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Abstract. In this paper, we start with the definitions and properties of the

fundamental group of a topological space, and then proceed to prove Van-
Kampen’s Theorem, which helps to calculate the fundamental groups of com-

plicated topological spaces from the fundamental groups we know already. We

also use the properties of covering space to prove the Fundamental Theorem
of Algebra and Brouwer’s Fixed Point Theorem.
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1. Homotopies and the Fundamental Group

One of the fundamental problems in topology is to determine whether two topo-
logical spaces are homeomorphic. Though there is no general method to solve this,
but there are techniques to determine this for special cases.

Showing that two topological spaces are homeomorphic is always done by con-
structing a homeomorphism between them and we have techniques help us to con-
struct homeomorphisms.

However, showing that two spaces are not homeomorphic is more tricky because
it is impossible to show that any continuous function is not a homeomorphism be-
tween these two spaces. Thus, to show that two spaces are not homeomorphic, we
look at properties of topological spaces that are preserved under homeomorphism.
One of these invariants is the fundamental group of a topological space. If two
topological spaces have different fundamental groups, then they are not homeo-
morphic because as we will see, two homeomorphic spaces should have isomorphic
fundamental groups.
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Before defining the fundamental group of a space X, we shall define an equiva-
lence relation called path homotopy.

Definition 1.1. If f and f ′ are continuous maps of the space X into the space Y ,
we say that f is homotopic to f ′ if there is a continuous map F : X× I → Y such
that

(1.2) F (x, 0) = f(x) and F (x, 1) = f ′(x)

for each x ∈ X. The map F is called a homotopy between f and f ′. If f is
homotopic to f ′, we write f ' f ′. If f ' f ′ and f ′ is a constant map, we say that
f is nulhomotopic.

We can think of the parameter t as a representation of time, a homotopy between
f and f ′ represents a continuous transformation from f to f ′.

There is a special case when f is a path in X, connecting x0 and x1, i.e.

(1.3) f : [0, 1]→ X

is a continuous map such that f(0) = x0 and f(1) = x1. x0 is called the initial
point and x1 is called the final point.

Definition 1.4. Two paths f and f ′ are said to be path homotopic if they
have the same initial point x0 and final point x1, and if there is a continuous map
F : I × I → X such that

(1.5) F (s, 0) = f(s) and F (s, 1) = f ′(s),

(1.6) F (0, t) = x0 and F (1, t) = x1,

for each s ∈ I and each t ∈ I. We call F a path homotopy between f and f ′. If
f is path homotopic to f ′, we write f 'p f ′.

The first condition is simply that F is a homotopy between f and f ′, and the
second says that for fixed t, F (s, t) is a path from x0 to x1.

Example 1.7. One example of homotopy is the straight-line homotopy. Let f and
g be two continuous maps of a space X into R2. Then f and g are homotopic with
the following homotopy:

(1.8) F (x, t) = (1− t)f(x) + tg(x).

This homotopy between f and g is called the straight-line homotopy for the
fact that it moves from f(x) to g(x) along the straight line connecting them.

Example 1.9. However, in the previous example, if we replace R2 by the punctured
plane, R2−0, which is not convex, the straight-line homotopy wouldn’t always work.
Consider the following paths in punctured plane:

(1.10) f(s) = (cosπs, sinπs) and g(s) = (cosπs, 2sinπs).

f and g are path homotopic and the straight-line homotopy between them is ac-
ceptable. But the straight-line homotopy between f and the path

(1.11) h(s) = (cosπs,−sinπs)
is not acceptable because the straight-line would pass the origin, which is not in
the punctured plane.
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Figure 1. Straight-line Homotopy

Indeed, there no path homotopy between f and h but it takes some work to prove.

Figure 2. Punctured Plane

Directly from the definitions of homotopy and path homotopy, we have the fol-
lowing lemma, whose proof is trivial.

Lemma 1.12. The relations ' and 'p are equivalence relations.

Because 'p is an equivalence relation, we can define a certain operation on
path-homotopy classes as follows:

Definition 1.13. If f is a path in X from x0 to x1, and if g is a path in X from
x1 to x2, we define the product f ∗ g of f and g to be the path h given by the
equations

(1.14) h(x) =

{
f(2s), for s ∈ [0, 1/2].

g(2s− 1) for s ∈ [1/2, 1].

