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Abstract. This paper provides an overview of the homology groups of a 2-

dimensional complex. It then demonstrates a proof of the Invariance Theorem
and applies the results to the Euler characteristic and map coloring.
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1. Introduction

The algebraic properties of the vertexes, edges, and faces of a 2-dimensional com-
plex are crucial to gaining information about the topological space containing that
complex. This paper is an exposition following Michael Henle’s A Combinatorial
Introduction to Topology and covers the most elementary possible starting point of
algebraic topology [1]. In this paper, mod 2 homology is used to obtain as much
information as possible about triangulated surfaces, using no more sophisticated
language or tools.

In Section 2, we introduce the relationships between simplexes, cycles, and
boundaries in homology groups. In Section 3, we explore how these relationships
hold for a topological space in spite of the many complexes that can be defined on
that space. In Section 4, we utilize the information about the invariance of homol-
ogy groups to relate the number of vertexes, edges, and faces of a surface to its first
homology group. Finally, in Section 5, we exploit the fact that the relationship of
vertexes, edges, and faces is inherent in map coloring, and apply the Euler charac-
teristic to determine an upper bound on the amount of colors sufficient to color a
complex.

2. Homology Groups of a 2-Dimensional Complex

Definition 2.1. A 0-simplex is a point, a 1-simplex is an edge, and a 2-simplex
is a triangle.
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Figure 2.2. A 0-simplex, 1-simplex, and 2-simplex

Definition 2.3. A complex is any topological space constructed from the topo-
logical identification of 0, 1, or 2-simplexes.

A special type of complex, consisting of triangles identified in a particular man-
ner, can be used to define the notion of a surface.

Definition 2.4. A surface is a topological space that satisfies the following two
conditions. First, the topological space must be triangulable, meaning it can be
obtained from the identification of triangles, where any two triangles are either
identified along a single edge, a single vertex, or are disjoint. Second, in addition
to being triangulable, each triangle edge must be identified with exactly one other
edge. Third, the triangles identified at each vertex must be arranged in a cycle,
T1, T2....Tk, T1 such that adjacent triangles are identified along an edge.

Note that every surface can be made into a complex, since it has a triangulation,
but not every complex corresponds to a surface.

Example 2.5. A Mobius strip is not a surface, since it fails to satisfy the property
that there exists a triangulation on the Mobius strip such that every triangle edge
is identified with exactly one other edge. This is because a Mobius strip has a
boundary, depicted as the bolded line in Figure 2.6. Therefore every triangulation
will contain triangles that have an edge along this boundary, and this edge will not
be identified with some other edge in the triangulation.

Figure 2.6.

Example 2.7. A torus is an example of a surface. The triangulation in Figure
2.8 below shows that a torus is triangulable, and satisfies all the properties of the
definition of a surface.
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Figure 2.8.

Surfaces can be represented as plane models using the definitions provided below.
We will utilize the plane model of a surface throughout this paper to conceptualize
the relationship between the k-chains, k-boundaries, and k-cycles of that surface,
three concepts which we will define later in this section. Then, we will use k-chains,
k-boundaries, and k-cycles to define homology groups.

Definition 2.9. Two edges in a planar diagram are said to be topologically
identified when 1) each edge is assigned a direction from one endpoint to another
and placed in correspondence with the unit interval so that the initial points of the
edges correspond to 0 and the end points of the edges correspond to 1, and 2) the
points on the edges that correspond to the same value from the unit interval are
treated as a single point.

Definition 2.10. The plane model of a surface is a representation of that surface
in a plane, where symmetrical points on similarly labeled edges indicate that those
points are topologically identified on the surface in the direction indicated.

Example 2.11. The plane model of the projective plane. The arrows indicate that
diametrically opposed points along a are topologically identified.

Figure 2.12.
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Definition 2.13. The set of k-chains of a complex κ, Ck(κ), is a vector space over
the field F2 = {0, 1} of two elements. The basis for Ck(κ) is the set of k-simplexes.
In this paper, we consider k= 0, 1, 2.

Definition 2.14. Let κ be a complex. Let x be a (k − 1)-simplex and y be a
k-simplex for k= 1, 2. The incident coefficient of x in y is the number of times
x appears in the boundary of y.

Definition 2.15. Let C be a k-chain of κ. The boundary of C, ∂(C), is the
(k− 1)-chain consisting of the (k− 1)-simplexes that have odd incident coefficients
on the k-simplexes of C.

