
A SAMPLING OF NUMERICAL TECHNIQUES

FREDDY BOULTON

Abstract. This paper is meant to be an introduction to the study of numerical analysis. We explore a

sampling of numerical techniques used to address several elementary, yet fundamental queries, such as finding
roots to continuous real-valued functions and solving linear systems of the form Ax = b. We approach these

problems from a numerical perspective, describing the algorithms we use.

Contents

1. Introduction 1
2. Root-Finding for Continuous Real-Valued Functions 2
2.1. The Contraction Mapping Theorem and Iterations 2
2.2. Finding Roots: Iterations through the Bisection Method 3
3. Matrix Notation 4
4. Finding LU (Solving Ax = b when x exists) 4
4.1. An Inefficient Approach 5
4.2. A More Efficient Approach 6
4.3. When LU Factorization Fails 9
5. Finding QR (Solving Ax = b when x exists) 9
5.1. Gram-Schmidt Algorithm 10
6. Norms and Conditions Numbers 13
6.1. Norms 13
6.2. Condition Numbers 16
7. Least Squares: where solutions to Ax = b might not exist 17
7.1. Geometric Interpretation 18
7.2. Least Squares through QR Factorization 18
8. Acknowledgements 18
References 18

1. Introduction

Numerical analysis is concerned with the construction of approximate solutions to problems in scientific
applications. The discipline began with babylonian scholars approximating

√
2 while constructing right

triangles with legs of unit length. The scholars further used these approximations to construct a tangible
measurement guide with countless applications to architecture and carpentry. In this study, the scholars
saw first-hand the interplay between theory and practice. This expository paper seeks to analyze a sampling
of techniques used by numerical analysts to solve various classical, mathematical questions. In studying
these problems, we touch upon fundamental topics in other areas of mathematics such as Linear Algebra,
Functional Analysis, and Real Analysis. We have adopted the spirit of the first numerical analysts by
exploiting the symbiotic relationship between theory and practice in order to attain a deeper understanding
of the material covered. Although numerical analysis is often studied through the lens of computer science,
we are primarily concerned with the mathematical interpretation of the numerical algorithms. We still
address the driving questions of numerical analysis, such as “how good is the approximate solution?” and
“is the algorithm computationally feasible?”

This paper is organized as follows: In Section 2, we consider techniques for finding and approximating
1

the roots of real-valued continuous functions. In Section 3, we offer a brief overview of matrix notation.
Sections 4 and 5 deal with methods to solving systems of linear equations, when the systems have explicit
solutions. We conclude with a discussion of the theory of matrix norms and condition numbers in Section
6, as a means of introducing the method of Least Squares in Section 7, a method for analyzing solutions to
systems of linear equations which may not have solutions.

2. Root-Finding for Continuous Real-Valued Functions

We begin by identifying roots of real valued functions. In the case of linear or quadratic polynomials, it
is easy to find an explicit formula for the roots. However, significant obstacles arise once the degree of the
polynomial is greater than or equal to five, as no such “quadratic formula equivalent ” exists (as proved by
Abel in 1824 [2]). Consequently, we cannot expect a formula for arbitrary functions and as such we seek
some type of algorithm to find the roots. We will introduce an iterative process which yields function values
sufficiently close to the desired root. We first establish the Contraction Mapping Theorem, which is the
necessary analytical tool to ensure that our iterative processes converge.

2.1. The Contraction Mapping Theorem and Iterations. We begin our discussion with the notion of
a fixed point and Brouwer’s Fixed Point Theorem.

Definition 2.1 (Fixed Point). Let f : [a, b]→ [a, b] be a continuous function defined on [a, b]. We say that
ζ ∈ [a, b] is a fixed point of the function f if f(ζ) = ζ.

Given this definition, it is natural to wonder under which hypotheses does a function f have a fixed point.
We address this question in Brouwer’s Fixed Point Theorem.

Theorem 2.2 (Brouwer’s Fixed Point Theorem). Let f : [a, b] → [a, b] for some [a, b] ⊂ R. Then there
exists a fixed point ζ ∈ [a, b] such that f(ζ) = ζ.