The function h is well-defined and continuous, by the pasting lemma and it is a
path in X from x0 to x2.
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This product operation on paths induces a well-defined operation on equivalence
classes, defined by

(1.15) [f ] ∗ [g] = [f ∗ g]

We can prove that the operation ∗ between equivalence classes is associative with
left and right identities as well as inverse for any equivalence class [f ].

A result that will be useful to us later is that [f ] can be decomposed to the
product of equivalence classes of the segments composing f .

Theorem 1.16. Let f be a path in X, and let a0, ..., an be numbers such that
0 = a0 < a1 < ... < an = 1. Let fi : I → X be the path that equals the positive
linear map of I onto [ai−1, ai] followed by f . Then

(1.17) [f ] = [f1] ∗ [f2] ∗ ... ∗ [fn].

With this operator ∗ on equivalence classes of 'p, we just have a groupoid instead
of a group because we couldn’t apply this operator on any two equivalence classes
for the fact that they don’t necessarily satisfy the end point condition required to
apply ∗. However, if we pick out the equivalence classes with the same initial and
final point, with the operator ∗, we could construct a group.

Definition 1.18. Let X be a space; let x0 be a point of X. A path in X that begins
and ends at x0 is called a loop based at x0. The set of path homotopy classes of
loops based at x0, with the operation ∗ is called the fundamental group of X
relative to the base point x0. It is denoted by π1(X,x0).

Example 1.19. Let Rn be the euclidean n-space. Then π1(X,x0) is trivial for
x0 ∈ X because if f is a loop based at x0, the straight-line homotopy is a path
homotopy between f and the constant path at x0. More generally, if X is any
convex subset of Rn, then π1(X,x0) is the trivial group.

A well-known result is that the fundamental group of the circle is isomorphic to
Z, which can be proved by covering space theory. We state it as a theorem but
omit the proof here.

Theorem 1.20. The fundamental group of the circle is isomorphic to the additive
group of the integers, i.e.

(1.21) π1(S1) ∼= Z.

One immediate question is that the fundamental group depends on the base
point. We now consider this question.

Definition 1.22. Let α be a path in X from x0 to x1. We define a map

(1.23) α̂ : π1(X,x0)→ π1(X,x1)

by

(1.24) α̂([f ]) = [ᾱ] ∗ [f ] ∗ [α],

where ᾱ(t) = α(1− t).

If f is path from x0 to x1, then the image of [f ] under α̂ is a loop based at x1.
Hence α̂ maps π1(X,x0) to π1(X,x1) as desired.

Theorem 1.25. The map α̂ is a group isomorphism.
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Proof. To show that α̂ is a homomorphism, we compute

α̂([f ]) ∗ α̂([g]) = ([ᾱ] ∗ [f ] ∗ [α]) ∗ ([ᾱ] ∗ [g] ∗ [α])(1.26)

= [ᾱ] ∗ [f ] ∗ [g] ∗ [α](1.27)

= α̂([f ] ∗ [g]).(1.28)

To show that α̂ is an isomorphism, we show that ˆ̄α is an inverse for α̂.

(1.29) β̂([h]) = [α] ∗ [h] ∗ [ᾱ],

(1.30) α̂(β̂([h])) = [ᾱ] ∗ ([α] ∗ [h] ∗ [ᾱ]) ∗ [α] = [h].

Similarly, we have β̂(α̂[f ]) = [f ] for each [f ] ∈ π1(X,x0). And thus, α̂ is a group
isomorphism. �

Using this result, we can prove that if a space X is path connected, all the
fundamental groups π1(X,x) are isomorphic because there is a path connecting
any two points in X.

Definition 1.31. A space X is said to be simply connected if it is a path-
connected space and if π1(X,x0) is trivial group for some x0 ∈ X, and hence for
every x0 ∈ X.

Lemma 1.32. In a simply connected space X, any two paths having the same
initial and final points are path homotopic.

This lemma is proved by using the fact that any loop is path homotopic to the
constant loop and we omit the detailed proof here.
It is intuitively clear that the fundamental group is a topological invariant of the
space X. We prove this fact by introducing the notion of ”homomorphism induced
by a continuous map.”

Definition 1.33. Let h : (X,x0)→ (Y, y0) be a continuous map. Define

(1.34) h∗ : π1(X,x0)→ π1(Y, y0)

by the equation

(1.35) h∗([f ]) = [h ◦ f ].

The map h∗ is called the homomorphism induced by h, relative to the base
point x0.

We can show that h∗ is well-defined by composing a path homotopy between f
and g with h, where f and g are path homotopic loops based at x0.
Furthermore, the induced homomorphism has two crucial properties.