The above definition of boundary, which uses mod 2 addition, is motivated by
the fact that in a vector space over F2, each element is its own inverse: C + C =
(1 + 1)C = (0)C = ∅, where the first equality follows from distribution of vector
multiplication over scalar addition in F2.

Proposition 2.16. The boundary operator ∂(Ck) is a linear transformation from
Ck(κ) to Ck−1(κ) for k= 1, 2.

Proof. Let C1 and C2 be k-chains. We will show ∂(C1) + ∂(C2) = ∂(C1 + C2).
Let S be any (k−1)-simplex. Let n1 and n2 be the number of times S is incident

on C1 and C2, respectively. The proof will show that S in ∂(C1) + ∂(C2) means
n1 + n2 is odd, and that S in ∂(C1 + C2) also means n1 + n2 is odd. Since this
is true for any S, we will have shown that all the simplexes of ∂(C1) + ∂(C2) and
∂(C1 + C2) must be the same.

Assume S is in ∂(C1) + ∂(C2). Then S must be in ∂(C1) or ∂(C2) but not both.
Since, S can only be in the boundary of a complex if its incident coefficient is odd,
it follows that if is S is in ∂(C1) but not ∂(C2), n1 must be odd and n2 even. If S
is in ∂(C1) but not ∂(C2), then n1 must be even and n2 odd. Thus n1 + n2 must
be odd.

Suppose S is in ∂(C1 + C2). This means S is incident an odd number of times
on only simplexes in C1 or C2 but not both. Let n be the number of times S is
incident on the simplexes shared by C1 and C2. Thus the incidence of S on all the
simplexes of C1 that are not shared with C2 is n1−n. Similarly the incidence of S
on all the simplexes of C2 that are not shared with C1 is n2 − n.

So the total incidence of S on the k-simplexes of C1 and C2 but not both, which
is precisely the incidence of S on C1 + C2, is (n1 − n) + (n2 − n) = n1 + n2 − 2n.
If n1 + n2 − 2n is odd, n1 + n2 must be odd. �

Definition 2.17. A k-boundary, C, is a k-chain such that C = ∂(T ), where T
is some (k + 1)-chain. By convention, the only 2-boundary is ∅, since we have not
defined k-chains for k greater than 2.

Definition 2.18. A k-cycle, C, is a k-chain such that ∂(C) = ∅. By convention,
the boundary of a 0-chain is ∅, since we have not defined k-chains for k less than
0. So all 0-chains are 0-cycles.

Proposition 2.19. The set of k-boundaries of a complex κ, Bk(κ) is a subspace
of Ck−1(κ), and the set of k-cycles, Zk(κ), is a subspace of Ck(κ).

Proof. By definition, the set of k-boundaries Bk(κ) is the image of ∂ : Ck → Ck−1,
and the set of k-cycles Zk(κ) is the kernel of ∂ : Ck → Ck−1. In general, the image
and kernel of a linear transformation is a subspace. �
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Theorem 2.20. Every boundary is a cycle.

Proof. Every 0-boundary is a 0-cycle, since all 0-boundaries are 0-chains, which are
0-cycles.

Every 2-boundary is a 2-cycle, since the only 2-boundary is ∅.
Let C be a 2-simplex, or polygon. We see that ∂(∂(C)) is the 0-boundary of the

set of 1-chains with odd incident coefficents on C. Note that the 1-chains forming
∂(C) are edges, and in a polygon each vertex is connected to two vertexes. When
we count the vertexes on ∂(C) edge by edge, we count each vertex twice. Thus the
incident coefficent of each vertex on (∂(C)) is 2, and the 0-boundary

∂(∂(C)) = ∅.
This is true for the boundary of the boundary of any 2-chain, not just a 2-simplex.

This is because any 2-chain is the sum of 2-simplexes. Since the boundary operator
is a linear transformation, the boundary of a boundary of any 2-chain remains the
null boundary. �

Definition 2.21. Two k-chains C1 and C2 are homologous, denoted C1 ∼ C2,
when C1 + C2 is a k-boundary.

Proposition 2.22. Homology is an equivalence relation.