Proof. Without loss of generality, we may assume that f(a) 6= a and f(b) 6= b; otherwise, a or b would
be fixed points. We now define the function g : [a, b] → R such that g(x) = x − f(x). It follows that
g(a) = a − f(a) < 0 since f(a) ∈ [a, b] and similarly, g(b) = b − f(b) > 0. Since the sum of two continuous
functions is a continuous function, then by the Intermediate Value Theorem, it follows that there exists a
ζ ∈ (a, b) such that g(ζ) = 0. Thus, ζ − f(ζ) = 0, implying that f(ζ) = ζ. Thus f has a fixed point ζ. �

Definition 2.3 (Simple Iteration). Let g be a real valued function continuous on [a, b] such that g(x) ∈ [a, b]
for all x ∈ [a, b]. We call the recursive sequence defined by

xk+1 = g(xk) for k ∈ N

a simple iteration of g.

Fixed points are a crucial component of our goal to find the real-roots of functions because if f is real-
valued and continuous, and the iteration above converges, then it must converge to a fixed point. Suppose
that limx→∞(gk) = ζ. Then we have that

ζ = lim
k→∞

xk+1 = lim
k→∞

g(xk) = g(lim
k→∞

xk) = g(ζ)

because g is continuous and limits pass through continuous functions. We are finding roots of a function f
by finding fixed points of the recursive iterative function g.

With this in mind, we must find sufficient conditions for when the simple iteration converges. As it turns
out, contractions provide an adequate condition:

Definition 2.4 (Contraction). Let f be a real valued function, continuous on a closed interval [a, b] ⊂ R.
We call f a contraction on [a, b] if there exists an L ∈ R, with 0 < L < 1, such that

|f(x)− f(y)| ≤ L|x− y|

for all x, y ∈ [a, b].

We now demonstrate the role of contractions and iterations in our pursuit of finding roots:
2

Theorem 2.5 (Contraction Mapping Theorem). Let f : [a, b]→ [a, b] with [a, b] ⊂ R. Then f has a unique
fixed point ζ in [a, b]. Moreover, the sequence (xk) as defined in Definition 2.3 converges to ζ as k →∞ for
any starting value x0 ∈ [a, b].

Proof. By Brouwer’s fixed point theorem, a fixed point ζ exists. To show uniqueness of ζ, suppose that there
exists another fixed point ζ ′ ∈ [a, b] such that ζ ′ 6= ζ. Since f is a contraction, then

|f(ζ)− f(ζ ′)| = |ζ − ζ ′| ≤ L|ζ − ζ ′|.

Since |ζ − ζ ′| > 0 by assumption, then |ζ−ζ
′|

|ζ−ζ′| ≤ L. However, this implies that 1 ≤ L, which contradicts

the definition of a contraction. Thus, ζ = ζ ′. We will now show that the iteration defined in Definition 2.3
converges to ζ for any starting point x0 ∈ [a, b]. We claim that |xk − ζ| ≤ Lk|x0 − ζ| for all k ∈ N.

First, consider the case where k = 1, notice that |x1 − ζ| = |f(x0) − f(ζ)| ≤ L|x0 − ζ| since f is a
contraction. Now suppose that for any k ∈ N, the statement holds. We will now prove the statement for the
case of xk+1. By the inductive hypothesis, |xk − ζ| ≤ Lk|x0 − ζ|. Thus,

|xk+1 − ζ| = |f(xk)− f(ζ)| ≤ L|xk − ζ| ≤ Lk+1|x0 − ζ|.
This shows that the statement holds for all k ∈ N.

Since 0 < L < 1, then it follows that limk→∞ Lk|x0 − ζ| = 0. Since 0 ≤ |xk − ζ| ≤ Lk|x0 − ζ|, we have
that limk→∞|xk − ζ| = 0. Thus, limk→∞ xk = ζ. �

In order to illustrate an application of the Contraction Mapping Theorem, we consider the function
f : [1, 2]→ [1, 2] defined by

f(x) = ex − 2x− 1.