Theorem 1.36. If h : (X,x0) → (Y, y0) and k : (Y, y0) → (Z, z0) are continuous,
then (k ◦ h)∗ = k∗ ◦ h∗. If i : (X,x0) → (X,x0) is the identity map, then i∗ is the
identity homomorphism.

Corollary 1.37. If h : (X,x0) → (Y, y0) is a homeomorphism of X with Y , then
h∗ is an isomorphism of π1(X,x0) with π1(Y, y0).

Since h is a homeomorphism, it has an inverse k : (Y, y0) → (X,x0).And this
corollary is proved by applying the previous theorem to h and k.
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2. Deformation Retractions and Homotopy type

One way of computing the fundamental group of a space X is to study the cov-
ering spaces of X. One well-known result of covering space is that the fundamental
group of S1 is isomorphic to the additive group of Z, i.e. π1(S1) ∼= Z. In this sec-
tion, we will discuss another way to study the fundamental group, which involves
the notion of homotpy type.

Definition 2.1. Let A be a subspace of X. We say that A is a deformation
retract of X if there is a continuous map H : X × I → X such that H(x, 0) = x
and H(x, 1) ∈ A for all x ∈ X, and H(a, t) = a for all a ∈ A. The homotopy H
is called a deformation retraction of X onto A. The map r(x) = H(x, 1) is a
retraction of X onto A, and H is a homotopy between the identity map of X and
the map j ◦ r, where j : A→ X is the inclusion map.

We can prove the following theorem:

Theorem 2.2. Let A be a deformation retract of X; let x0 ∈ A. Then the inclusion
map

(2.3) j : (A, x0)→ (X,x0)

induces an isomorphism of fundamental groups.

Proof. Since A is a deformation retract of X, there exists a continuous map H
defined in the previous definition. Since H(x, 0) = x and H(x, 1) ∈ A, H is a
homotopy between the identity map of X and the map j ◦ r. Also, for a ∈ A,
H(a, t) = a, then a is fixed during the homotopy and thus id∗ and j∗ ◦ r∗ are equal.
On the other hand, r ◦ j is just the identity map of A, so that r∗ ◦ j∗ is the identity
homomorphism of π1(A). And thus, j∗ is an isomorphism of fundamental groups
because it has both left and right inverses. �

Example 2.4. Let B denote the z-axis in R3. Consider the space R3 − B. The
punctured xy-plane (R2− 0)× 0 is a deformation retract of the space. The map H
defined by

(2.5) H(x, y, z, t) = (x, y, (1− t)z)
is a deformation retraction. Since the punctured xy-plane has an infinite cyclic
fundamental group, the space R3 −B has an infinite cyclic fundamental group.

Example 2.6. Consider R2 − {p, q}, where p, q ∈ R2. One deformation retract of
R2 − p− q is the ”theta space”

(2.7) θ = S1 ∪ (0× [−1, 1]);

Another deformation retract of the same space is the figure eight so figure eight
and the ”theta space” have isomorphic fundamental groups. But neither the figure
eight nor the ”theta space” is a deformation retract of the other.

From the example above, there might be a more general way to show that two
spaces have isomorphic fundamental groups than by showing that one is a defor-
mation retract of another.

Definition 2.8. Let f : X → Y and g : Y → X be continuous maps between
topological spaces. Suppose that the map f ◦ g is homotopic to the identity map
of X and the map g ◦ f is homotopic to the identity map of Y . Then the maps f
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and g are called homotopy equivalences, and each is said to be a homotopy
inverse of the other.

It’s straightforward to show the transitivity of the relation of the homotoopy
equivalence and it follows that this relation is an equivalence relation. And two
spaces that are homotopy equivalent are said to have the same homotopy type.
We then proceed to show that if two spaces have the same homotopy type, then
they have isomorphic fundamental groups. And we prove this fact by first studying
what happens when we have a homotopy between two continuous maps of X into
Y such that the base point of X does not remain fixed during the homotopy.

Lemma 2.9. Let h, k : X → Y be continuous maps; let h(x0) = y0 and k(x0) = y1.
If h and k are homotopic, there is a path α in Y from y0 to y1 such that k∗ = α̂◦h∗.
Indeed, if H : X × I → Y is the homotopy between h and k, then α is the path
α(t) = H(x0, t).