Proof. C ∼ C, since C + C = ∅, which is a k-boundary.
Let C1 and C2 be two k-chains such that C1 ∼ C2. Then C2 ∼ C1, because

C1 + C2 = C2 + C1 is a k-boundary.
Let C1, C2, and C3 be three k-chains such that C1 ∼ C2 and C2 ∼ C3. Let A

and B be the (k+ 1)-chains such that C1 +C2 = ∂(A) and C2 +C3 = ∂(B). Then
C1 ∼ C3, because

C1 + C3 = C1 + ∅+ C3

= C1 + C2 + C2 + C3

= ∂(A) + ∂(B) = ∂(A+B)

since the boundary operator is a linear transformation. �

Definition 2.23. The k-th homology group of a complex κ, denoted byHk(κ), is
the group of equivalence classes over k-cycles by the homology equivalence relation.

Example 2.24. We will now calculate the homology groups of the plane model of
a sphere.
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Figure 2.25. The plane model of the sphere, where the points and edges to be
topologically identified are labeled.

H0
∼= Z2. This is because the 0-cycles of a sphere are its 0-chains, which are P,

Q, and P+Q. P ∼ Q, and P + Q ∼ ∅, since P + Q = ∂(a). Therefore H0 consists
of just 2 elements.
H1
∼= ∅. The only 1-cycle of the sphere is ∅, since the only 1-chain of the sphere,

a, has boundary P +Q.
H2
∼= Z2. There is only one 2-chain, A, which is a 2-cycle since ∂(A) = 0.

Therefore H2 consists of just ∅ and A.

Example 2.26. We will calculate the homology groups of the torus.

Figure 2.27. The plane model of the torus.

H0
∼= Z2, consisting of ∅ and the only point, R.

H1 consists of four elements. This is because every 1-chain of the torus is a
1-cycle, and no two 1-cycles are homologous. Thus H1 consists of ∅, b, c, and b+ c.
In fact, H1

∼= Z2 × Z2. Also, H1 can be generated by b and c, so the dimension
h1 = 2.
H2
∼= Z2 since there are only two 2-cycles: ∅ and B.

3. The Invariance Theorem

In this section, we will show that homology groups tell us something fundamental
about a surface, and do not depend on the variety of triangulations that the surface
can be made into.

At this point, it is not guaranteed that a surface has the same homology groups
regardless of the choice of triangulation. To see this, consider the case when the
surface can be made into two different triangulations. Since the homology groups
of a complex depend on that complex, we cannot be sure that the homology groups
of one triangulation are the same as those of another triangulation. The following
lemma and theorems will help us resolve this issue.
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Lemma 3.1. Let κ be any complex. Let κ+ be the complex obtained from κ by
drawing a single new edge dividing a single polygon of κ into two polygons. Then
the homology groups of κ and κ+ are the same.

Figure 3.2. The complex κ and the complex κ+, formed by adding the edge g.

Proof. By convention, any 0-chain on a complex is a 0-cycle. In H0(κ+), P ∼ R,
since P and R form a 0-boundary of d. Also Q ∼ S, since Q and S form a
0-boundary of f . Thus any 0-cycle on κ+ containing P or Q is homologous to a 0-
cycle on κ+ that does not contain P or Q, by the transitive property of homologous
k-chains. Clearly, any 0-cycle that does not contain P or Q on κ+ corresponds to
a cycle on κ. Then any 0-cycle on κ+ can be found to correspond to a 0-cycle on
κ. Therefore there exists an isomorphism between the group of 0-cycles of κ and
κ+. H0(κ) ∼= H0(κ+).

Let λ be a 1-cycle of κ+. If λ contains both c and d or both e and f , and does
not contain g, then λ corresponds to a 1-cycle on κ+. This is because c + d and
e + f correspond to a and b on κ, respectively. If λ contains c or d but not both,
or contains e or f but not both, or contains g, then this is not necessarily the case.

Assume λ contains c or d but not both. Then one of the 0-chains on the boundary
of λ is P . Also, all 0-chains on the boundary of λ must have even coefficents, since
∂(λ) = 0. Therefore λ must also contain g, since the incident coefficent of P must
be even. If λ contains g, then one of the 0-chains on the boundary of λ is Q. Q
must also have an even incident coefficent on the boundary of λ, so λ must contain
either e or f but not both. Therefore if λ contains c or d but not both, it also
contains e or f but not both, and g.