We wish to find a root of f in this closed interval, which involves finding a fixed point of the function x−f(x).
Setting f(x) = 0, we see that x = ln(2x+ 1). This motivates the choice of the function g as follows:

g(x) = ln(2x+ 1)

for the simple iteration xk+1 = g(xk) for k ∈ N. Since g is continuous and differentiable on [1, 2] for any
x, y ∈ [1, 2], the Mean Value Theorem yields that for all x, y ∈ [1, 2], there exists a there exists some p ∈ (x, y)
such that

g(x)− g(y) = g′(p)(x− y),

which implies that

|g(x)− g(y)| ≤ |g′(p)||x− y|.
By the chain rule, we have that g′(x) = 2

2x+1 and thus |g′| < 1, which implies that g is a contraction.

By Theorem 2.5, g will converge to its fixed point ζ ∈ [1, 2] for any starting point x0 ∈ [1, 2]. After a
couple of iterations of the function, we see that ζ ≈ 1.26.

2.2. Finding Roots: Iterations through the Bisection Method. Suppose that f is a real valued and
continuous function on a closed subset [a, b] such that f(a) and f(b) are opposite signs. Thus, since f is
continuous then by the Intermediate Value Theorem, there exists a ζ ∈ (a, b) such that f(ζ) = 0. If we can
identify a small enough interval around ζ then this will count as a good enough approximation of the root.
This is precisely the goal of the Bisection Method. We shrink the interval in a systematic way based on
“halving”:

Let ck = 1
2 (ak + bk) be the average of the kth interval of the iteration, where ak, bk have opposite signs,

thus guaranteeing that ζ ∈ (ak, bk). Define (ak+1, bk+1) by:

(ak+1, bk+1) =

{
(ak, ck), if f(ck)f(bk) > 0

(ck, bk), if f(ck)f(bk) < 0

If f(ck)f(bk) > 0, then f(ck) must be the same sign as f(bk), thus the root must lie in (ak, ck) (as long
as ck 6= 0) by the intermediate value theorem since ak and bk have opposite signs by assumption. The

3

same argument symmetrically applies to the other half of the definition. Notice that the bisection method
completely relies on the Intermediate Value Theorem, which requires that f be continuous. Moreover, it
is clear that the bisection method gives a good approximation as k →∞ as each interval is successively halved.

The bisection method is not as sophisticated or elegant as the contraction method but it only requires
that the function be continuous and for us to provide an interval, i.e. a guess, as to where the root might
be. Thus, we avoid verifying that the function f is a contraction, which can be challenging, time-consuming,
and even impossible depending on the function.

3. Matrix Notation

In this section, we briefly introduce the basics of matrix notation, and explain an efficient strategy to
solve systems of the form Ax = b. We begin our discussion of matrix notation by defining a Matrix space:

Definition 3.1 (Matrix Space). The set of real-valued matrices with m rows and n columns is a vector
space over the field of real numbers R and is denoted by Rm×n.

Remark 3.2. For a definition of a vector space, consult [4].

We begin with the definition of matrix-vector multiplication on the left-hand side:

Definition 3.3. Let x ∈ Rn and let A ∈ Rm×n. The matrix vector product b = Ax is defined as:

bi =

n∑
j=1

aijxj , i = 1, 2, . . . , n.

where bi denotes the ith entry of b, aij denotes the entry in the ith row and jth column of A and xj denotes
the jth entry of x.

We now walk through the notation for matrix multiplication:

Definition 3.4 (Matrix Muliplication). Let A ∈ Rl×m and let B ∈ Rm×n. The entries of the resulting
matrix C ∈ Rl×n are defined as follows:

cij =

m∑
k=1

aikbkj .

where bij is the i, j entry of B, aik is the entry in the ith row and kth entry of A, and similarly for bjk.

We will now explain a general strategy to solve linear systems. Suppose we have a matrix A ∈ R3×3 and
a vector b ∈ R3 and that we are trying to find a vector x ∈ R3 such that Ax = b. Typically, this would
entail a system of the form a b c

d e f
g h t

xy
z

 =

 5
10
15

 ,
which is not a trivial exercise. However, if the entries of A satisfied aij = 0 for all i < j, then the system
would be of the form a b c

0 e f
0 0 t

xy
z

 =

 5
10
15

 ,
which can be solved easily by working from the 3rd row up: z = 15

t , y =
10− 15

t f

e and so forth. This motivates
trying to find a way to reduce any matrix A ∈ Rn×n to an upper-triangular form so that the problem of
Ax = b can be solved efficiently.