Proof. Let f be a loop in X based at x0. We must show that

(2.10) k∗([f ]) = α̂(h∗([f ])).

which is equivalent to showing that

(2.11) [α] ∗ [k ◦ f ] = [h ◦ f ] ∗ [α].

Consider the loops f0, f1 and c in the space X × I given by the equations

(2.12) f0(s) = (f(s), 0) and f1(s) = (f(s), 1) and c(t) = (x0, t).

Then H ◦ f0 = h ◦ f and H ◦ f1 = k ◦ f , while H ◦ c is the path α. See Figure 3
below.

Let F : I × I → X × I be the map F (s, t) = (f(s), t). Consider the following

Figure 3

paths in I × I, which run along the four edges of I × I:

(2.13) β0(s) = (s, 0) and β1(s) = (s, 1),
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(2.14) γ0(t) = (0, t) and γ1(t) = (1, t).

Then F ◦β0 = f0 and F ◦β1 = f1, and F ◦γ0 = F ◦γ1 = c. The paths β0 ∗γ1 and
γ0 ∗β1 are path homotopic with path homotopy G. Then F ◦G is a path homotopy
between f0 ∗ c and c ∗ f1. And H ◦ (F ◦G) is a path homotopy in Y between

(2.15) (H ◦ f0) ∗ (H ◦ c) = (h ◦ f) ∗ α and

(2.16) (H ◦ c) ∗ (H ◦ f1) = α ∗ (k ◦ f),

which is Equation (2.11). �

Corollary 2.17. Let h, k : X → Y be homotopic continuous maps; let h(x0) = y0
and k(x0) = y1. If h∗ is injective, surjective, or trivial, so is k∗.

Corollary 2.18. Let h : X → Y . If h is nulhomotopic, then h∗ is the trivial
homomorphism.

Theorem 2.19. Let f : X → Y be continuous; let f(x0) = y0. If f is a homotopy
equivalence, then

(2.20) f∗ : π1(X,x0)→ π1(Y, y0)

is an isomorphism.

Proof. Let g : Y → X be a homotopy inverse for f . Consider the map f ◦ g ◦ f
and let g(y0) = x1 and f(x1) = y1. Then we have the corresponding induced
homomorphisms of this composition, (fx1

)∗ ◦ g∗ ◦ (fx0
)∗. We need to distinguish

the homomorphisms induced by f relative to two different base points, x1 and x0.

For the fact that g ◦ f is homotopic to the identity map, there is a path α in X
such that

(2.21) (g ◦ f)∗ = α̂ ◦ (iX)∗ = α̂.

It follows that (g ◦ f)∗ = g∗ ◦ (fx0)∗ is an isomorphism.
Similarly, since f ◦ g is homotopic to the identity map iY , the homomorphism

(f ◦ g)∗ is also an isomorphism.
Thus g∗ is both surjective and injective and thus g∗ is an isomorphism.
Using Equation (2.21), we have

(2.22) (fx0)∗ = (g∗)
−1 ◦ α̂,

so that (fx0
)∗ is also an isomorphism. �
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3. Van Kampen’s Theorem

We now can return to our main result for this paper, to prove the van Kampen’s
Theorem. We should state this well-known theorem first.

Theorem 3.1. Let X = U ∪ V , where U and V are open in X; assume U , V and
U ∩ V are path connected; let x0 ∈ U ∩ V . Let H be a group, and let

(3.2) φ1 : π1(U, x0)→ H and φ2 : π1(V, x0)→ H

be homomorphisms. Let i1, i2, j1, j2 be the homomorphisms indicated in the follow-
ing diagram, each induced by an inclusion.
If φ1 ◦ i1 = φ2 ◦ i2, then there is a unique homomorphism Φ : π1(X,x0)→ H such
that Φ ◦ j1 = φ1 and Φ ◦ j2 = φ2.

Proof. We first need to show that such a Φ exists. For convenience, we introduce a
new notation: Given a path f in X, we use [f ] to denote its path-homotopy class
in X. If f lies in U , then [f ]U denotes its path-homotopy class in U . Similarly,
[f ]V and [f ]U∩V denotes the path-homotopy class in V and U ∩ V .
Step 1. We begin by defining a set map ρ that assigns an element of H to each
loop f based at x0 that lies in U or V . We define

(3.3) ρ(f) = φ1([f ]U ) if f lies in U,

(3.4) ρ(f) = φ2([f ]V ) if f lies in V.

