero of f in N ,
then by theorem 8.3 there exists an automorphism σ of N such that σ(α) = β. By
hypothesis, σ is a K=automorphism of L, so β = σ(α) ∈ σ(L) = L. Therefore f
splits over L and L : K is normal. �

Theorem 8.6. Suppose that L : K is a finite extension of degree n. Then there are
precisely n distinct K-monomorphisms of L into the normal closure N of L : K,
and hence into any given normal extension M of K containing L.

Proof. Proof by induction on [L : K]. If [L : K] = 1, then the result is clear.
Suppose that [L : K] = k > 1. Let α ∈ L \K with minimal polynomial m over K.
Then

∂m = [K(α) : K] = r > 1

m is an irreducible polynomial over a subfield of C with one zero in the normal
extension N , so m splits in N and its zeros α1 . . . αr are distinct. By induction
there are precisely s distinct K(α)-monomorphisms p1, . . . , ps : L → N , where
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s = [L : K(α)] = k/r. By theorem 8.3, there are r distinct K-autmorphisms
τ1, . . . , τr of N such that τi(α) = αi. The maps

φij = τipj

give rs = k distinct K-monomorphisms L → N . We will show that these exhaust
the K-monomorphisms L → N . Let τ : L → N be a K-monomorphism. Then
τ(α) is a zero of m in N , so τ(α) = αi for some i. The map φ = τ−1j τ is a K(α)-
monomorphism L → N , so by induction φ = pj for some j. Hence τ = τpj = φij
and the theorem is proved. �

Now we can calculate the order of the Galois group of a finite normal extension.

Corollary 8.7. If L : K is a finite normal extension inside C, then there are
precisely [L : K] distinct K-automorphisms of L.

Proof. Apply theorems 8.5 and 8.6, and the result follows. �

From this we can reach another important result.

Theorem 8.8. Let L : K be a finite extension with Galois group G if L : K is
normal, then K is the fixed field of G.

Proof. Let K0 be the fixed field of G, and let [L : K] = n. Corollary 8.7 implies that
|G| = n. By theorem 7.4, [L : K0] = n. Since K ⊂ K0, we must have K = K0. �

Theorem 8.9. Suppose that K ⊂ L ⊂ M and M : K is finite, Then the number
of distinct K-automorphisms L→M is at most [L : K].

Proof. Let N be a normal closure of M : K. Then N : K is finite by theorem 6.12
and every K-monomorphism L → M is also a K-monomorphism L → N . Hence
we may assume that M is a normal extension of K by replacing M by N . We now
argue by induction on [L : K] as in the proof of theorem 8.6 except that we can
now deduce only that there are s′ K(α)- monomorphisms L → N . , where s′ ≤ s
(by induction) and there are r′ distinct K-automorphisms of N , where r′ ≤ r (since
the zeros of m in N need not be distinct). The rest of the argument goes through
as before. �

Theorem 8.10. If L : K is a finite extension with Galois group G, such that K is
the fixed field of G, then L : K is normal.

Proof. By theorem 7.4, [L : K] = |G| = n, say. There are exactly n distinct K-
monomorphisms L → L, the elements of the Galois group. We prove normality
using theorem 8.5. Let N be an extension of K containing L, and let τ be a K-
monomorphism L→ N . Since every element of the Galois group of L : K defines a
K-monomorphism L→ N , the Galois group proves n K-monomorphisms L→ N ,
and these are automorphism of L. But by theorem 8.9 there are at most n distinct
K-monomorphisms τ so τ must be one of these monomorphisms. Hence τ is an
automorphism of L. Finally, by theorem 8.5, L : K is normal. �

9. The Fundamental Theorem of Galois Theory

After all this work, we are finally ready to establish the fundamental properties
of the Galois correspondence between a field extension and its Galois group. First,
a few definitions and reminders to clarify notation. Let L : K be a field extension
in C with Galois group G, which consists of all K-automorphisms of L. Let F be
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the set of all intermediate fields, that is, subfields M such that K ⊂ M ⊂ L, and
let G be the set of all subgroups H of G. If M ∈ F, then GM is the subgroup of
G of elements that fix M , in other words, the group of all M -automorphisms of L.
If H ∈ G, then LH is the fixed field of H. Furthermore, define G(−) : F → G by

M 7→ GM and define L(−) : G → F by H 7→ LH . We have seen that these maps
reverse inclusions, that is M ⊂ LGM and H ⊂ GLH .