4. Finding LU (Solving Ax = b when x exists)

We now examine one of the fundamental problems of Linear Algebra: given a matrix A ∈ Rn×n and a
vector b in Rn, we want to find a vector x ∈ Rn such that Ax = b. There are many ways to approach the
problem from the numerical perspective. We will show several approaches in order to compare and contrast
their strengths and weaknesses.

4

4.1. An Inefficient Approach. One way of solving Ax = b is to find the inverse of A and compute
A−1b. We will begin our analysis of this approach by introducing inverse matrices and the concept of the
determinant.

Definition 4.1 (Inverse of a Matrix). Let A ∈ Rn×n. A matrix W is the inverse of a matrix A if

AW = WA = In

where

In =


1 0 . . . 0
0 1 · · · 0
.
0 0 . . . 1

 ,
and is referred to as the n× n identity matrix.

Remark 4.2. It is easy to show that inverse matrices are unique by using the associativity of matrix
multiplication (consult reference [2]). Thus we denote the inverse of the matrix A by A−1.

In order to explicitly calculate the inverse of a square matrix A we introduce the concept of the determinant.

Definition 4.3 (Determinant). Let A ∈ Rn×n, and let Sn be the set of all permutations of the elements of the
set {1, 2, 3, . . . , n}. A permutation of the set {1, 2, 3, . . . , n} is a bijection σ : {1, 2, 3, . . . , n} → {1, 2, 3, . . . , n}.
We define the sign of a permutation σ, denoted sign(σ) to be (−1)inv(σ), where inv(σ) denotes the number of
inversions of σ, i.e. the number of exchanges of two adjacent elements of the set {1, 2, 3, . . . , n}. We define
the determinant of A, denoted by det(A), as

det(A) =
∑
σ∈S

sign(σ)

n∏
i=1

ai,σ(i),

where ai,σ(i) denotes the entry of the matrix A in the ith row and the column i is mapped to in the
permutation.

Example 1 (Determinant of a 2× 2 matrix). We will compute the determinant of a matrix A ∈ R2×2. Let

A =

[
a b
c d

]
.

Proof. There are 2 total permutations of the set {1, 2}:
(1) σ = {1, 2}
(2) σ′ = {2, 1}

It is clear that σ has zero inversions since no adjacent elements were exchanged; its sign is therefore 1. Thus,
sign(σ)

∏n
i=1 ai,σ(i) = a11(a21) = ad. Similarly, σ′ has one inversion, and thus its sign is −1. It follows that

sign(σ′)
∏n
i=1 ai,σ(i) = −(a12)a21 = −bc. It follows that det(A) = ad− bc. �

Remark 4.4. We can already see the immense computational cost of computing the determinant of a
matrix. If we wanted to compute the determinant of a 50× 50 matrix, we would have to compute the sum
over 50! terms (the total number of permutations in a set of 50 elements) (see reference [3]).

We now define the cofactor of a matrix, which will be used to compute the inverse of a matrix.

Definition 4.5 (Cofactor). Let A ∈ Rn×n. The cofactor of entry aij , denoted as cof(aij), is defined as the
determinant of the (n− 1)× (n− 1) matrix obtained by deleting the ith row and the jth column.

Example 2. Consider the 3× 3 matrix a b c
d e f
g h i

 ;

cof(a11) is the determinant of the resultant matrix given by deleting the first row and column of the matrix.

Thus, me must compute the determinant of

[
e f
h i

]
, which we know is equal to ei− fh.

5

We now introduce Cramer’s Rule, which utilizes cofactors to compute the inverse of a square matrix A.