We need to show that ρ is well defined. For f lies in both U and V ,

(3.5) φ1([f ]U ) = φ1 ◦ i1([f ]U∩V ) and φ2([f ]V ) = φ2 ◦ i2([f ]U∩V ),

and by hypothesis, these two values are equal. The map ρ satisfies the following
two conditions:

(1) If [f ]U = [g]U , or [f ]V = [g]V , then ρ(f) = ρ(g).
(2) If both f and g lie in U , or if both lie in V , then ρ(f ∗ g) = ρ(f) · ρ(g).

The first condition holds directly from the definition of ρ and the second condition
holds because φ1 and φ2 are homomorphisms.
Step 2. We now extend ρ to a map σ that assigns an element of H to each path f
lying in U or V .

We first choose a path αx from x0 to x for every x ∈ X. If x ∈ U ∩ V , let αx be
a path in U ∩ V . And if x is in U or V but not in U ∩ V , let αx be a path in U or
V .

Then for any path f in U or V , we define a loop L(f) in U or V based at x0 by

(3.6) L(f) = αx ∗ (f ∗ ᾱy),
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where x is the initial point of f and y is the final point of f . See Figure 4. And we
define the map σ by

(3.7) σ(f) = ρ(L(f)).

We must then show that σ is an extension of ρ and satisfies condition (1) and

Figure 4

(2).
If f is a loop based at x0 lying in either U or V , then

(3.8) L(f) = ex0 ∗ (f ∗ ex0)

because αx0 is the constant path at x0. Then L(f) is path homotopic to f in U or
V , so that ρ(L(f)) = ρ(f) by condition (1) for ρ.

To check condition (1) for σ, let f and g be path homotopic in U or V . Then
the loops L(f) and L(g) are also path homotopic, so condition (1) for ρ applies. To
check condition (2), let f and g be arbitrary paths in U or V such that f(1) = g(0).
Then

(3.9) L(f) ∗ L(g) = (αx ∗ (f ∗ ᾱy)) ∗ (αy ∗ (g ∗ ᾱz)).

This loop is path homotopic to L(f ∗ g) in U or V . We have

(3.10) ρ(L(f ∗ g)) = ρ(L(f) ∗ L(g)) = ρ(L(f)) · ρ(L(g))

by condition (1) and (2) for ρ. Hence σ(f ∗ g) = σ(f) · σ(g).
Step 3. Finally, we extend σ to a map τ that assigns an element of H to an arbitrary
path f of X such that τ satisfies

(1) If [f ] = [g], then τ(f) = τ(g).
(2) τ(f ∗ g) = τ(f) · τ(g) if f ∗ g is defined.

By Lebesgue Number Lemma, given f , there exists a subdivision s0 ≤ ... ≤ sn of
[0, 1] such that f maps each of the subintervals [si−1, si] into U or V . Let fi denote
the positive linear map of [0, 1] onto [si−1, si], followed by f . Then fi is a path in
U or V , and

(3.11) [f ] = [f1] ∗ ... ∗ [fn].
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If τ is an extension of σ, which satisfies (1) and (2), we should have

(3.12) τ(f) = σ(f1) · σ(f2)...σ(fn).

So we define τ with this equation.
We need to show that this definition is independent of the choice of subdivision.It

suffices to show that the value of τ(f) remains unchanged if we adjoin a single
additional point p to the subdivision. Let si−1 ≤ p ≤ si. If we compute τ(f)
after adding p into the subdivision, the only change is that σ(fi) is replaced by
σ(f ′i) · σ(f ′′i ), where f ′i and f ′′i equal the positive linear maps of [0, 1] to [si−1, p]
and to [p, si] followed by f . σ(fi) = σ(f ′i) · σ(f ′′i ) because fi is path homotopic to
f ′i ∗ f ′′i in U or V and by conditions (1) and (2) for σ. Hence, τ is well-defined
because it is independent of the choice of subdivision.
If f lies in U or V , we can use the trivial partition of [0, 1] to compute τ(f); then
τ(f) = σ(f) by definition of τ .
Step 4. We shall prove condition (1) for τ in this step.

We first prove this condition under an additional hypothesis. Suppose f and g
are paths in X from x to y, and F is a path homotopy between f and g. We assume
the additional hypothesis that there exists a subdivision s0, ..., sn of [0, 1] such that
F carries each rectangle Ri = [si−1, si]× I into either U or V . We show that under
this hypothesis, τ(f) = τ(g).