Theorem 9.1 (Fundamental Theorem of Galois Theory). If L : K is a finite
normal field extension inside C, with Galois group G, and if F and G are defined
as above, then:

(1) The Galois group G has order [L : K].
(2) The maps G(−) and L(−) are mutual inverses, and set up an order-reversing

one-to-one correspondence between F and G.
(3) If M is an intermediate field, then

[L : M ] = |GM |
and

[M : K] = |G|/|GM |
(4) An intermediate field M is a normal extension of K if and only if GM is

a normal subgroup of G.
(5) If an intermediate field M is a normal extension of K, then the Galois

group of M : K is isomorphic to the quotient group G/GM .

Proof. The first part is a restatement of corollary 8.7. For the second part, theorem
6.9 implies that L : M is normal. Theorem 8.8 implies that M is the fixed field of
GM , so

LGM = M

Now consider H ∈ G. We know that H ⊂ GLH . Therefore, LGLH = LH by the
above equation. By theorem 7.4, |H| = [L : LH ]. Therefore, |H| = [L : LGLH ], and
by theorem 7.4 again, [L : LGLH ] = |GLH | so that |H| = |GLH |. The second part
of the Fundamental Theorem follows at once. For the third part, note that L : M
is normal. Corollary 8.7 states that [L : M ] = |GM |, and the other equality follows
immediately. We need a quick lemma for parts 4 and 5.

Lemma 9.2. Suppose that L : K is a field extension, M is an intermediate field,
and τ is a K-automorphism of L. Then Gτ(M) = τGMτ

−1.

Proof. Let M ′ = τ(M), and take γ ∈ GM , x1 ∈ M ′. Then x1 = τ(x) for some
x ∈M . Compute:

(τγτ−1)(x1) = τγ(x) = τ(x) = x1

so τM∗τ−1 ⊂ GM ′ . Similarly τ−1GM ′τ ⊂ GM , so τGMτ
−1 ⊃ GM ′ , and the lemma

is proved. �

Now we can prove the fourth part of the Fundamental Theorem. If M : K
is normal, let τ ∈ G. Then τ �M is a K-monomorphism M → L, so it is a
K-automorphism of M by theorem 8.5. Hence τ(M) = M . By Lemma 12.2,
τGMτ

−1 = GM , so GM is a normal subgroup of G. Conversely, suppose that GM
is a normal subgroup of G. Let σ be any K-monomorphism M → L. By theorem
8.2, there is a K-automorphism τ of L such that τ �M= σ. Now τGMτ

−1 = GM
since GM is a normal subgroup of G, so by lemma 9.2, Gτ(M) = GM . By part
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2 of the Fundamental Theorem, τ(M) = M . Hence σ(M) = M and σ is a K-
automorphism of M . By theorem 8.5, M : K is normal. Now we prove the final
part of the theorem. Let G′ be the Galois group of M : K. We can define a map
φ : G→ G′ by

φ(τ) = τ �M

where τ ∈ G. This is clearly a group homomorphism G→ G′, because by theorem
8.5 τ �M is a K-automorphism of M . By theorem 8.2, φ is onto. The kernel of φ
is clearly GM , so by basic group theory we have

G′ = im(φ) ∼= G/ker(φ) = G/GM

where im is the image and ker the kernel. �

10. An Example

To illustrate all of this theory on a relatively tractable but still interesting poly-
nomial, we will consider f(t) = t4 − 2. The example is quite long, so we will break
it into a number of parts.