Theorem 4.6 (Cramer’s Rule). For a matrix A ∈ Rn×n such that det(A) 6= 0:

A−1 =
1

det(A)


A11 A21 . . . An1
A12 A22 . . . An2

.
An1 An2 . . . Ann


where Aij denotes the cof(aij)

Remark 4.7. The proof of Cramer’s Rule depends on an equivalent formulation of the determinant, namely
det(A) =

∑n
k=1 aikAki, and the fact that

n∑
k=1

ajkAik =

{
1, if i = j

0, if i 6= j

However, the proof of these properties will not be provided here, as it deters from the main focus of this
paper. For more information see [1].

Using Cramer’s Rule, we can directly compute A−1 and solve the system Ax = b. However, from the
formulation of Cramer’s Rule, it is evident that the inverse of a square matrix only exists if det(A) 6= 0.
This poses an obstacle to the analysis: given a large square matrix, say 30×30, we would have to compute a
sum of 30! terms in order to even begin to calculate A−1. To make matters worse, even if we were somehow
guaranteed that det(A) 6= 0, we’d have to calculate 90 determinants of 29× 29 matrices in order to compute
A−1, which is clearly undesirable. This suggests that from the numerical perspective, we seek a more efficient
algorithm.

4.2. A More Efficient Approach. From the computational point of view, a better way to solve systems
of linear equations is to describe the matrix A in terms of matrices which are easier to invert. In particular,
we factor our matrix A into the product of a unit lower triangular matrix and an upper triangular matrix.
This process is called LU factorization and it is done through row operations and Gaussian Elimination. We
begin our analysis by introducing Elementary Matrices, which perform desired row operations for Gaussian
Elimination.

Definition 4.8 (Elementary Matrix). Multiplication by Elementary Matrices perform linear operations on
the rows of A. If we want to add a scalar multiple, µ(rs), of row s to row r, we perform the following
operation:

A→ A(In + µ(rs)E
(rs)),

where

E
(rs)
(ij) =

{
1, if i = r, j = s

0, otherwise
,

and µ(rs) ∈ R.

We next provide an example.

Example 3. Suppose that we have the matrix

A =

[
1 2
3 8

]
,

and that we want to add 3 times the first row to the second one. It is clear that our new matrix A′ should

read A′ =

[
1 2
6 14

]
. However, using our definition of the elimination matrix E, we see that

(In + µ(12)E
(21)) =

[
1 0
3 1

]
.

6

Therefore by computing (In + µ(12)E
(21))A we have that[

1 0
3 1

] [
1 2
3 8

]
=

[
1 2
6 14

]
.

Notice that the elementary Matrix (In + µ(12)E
(21)) has entries equal to 0 above its diagonal. We formalize

this concept in the following definition.

Definition 4.9 (Lower and Upper Triangular Matrix). A matrix L ∈ Rn×n, where n ≥ 2 is called lower
triangular if lij = 0 for all i < j. In other words, all entries above the main diagonal are 0. L is unit lower
triangular if it is lower triangular and lii = 1 for all i ∈ {1, 2, . . . n}; i.e. all entries along the main diagonal
are 1. A matrix U ∈ Rn×n where n ≥ 2 is called upper triangular if uij = 0 for all j < i.

Thus, if r < s, then matrix (In + µ(rs)E
(rs)) is lower triangular by definition 4.9. We will now show that

the product of two lower triangular matrices is lower triangular. In order to do this, we will use the following
lemma:

Lemma 4.10. For the matrix E(rs), as defined above, where r 6= s, then

E(rs)E(rs) = 0,

where 0 is the n× n with all 0 entries.

Proof. The proof is omitted. For more information consult [1]. �

Theorem 4.11. The inverse of the n× n elementary matrix (In + µ(rs)E
(rs)) is given by (In − µ(rs)E

(rs)).

Proof. By the distributive property of matrix multiplication, we have

(In + µ(rs)E
(rs))(In − µ(rs)E

(rs)) = In − µ(rs)E
(rs) + µ(rs)E

(rs) + µ2
(rs)E

(rs)E(rs).

By the above lemma, E(rs)E(rs) = 0. Thus,

(In + µ(rs)E
(rs))(I − µ(rs)E

(rs)) = I + 0 + 0 = I.