Given i, consider paths fi and gi, the positive linear map of [0, 1] onto [si−1, si]
followed by f and g. The restriction of F to Ri is a homotopy between fi and gi in
either U or V , but the restriction is not a path homotopy because the end points
could move during the homotopy. We define βi(t) = F (si, t), the path traced out
by end point during the homotopy. Then βi is a path in X from f(si) to g(si). See
Figure 5. We show that for each i,

(3.13) fi ∗ βi 'p βi−1 ∗ gi,

with the path homotopy in U or V .
In the rectangle Ri, take the broken-line path that runs along the bottom and

Figure 5

right edges of Ri, from si−1×0 to si×0 to si×1; we get the path fi∗βi by following
this path by F . Similarly, take the broken-line path that runs along the left and
top edges of Ri followed by F , we get the path βi−1 ∗ gi. Ri is convex, then the
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straight-line homotopy is a path homotopy between the two broken-line paths; if
we follow by F , we obtain a path homotopy between fi ∗ βi and βi−1 ∗ gi in either
U or V , as desired.

The conditions (1) and (2) for σ imply that

(3.14) σ(fi) · σ(βi) = σ(βi−1) · σ(gi),

so that

(3.15) σ(fi) = σ(βi−1) · σ(gi) · σ(βi)
−1.

Similarly, since β0 and βn are constant paths, σ(β0) = σ(βn) = 1. Then we have

τ(f) = σ(f1) · σ(f2)...σ(fn)(3.16)

= σ(g1) · σ(g2)...σ(gn)(3.17)

= τ(g).(3.18)

Now we can prove condition (1) without the hypothesis. Given f and g and a
path homotopy F between them, there exist subdivisions s0, ..., sn and t0, ..., tm of
[0, 1] such that F maps each subrectangle [si−1, si] × [tj−1, tj ] into either U or V .
Let fj(s) = F (s, tj); then the pair of paths fj−1 and fj satisfy the requirements of
special case, so that τ(fj−1) = τ(fj) for each j. Hence τ(f) = τ(g) as desired.
Step 5. Now we prove the condition (2) for the map τ . Given a path f ∗ g in X, we
can choose a subdivision s0 ≤ ... ≤ sn of [0, 1] with the point 1/2 as a subdivision
point, such that f ∗ g carries each subinterval into either U or V . Let sk = 1/2.

For i = 1, ..., k, let fi be the positive linear map of [0, 1] to [si−1, si], followed
by f ∗ g. fi is the same as the positive linear map of [0, 1] to [2si−1, 2si] followed
by f . Similarly, for i = k + 1, ..., n, let gi−k be the positive linear map of [0, 1] to
[si−1, si] followed by f ∗ g. gi−k is the same as the positive linear map of [0, 1] to
[2si−1 − 1, 2si − 1] followed by g. Thus

(3.19) τ(f ∗ g) = σ(f1)...σ(fk) · σ(g1)...σ(gn−k).

Using the subdivision 2s0, ..., 2sk for the path f , we have

(3.20) τ(f) = σ(f1)...σ(fk).

Similarly, using the subdivision 2sk − 1, ..., 2sn − 1 for g, we have

(3.21) τ(g) = σ(g1)...σ(gn−k).

Thus, the condition (2) holds for the map τ .
Step 6. Now we can define the map Φ to prove the theorem. For each loop f in X
based on x0, we define

(3.22) Φ([f ]) = τ(f).

Condition (1) implies that Φ is well-defined and condition (2) implies that Φ is
a homomorphism.
We show that Φ ◦ j1 = φ1. If f is a loop in U , then

Φ(j1([f ]U )) = Φ([f ])(3.23)

= τ(f)(3.24)

= ρ(f)(3.25)

= φ1([f ]U ).(3.26)
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Similarly, we can prove that Φ ◦ j2 = φ2.
At last, we prove uniqueness. We know that π1(X,x0) is generated by the images

of j1 and j2. We also have Φ(j1(g1)) = φ1(g1) and Φ(j2(g2)) = φ2(g2). Hence Φ is
completely determined by φ1 and φ2.

�

4. Applications of van Kampen’s Theorem

In this section, we apply the van Kampen’s Theorem proved in the previous
section to compute the fundamental groups for several topological spaces.

We start with the fundamental group of a wedge of circles.

Definition 4.1. Let X be a Hausdorff space that is the union of the subspaces
S1, ..., Sn, each of which is homeomophic to the unit circle S1. Assume that there
exists a point p of X such that Si ∩Sj = {p} whenever i 6= j. Then X is called the
wedge of the circles S1, ..., Sn.