Let µ = λ + ∂(B). We will show that µ is a 1-cycle homologous to λ, which
corresponds to a 1-cycle in κ. First, µ is a k-cycle because ∂(µ) = ∂(λ)+∂(∂(B)) =
0, since the boundary of a k-cycle is 0 and the boundary of a boundary of a polygon
is 0. Second, µ ∼ λ because µ and λ differ by a 1-boundary. Finally, µ corresponds
to a 1-cycle in λ because µ contains both c and d, or both e and f , and not g.
Therefore any 1-cycle on κ+ corresponds to a 1-cycle on κ. H1(κ) ∼= H1(κ+).

Any 2-cycle in H2(κ+) must contain both B and C or neither, since g is a 1-
chain incident once on the boundary of B and once on the boundary of C, and all
1-chains on the boundary of any 2-cycle must have even incident coefficents. Thus
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any 2-cycle in κ+ containing B and C corresponds to a cycle in κ containing A.
H2(κ) ∼= H2(κ+). �

Theorem 3.3. (Invariance Theorem) Let ϕ be a compact, connected surface. Then
the homology groups of ϕ are independent of the choice of triangulation.

Proof. Take any triangulation κ of a compact, connected surface ϕ. Any triangu-
lation of a surface can be reduced to the plane model of the surface, by a series
of cutting and pasting operations that preserve the information about the overall
topological identifications of the edges of the surface. Cutting and pasting along
an edge of a polygon can be seen as drawing a new edge dividing a polygon or
erasing an edge dividing a polygon. By Lemma 3.1 none of these cutting or pasting
operations change the homology groups of the surface. Thus, the homology groups
of a complex are the same as those of its plane model.

Furthermore, since the homology groups associated with the triangulation κ are
the same as those of the plane model of ϕ, it follows that any other triangulation has
the same homology groups as the plane model of ϕ. Thus any two triangulations
of ϕ have the same homology groups. �

4. The Euler Characteristic

In this section, we will prove that if a complex κ represents a surface ϕ, and if
V , E, and F are the number of vertexes, edges, and faces in κ, then V −E+F is a
constant independent of the manner in which ϕ is divided up to form the complex
κ. This constant is called the Euler characteristic of ϕ, χ(ϕ).

We now recall a few definitions related to vector spaces. These definitions, along
with further material regarding vector spaces, can be found in the chapter “Vector
Spaces” in A Combinatorial Introduction to Topology [1]. Below all vector spaces
are assumed to be finite dimensional.

Definition 4.1. Let A be a linearly independent subset of the vector space V over
a field F that spans V . Then A is a basis for V .

Definition 4.2. The dimension of a vector space V over a field F is the number
of elements in a basis for V .

Definition 4.3. Let H be a subspace of the vector space G over a field F . Then
the quotient space of G by H, denoted G/H, is the set of left cosets of H.

Clearly, Hk(κ) is a quotient space over F2. We see that Hk(κ) = Zk(κ)/Bk(κ),
because the left cosets of Bk(κ) in Zk(κ) are exactly the equivalence classes over
k-cycles by the homology equivalence relation.

Theorem 4.4. Let H be a vector subspace of the vector space G. Then the dimen-
sion of G/H equals the dimension of G minus the dimension of H.

Theorem 4.5. (Rank-nullity) Let φ be a linear transformation between the vector
spaces G1 and G2. Then dim(G1) = dim(kerφ) + dim(imφ)

Example 4.6. Let the dimension of Ck(κ) be denoted by ck, the dimension of
Zk(κ) be denoted by zk, and the dimension of Bk(κ) be denoted by bk.

Since the boundary operator ∂k is a linear transformation between vector spaces
Ck and Ck−1, the dimension of Ck(κ) can be determined for k= 0, 1, 2 using the



INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES 9

rank-nullity theorem. We begin by calculating the dimension of both the kernel
and the image of ∂k for k= 0, 1, 2.

The kernel of ∂k is every k-chain which has null boundary, which is the set of
k-cycles of Ck. So for k= 0, 1, 2,

dim(ker ∂k) = zk(4.7)

The image of ∂k is every (k − 1)-chain that is a boundary of a k-chain, which is
the set of (k − 1)-boundaries of Ck−1. So for k = 0, 1, 2,

dim(im∂k) = bk(4.8)

Thus by Theorem 4.5, (4.7), and (4.8),

c0 = dim(ker∂0) + dim(im∂0)

= z0

c1 = dim(ker∂1) + dim(im∂1)

= z1 + b0

c2 = dim(ker∂2) + dim(im∂2)

= z2 + b1

Theorem 4.9. Let ϕ be a surface. Then the Euler characteristic χ(ϕ) is indepen-
dent of the choice of complex κ to divide up ϕ.