Since multiplicative inverses are unique, it follows that (I + µ(rs)E
(rs))−1 = (I − µ(rs)E

(rs)). �

The goal of LU Factorization will be to convert our original matrix A to an upper triangular matrix,
as defined in definition 4.9. We will perform this factorization by multiplying A by a series of elementary
matrices similar to the ones above. Let (I + µ(rs)E

(rs)) = L(rs), let L−(rs) = (I + µ(rs)E
(rs))−1 and let U

be an upper triangular matrix. Thus, we have:

L(n,s)L(n−1,s−1) . . . L(1,2)A = U

By multiplying by the inverses of each unit lower triangular matrix, we have that

A = L−(1,2) . . . L−(n,s)U

Since the product of all the L matrices is still a unit lower triangular matrix, we have that

A = LU,

as desired.

Example 4. We perform the LU factorization of the matrix

B =

 1 1 1
2 4 2
−1 5 −4

 .
7

We begin by making the first column of B a vector of the form

1
0
0

 Thus, the first step is to multiply by

L1 =

 1 0 0
−2 1 0
0 0 1

 This yields,

L1B =

 1 1 1
0 2 0
−1 5 −4

 .
Now we add the first row to the third by multiplying by L2 =

1 0 0
0 1 0
1 0 1

, and obtain that

L2L1B =

1 1 1
0 2 0
0 6 −3

 .
We now move to the second column. We will add −3 times the second row to the third by multiplying by

L3 =

1 0 0
0 1 0
0 −3 1

. Thus,

L3L2L1B =

1 1 1
0 2 0
0 0 −3


Isolating B yields,

B = L1L2L3

1 1 1
0 2 0
0 0 −3

 =

 1 0 0
−2 1 0
0 0 1

 1 0 0
0 1 0
−1 0 1

1 0 0
0 1 0
0 3 1

1 1 1
0 2 0
0 0 −3


=

 1 0 0
2 1 0
−1 3 1

1 1 1
0 2 0
0 0 −3

 .
Thus, L =

 1 0 0
2 1 0
−1 3 1

 and U =

1 1 1
0 2 0
0 0 −3

 .
4.2.1. Using LU Factorization to solve Equations. Once we obtain the LU factorization for our matrix A,
solving the system Ax = b is equivalent to solving

LUx = b.

It may be tempting to multiply by L−1 and obtain the system

Ux = c,

where c = L−1b which can be solved in reverse order. However, instead of computing L and L−1 explicitly,
we invert each elementary matrix at each step. This is how a computer would solve the system of Linear
Equations. We demonstrate this approach, and what we mean by “invert at each step” with the following
example:

Example 5 (Solving a System of Linear Equations). Suppose we have the system of linear equations:

x+ y + z = 6

2x+ 4y + 2z = 16

−x+ 5y − 4z = −3

8

We can express the system as a 3× 3 matrix multiplied by a column vector as follows: 1 1 1
2 4 2
−1 5 −4

xy
z

 =

 6
16
−3


Recalling that this is the matrix B of Example 4, we can multiply by the elementary matrices L1, L2, L3(
defined in Example 4), on both sides to obtain:

L3L2L1B = L3L2L1

 6
16
−3


1 1 1

0 2 0
0 0 −3

xy
z

 =

 6
4
−9


Thus, solving in reverse order, we have that z = 3, y = 2, and x = 1.

Note that in Example 4, the matrix L3L2L1 is the inverse of the matrix

 1 0 0
2 1 0
−1 3 1

, which is the lower

triangular matrix in the LU factorization of B. Thus, L3L2L1 = L−1 in the example above, which allows
us to avoid explicitly inverting L.

4.3. When LU Factorization Fails. The process of elimination above implicitly assumes that each entry
along the diagonal of A is nonzero. Notice if b22 = 0 in the matrix above, then we would not be able to
multiply the second row by a scalar in order to eliminate the term in the b23 position above. In order to
solve this problem, we introduce the concept of the permutation matrix:

Definition 4.12. A permutation matrix P ∈ Rn×n is a matrix in whose entries are either 1 or 0, such that
every row and column contains precisely one nonzero element.