We note that Si is compact and thus closed in X.

Theorem 4.2. Let X be the wedge of circles S1, ..., Sn; let p be the common point
of these circles. Then π1(X, p) is a free group. If fi is a loop in Si tat represents a
generator of π1(Si, p), then the loops f1, ..., fn represent a system of free generators
for π1(X, p).

Proof. The result is trivial for n = 1. We proceed by induction on the number of
circles n.

Let X be the wedge of circles S1, ..., Sn with common point p. Choose qi ∈ Si
such that qi 6= p for each i. Let Wi = Si − qi, and let U = S1 ∪W2 ∪ ... ∪Wn and
V = W1 ∪ S2 ∪ ... ∪ Sn. See Figure 6. Then we have

(4.3) U ∩ V = W1 ∪W2 ∪ ... ∪Wn and U ∪ V = X.

Note that U , V and U ∩ V are path connected because they are the union of

Figure 6

path-connected spaces with a common point.
The space Wi is homeomorphic to an open interval and thus has the point p as

its deformation retract; let Fi : (U ∩V )× I → U ∩V be the deformation retraction
of U ∩ V onto p. Then Fi extends to a map F : (U ∩ V ) × I → U ∩ V that
is a deformation retraction of U ∩ V onto p. Hence, the space U ∩ V is simply
connected and thus has trivial fundamental group. So π1(X, p) is the free product
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of the groups π1(U, p) and π1(V, p), relative to the monomorphisms induced by
inclusion.

Similarly, S1 is a deformation retract of U and S2 ∪S3 ∪ ...∪Sn is a deformation
retract of V . Then we have f1 represents a generator of the infinite cyclic group
π1(U, p) and by induction, π1(V, p) is a free group with free generators f2, ..., fn.
And thus π1(X, p) is a free group with free generators f1, ..., fn. �

We also study the fundamental group of the n-dimensional unit sphere, Sn.

Theorem 4.4. If n ≥ 2, the n-sphere Sn is simply connected.

Proof. Let p = (0, ..., 0, 1) ∈ Rn+1 and q = (0, ..., 0,−1) be the ”north pole” and
”south pole” of Sn.
Step 1. We show that if n ≥ 1, the punctured sphere Sn − p is homeomorphic to
Rn.
Define f : (Sn − p)→ Rn by the equation

(4.5) f(x) = f(x1, ..., xn+1) =
1

1− xn+1
(x1, ..., xn).

We show that f is a homeomorphism by showing that the map g : Rn → (Sn−p)
defined by

(4.6) g(y) = g(y1, ..., yn) = (t(y) · y1, ..., t(y) · yn, 1− t(y)),

where t(y) = 2/(1 + |y|2), is a right and left inverse of f . Note that the reflection
map on the last coefficient is a homeomorphism of Sn−p with Sn− q, so the latter
is also homeomophic to Rn.
Step 2. We prove the theorem by using the van Kampen’s theorem. Let U and V
be the open sets U = Sn − p and V = Sn − q. For n ≥ 1, the sphere Sn is path
connected and thus U and V are path connected.
U ∩ V is path connected because it is homeomorphic to Rn − 0 under the stere-
ographic projection. Then by van Kampen’s theorem, Sn has trivial fundamental
group because U and V have trivial fundamental groups. Thus Sn is simply con-
nected. �

5. Fundamental Theorem of Algebra

We prove the Fundamental Theorem of Algebra using Theorem 1.20.

Theorem 5.1 (The fundamental theorem of algebra). A polynomial equation

(5.2) xn + an−1x
n−1 + ...+ a1x+ a0 = 0

of degree n > 0 with real coefficients has at least one real root.

Proof. Step 1. Consider the map f : S1 → S1 given by f(z) = zn, where z is
a complex number. We show that the induced homomorphism f∗ of fundamental
groups is injective.

Let p0 : I → S1 be a loop in S1 such that,

(5.3) p0(s) = e2πis = (cos2πs, sin2πs).

Then we have

(5.4) f(p0(s)) = (e2πis)n = (cos2nπs, sin2nπs).

This is a loop and lifts to the path s → ns in the covering space R. Therefore
the loop f ◦ p0 corresponds to the integer n under the isomorphism from π1(S1)
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to S1. Thus f∗ can be considered as a ”multiplication by n” in the fundamental
group of S1 and then f∗ is injective.
Step 2. We want to show that if g : S1 → R2 − 0 is the map g(z) = zn, then g is
not nulhomotopic.