Proof. Let the dimension of Hk(κ) be denoted by hk. By Thm 4.4 above,

h0 = z0 − b0(4.10)

h1 = z1 − b1(4.11)

h2 = z2 − b2(4.12)

Also, c0 = V , the number of vertexes. This is because a basis for the group of
0-chains is the set of 0-simplexes in κ. The dimension of C0 is therefore the number
of 0-simplexes, or the number of vertices.

By similar argument, c1 = E, the number of edges, and c2 = F , the number of
faces.

Then

V − E + F = c0 − c1 + c2

= z0 − (z1 + b0) + (z2 + b1)(See Example 4.6)

= z0 − b0 − (z1 − b1) + z2 − b2
= h0 − h1 + h2

Because the invariance theorem states that the homology groups of a complex are
independent of the triangulation of that complex, h0 − h1 + h2 is independent of
κ. �

Proposition 4.13. The value h1, the number of elements in the equivalence classes
of 1-chains of a surface, is the twice the genus of a surface, where the genus indicates
how many holes the surface has.



10 RACHEL CARANDANG

Example 4.14. In Example 2.26 we saw that h1 = 2 for the torus, which is indeed
twice the genus of the torus. The genus of the torus is 1, since the torus has one
hole.

Example 4.15. In this example, we will demonstrate how the dimension of H1,
denoted h1, relates to the number of holes in an infinite plane with a grating. In
this paper, we define a grating as a decomposition of the plane into rectangles,
whose sides are determined by an infinite number of horizontal and vertical lines.
A grating is a complex, and we can regard the vertexes as 0-simplexes, the lines
connecting the vertexes as 1-simplexes, and the rectangular faces as 2-simplexes.

If a plane has no holes, every 1-cycle divides the plane into two faces, an inside
and an outside. Every 1-cycle is thus a 1-boundary of two 2-chains. In Figure 4.16,
A bounds G1 and G2.

Figure 4.16.

Note that G2 is indeed a 2-chain, since it the set of an infinite number of 2-
simplexes. Because every 1-cycle is a boundary, H1 consists of ∅. Thus h1 = 0 for
a plane with no holes.

If a plane has one hole, then every 1-cycle in G is a 1-boundary of one 2-chain,
and h1 remains 0. In Figure 4.17, A bounds G1 and B bounds G2. By the same
reasoning as above, h1=0 for a plane with one hole.

Figure 4.17. Examples of 1-cycles in a plane with one hole

If a plane has two holes, then given a grating, some 1-cycles in G are not bound-
aries in G. In Figure 4.18, A does not bound anything, because both its inside and
outside have holes. However, Figure 4.18 below shows that the union of B1 and B2

form a 1-boundary of G.
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Figure 4.18. Examples of 1-cycles in a plane with two holes

Thus in a plane with two holes, any two 1-cycles that are not boundaries are
homologous to each other, since their union forms a 1-boundary. All 1-cycles that
are boundaries are clearly homologous to ∅. Therefore the homology group has two
elements. For a plane with two holes, h1 = 1.

Theorem 4.19. (The Euler-Poincare formula) χ(ϕ) = 2 − h1 for all compact,
connected surfaces.

Proof. For all connected surfaces, h0 = 1. This is because all 0-cycles are vertexes,
and all vertexes are homologous to each other because any two vertexes in a con-
nected surface form the boundary of the of the 1-chain between them. So a basis
for H0 consists of just one element.

For all compact, connected surfaces without boundary, h2 = 1. The only non-
empty 2-cycle is the sum of all the 2-simplexes of the surface. This is the only 2-
chain that has no boundary. This is because the surface is compact and connected,
so each edge of any 2-simplex on the surface touches the edge of another 2-simplex.
Thus every edge is counted twice for each face it appears on the boundary of, and
each edge has an incident coefficent of 2. There are no edges with odd incident
coefficients, and the boundary of the sum of all the 2-simplexes is ∅. So a basis for
H2 consists of just one element.

Therefore for all compact, connected surfaces

χ(ϕ) = V − E + F

= h0 − h1 + h2

= 1− h1 + 1

= 2− h1

�

5. Map Coloring

In order to extract patterns from coloring the faces of a map, we must necessarily
involve the relationship between the vertexes, edges, and faces of a map. Thus in
this section, we will see an application of the Euler characteristic in finding an
upper bound of the number of colors needed to color a map.