(1) f factors as

f(t) = (t− ω)(t+ ω)(t− iω)(t+ iω)

where ω = 4
√

2. Therefore, if K is the splitting field for f with K ⊂ C,
K = Q(ω, i). K is a splitting field, so K : Q is normal and finite. Because
we are working in C, separability is automatic. This means that we can
apply the Fundamental Theorem of Galois Theory to this extension.

(2) Now we find the degree of K : Q. By the tower law,

[K : Q] = [Q(ω, i) : Q(ω)][Q(ω) : Q]

The minimal polynomial of i over Q(ω) is t2 + 1 because i2 + 1 = 0 but
i /∈ R ⊃ Q(ω). Therefore [Q(ω, i) : Q(ω)] = 2. ω is a zero of f over Q
and f is irreducible by Eisenstein’s Criterion, theorem 2.6. Thus f is the
minimal polynomial of ω over Q and [Q(ω) : Q] = 4. So we have

[K : Q] = 2 · 4 = 8

(3) Now we want to find the elements of the Galois group of K : Q. There is a
Q-automorphism σ of K such that

σ(i) = i

and

σ(ω) = iσ

and another, τ , such that

τ(i) = −i

and

τ(ω) = ω

σ and τ generate eight distinct Q-automorphisms of K, as follows:
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Automorphism Effect on ω Effect on i
1 ω i
σ iω i
σ2 −ω i
σ3 −iω i
τ ω −i
στ iω −i
σ2τ −ω −i
σ3τ −iω −i

No other products give distinct automorphisms because σ4 = τ2 = 1,
τσ = σ3τ , τσ2 = σ2τ , and τσ3 = στ . Because we have found eight
Q-automorphisms of K and [K : Q] = 8 by part 2, we know by the Funda-
mental Theorem of Galois theory that these are the only elelements of the
Galois group.

(4) From this, we can find the abstract structure of the Galois group G. The
generator-relation presentation

G = 〈σ, τ : σ4 = τ2 = 1, τσ = σ3τ〉

show that G is the dihedral group of order 8, written as D8.
(5) We can find the subgroups of G explicitly. The subgroups are as follows:

Name Elements Order Group-theoretic representation
G all 8 D8

S 1, σ, σ2, σ3 4 Z4

T 1, σ2, τ, σ2τ 4 Z2 × Z2

U 1, σ2, στ, τσ 4 Z2 × Z2

A 1, σ2 2 Z2

B 1, τ 2 Z2

C 1, στ 2 Z2

D 1, σ2τ 2 Z2

E 1, σ3τ 2 Z2

I 1 1 1
(6) Using the Galois correspondence we can obtain the intermediate fields.

Since the correspondence reverses inclusions, the following two lattice dia-
grams, where X ⊂ Y if and only if there is a sequence of upward sloping
lines from X to Y , represent the subgroups of G and the intermediate fields.
(see figures 1 and 2 below)

(7) The normal subgroups of G are G, S, T , U , A, and I. By the Fundamental
Theorem of Galois theory, KG, KS , KT , KU , KA, KI should be the only
normal extensions of Q contained in K. Since these are all splitting fields
over Q for the polynomials t, t2+1, t2−2, t2+2, t4−t2−2, t4−2, respectively,
they are normal extensions of Q. On the other hand, extensions of other
intermediate fields are not normal. For example KB : Q is normal because
t4 − 2 has a zero, ω, in KB but does not split in KB .

(8) According to the Fundamental Theorem of Galois theory, the Galois group
of KA : Q is isomorphic to G/A. Now G/A is isomorphic to Z2 × Z2. We

will directly calculate the Galois group of KA : Q. Since KA = Q(i,
√

2),
there are four Q-automorphisms:
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Figure 1. Lattice of Subgroups

Figure 2. Lattice of Subfields

Automorphism Effect on i Effect on
√

2

1 i
√

2

α i −
√

2

β −i
√

2

αβ −i −
√

2

Since α2 = β2 = 1 and αβ = βα, this group is Z2×Z2 as expected. Thus,
everything which the Fundamental Theorem tells us to expect indeed occurs
in this example.
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