Let j : S1 → R2 − 0 be the inclusion map. Then we have g = f ◦ j. From step 1
we know that f∗ is injective and j∗ is injective because S1 is the retract of R2 − 0.
Therefore g∗ = j∗ ◦ f∗ is also injective. Thus g is not nulhomotopic.
Step 3. Now we want to prove a special case of the fundamental theorem of algebra
under the condition that

(5.5)

n−1∑
i=0

|ai| < 1,

and we want to show that the equation has a root lying in the unit ball B2.
Assume that there’s no such root. We can define k : B2 → R2 − 0 by

(5.6) k(z) = zn + an−1z
n + ...+ a1z + a0.

Let h be the restriction of k to S1. Because h extends to a map of the unit ball
into R2−0, h is nulhomotopic. On the other hand, if we define F : S1×I → R2−0
by

(5.7) F (z, t) = zn + t(an−1z
n−1 + ...+ a0),

F is a homotopy between h and g. Then g is nulhomotopic, which is a contradiction
with the result in step 2.
Step 4. Now we can prove the general case. Let c > 0 be any real number and
we substitute x = cy and divide both side of the equation by cn, we obtain the
equation

(5.8) yn +
an−1
c

yn−1 + ...+
a1
cn−1

y +
a0
cn

= 0.

For c large enough we have

(5.9) | an−1
c
| +...+ | a1

cn−1
| + | a0

cn
|< 1.

Then from step 3, this equation has a root y0 in the unit ball, and x0 = cy0 is a
root of the original equation. This completes the proof of the fundamental theorem
of algebra.

Note that the similar results hold if we replace the word ”real” by ”complex” in
the initial statement. �

6. Brouwer Fixed Point Theorem

Definition 6.1. A vector field on B2 is an ordered pair (x, v(x)), where x is in
B2 and v is a continuous map of B2 into R2.

Lemma 6.2. Given a nonvanishing vector field on B2, there exists a point of S1

where the vector field points directly inward and a point of S1 where it points directly
outward.

Proof. Let (x, v(x)) be a nonvanishing vector field on B2, then we have v(x) 6= 0
for every x, and thus v maps B2 to R2 − 0.

We first suppose that v(x) does not point directly inward at any point x of S1

and derive a contradiction. Let w be the restriction of v to S1. Since w extends to
a map of B2 into R2 − 0, w is nulhomotopic.
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On the other hand, w is homotopic to the inclusion map j : S1 → R2− 0 by the
straight-line homotopy

(6.3) F (x, t) = tx+ (1− t)w(x),

for x ∈ S1. We must show that F (x, t) 6= 0. For t = 1 and t = 0, this is trivial.
If F (x, t) = 0 for some 0 < t < 1, then we have tx + (1 − t)w(x) = 0, so that
w(x) = − t

1−tx. And thus w(x) points directly inward at x, which is a contradic-
tion. Hence F 6= 0.

It follows that j is nulhomotopic, which contradicts the fact that j is the homo-
topy equivalence and π1(S1) ∼= Z.

To show that v points directly outward at some point of S1, we simply let w be
the restriction of −v on S1. And this ends the proof of the lemma. �

With this lemma, we now prove the Brouwer fixed-point theorem for the disc.

Theorem 6.4 (Brouwer fixed-point theorem for the disc). If f : B2 → B2 is
continuous, then there exists a point x ∈ B2 such that f(x) = x.

Proof. We prove this theorem by contradiction. Suppose f(x) 6= x for any x ∈ B2.
Then let v(x) = f(x)−x, and thus the vector field (x, v(x)) is nonvanishing on B2.
But v cannot point directly outward at any x ∈ S1, for that would have

(6.5) f(x)− x = ax

for a > 0, so that f(x) = (1 +a)x lies outside the unit ball. This is a contradiction.
�

The fixed-point theorems are of interest in mathematics because many problems,
such as problems concerning existence of solutions of systems of equations can be
formulated as fixed-point problems. For example, a classical theorem of Frobenius
can be proved using the Brower Fixed Point Theorem.

Corollary 6.6. Let A be a 3 by 3 matrix of positive real numbers. Then A has a
positive real eigenvalue (characteristic value).

The proof of this corollary requires some knowledge of linear algebra and we skip
the proof here. Readers could refer to Corollary 55.7 in Munkres’ book.
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