12 RACHEL CARANDANG

Definition 5.1. A map is a 2-dimensional complex. A map is N-colorable if N
colors are sufficient to color its faces so that any two faces sharing an edge have
different colors.

Lemma 5.2. Let ϕ be a compact, connected surface. Let κ be a complex on ϕ with
F faces, E edges, and V vertexes. Let a = 2E

F . If N is a positive integer such that
a < N for every complex κ on ϕ , then any complex κ on ϕ is N -colorable.

Proof. We will prove this lemma by induction on the number of faces. Let a be
the average number of edges per face on a surface κ, and let a < N . Let k be the
number of faces of κ. If k < N , then κ is clearly N -colorable, since every face can
be painted a different color. This handles the base case of the induction.

Now, assume κ has k faces and is N -colorable. We will show that this implies
that a complex κ1 with k + 1 faces is also N -colorable.

Note that the ratio a = 2E
F in Lemma 5.2 represents the average number of edges

per face. This is because 2E represents the total number of edges counted face by
face, since each edge connects two faces and is counted twice, and F represents the
total number of faces.

We are given that the average number of edges per face, a, is less than N , so
there must be at least one face with less than N edges.

Take this face and distribute it among its adjacent faces, as demonstrated in
Figure 5.3. The total number of faces on κ decreases by 1, so κ has k faces. The
total number of edges on each adjacent face increases by 1, since it gains 2 edges
but loses 1 edge.

Figure 5.3. Removing a face by distributing it among adjacent faces.

Since by the induction hypothesis we assumed any complex with k faces was
N -colorable, κ− has k faces and is N -colorable.

After all the faces of κ− have been colored, recover the face with less than
N edges by undoing the step shown Figure 5.3. Since this face has less than N
adjoining faces, color this face with a color that is not present in its adjoining faces.
Therefore κ− is N -colorable. �
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Theorem 5.4. Six colors are sufficient to color any map on the sphere or projective
plane.

Proof. Let κ be a complex on ϕ with F faces, E edges, and V vertexes.
Find all vertexes of κ where only two edges meet and combine the edges into

one edge. Now every vertex lies on each 3 edges of κ. This changes the number of
edges, but not the number of faces.

Note the total number of edges counted vertex by vertex is 2E, since each edge
connects two vertexes and is therefore counted twice. Thus the average number of
edges per vertex, 2E

V , must be at least three.

2E

V
≥ 3

V ≤ 2E

3

Also, Theorem 4.19 tells us that V = χ− F + E

Substituting for V , we get χ− F + E ≤ 2E

3
Solving for E, we get E ≤ −3χ+ 3f

Substituting into a, we get a =
2E

F
=

2(−3χ+ F )

F

So we get

(5.5) a = 6
(

1− χ

F

)
We will only consider F > χ. This is because χ < 6, so if F ≤ χ < 6, then the

complex is clearly 6-colorable.
We know the Euler characteristic of a sphere is 2 and that of a projective plane

is 1. Then for the sphere and projective plane,

a ≤ 6
(

1− χ

F

)
< 6

Therefore by Lemma 5.2, 6 colors are sufficient to color any complex on a sphere
or projective plane. �

Theorem 5.6. Let ϕ be any surface of characteristic χ ≤ 0. Then any map on ϕ
can be colored by Nχ colors, where

Nχ =

⌈
7 +
√

49− 24χ

2

⌉
Proof. Let χ ≤ 0. As in the previous proof, a ≤ 6

(
1− χ

F

)
. We want to find N so

that

6
(

1− χ

F

)
< N

If the above equation holds, then by Lemma 5.2, we will know how many colors
are sufficient to color the complex. For every complex, note that if F < N , the
complex is clearly N -colorable. Now assume F ≥ N + 1.
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Then 6
(

1− χ

F

)
< N

Solving for N, we get N2 − 5N − 6 + 6χ > 0

which yields N >
5±
√

49− 24χ

2

We will take

N >
5 +
√

49− 24χ

2
since this is the stronger of the two requirements.

Adding 1 to both sides gives

N + 1 >
7 +
√

49− 24χ

2
The smallest integer satisfying this equation is also the largest integer satisfying

N ≤ 7 +
√

49− 24χ

2
Thus

Nχ = d7 +
√

49− 24χ

2
e

Nχ is the number of colors sufficient to color a map on a surface with a Euler
characteristic less than or equal to zero. �
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