Permutation matrices exchange rows. Thus, if our matrix B above were changed to

 1 1 1
2 0 2
−1 5 −4

, then

we could multiply by the Permutation Matrix P =

1 0 0
0 0 1
0 1 0

 in order to exchange the third and second

rows and obtain the matrix

 1 1 1
−1 5 −4
2 0 2

, which can be factored into its LU form.

In general, if we have a system Ax = b we can multiply by a permutation matrix P and obtain that
PAx = Pb, where PA can be decomposed into LU . Thus, we have that Ux = L−1Pb, which can be solved
backwards as before.

5. Finding QR (Solving Ax = b when x exists)

Despite the seeming elementary nature of LU factorization, the LU approach is not always ideal, as we
are transforming our matrix entry-by-entry. Another way to solve Ax = b, which bypasses the fault of LU ,
is to compute A = QR, where Q is an orthogonal matrix and R is an upper triangular matrix. In order to
compute the QR factorization, we first need to consider how we can“convert” A into an orthogonal matrix.
The algorithm for this conversion is called Gram-Schmidt Orthogonolization and it is a standard procedure
in Linear Algebra used to create a collection of orthogonal vectors.

9

5.1. Gram-Schmidt Algorithm. Our discussion of the Gram-Schmidt Algorithm begins with an intro-
duction to the notions of orthogonal vectors and orthogonal matrices.

Definition 5.1 (Orthogonal and Orthonormal Vectors). Two vectors u,v ∈ Rn are orthogonal if 〈u, v〉 = 0,
where 〈u, v〉 =

∑n
i=1 uivi. We say that 〈u, v〉 as the inner product of u and v. Similarly, we say that a vector

q is orthonormal if 〈q, q〉 = 1. For a list of properties of the inner product, consult [1].

Definition 5.2 (Orthogonal Matrices). A matrix Q ∈ Rn×n is orthogonal if its columns are orthogonal to
each other, and the length of each column-vector is one. An alternative formulation, for Q, if qi and qj are
columns of Q such that i 6= j, then 〈qj , qi〉 = 0, whereas 〈qi, qi〉 = 1.

The advantage of orthogonal matrices is that the inverses of orthogonal matrices are trivial to compute.
In order to invert these matrices we must introduce the following concept:

Definition 5.3 (Matrix Transpose). Let A ∈ Rn×n. We define AT ∈ Rn×n, called the transpose of A, to
be the reflection of A along the main diagonal. In other words, if aTij is an entry in AT , then aTij = aji.

Equipped with this definition, we now show the simple structure of Q−1 when Q is orthonormal.

Theorem 5.4 (Inverses of Orthogonal Matrices). Let Q ∈ Rn×n be an orthogonal matrix. Let QT be the
transpose of matrix Q. Then,

QT = Q−1

Proof. We will first compute QTQ. Let (qqT)ii denote any entry of the resulting product matrix along the
main diagonal. By the definition of matrix multiplication, (qqT)ii =

∑n
k=1 qikq

T
ki; where qik denotes the

entries along the ith row of Q and qTki denotes the entries along the ith column of of QT . However, by the
definition of the transpose, the ith row of Q is equal to the ith column of QT . Thus,

n∑
k=1

qikq
T
ki = 〈qTi , qTi 〉 = 1

by the definition of an orthogonal matrix.
Now let qqTij , where i 6= j, denote any entry off the main diagonal. By the definition of matrix multipli-

cation, (qq)Tij =
∑n
k=1 qikq

T
kj = 〈qTi , qTj 〉 = 0 since qik is equal to the ith column of QT . Thus, it follows that

QTQ = In. A symmetrical argument will show that QQT = In, implying that the statement holds. �

This shows that a factorization of A into a QR matrix product is extremely useful, since inverting the Q
matrix requires no additional work. We next introduce the concept of linear independence and then describe
the procedure for factoring A into QR.

Definition 5.5 (Linearly Independent Vectors). A collection of vectors v1, . . . , vn is said to be linearly
independent if for any α1, . . . , αn such that α1v1 + · · ·+ αnvn = 0, then α1 = α2 = · · · = αn = 0.

Procedure (Gram-Schmidt Algorithm). Let v1, v2, . . . , vn be a set of linearly independent vectors in Rn.
The following vectors:

q1 =
v1
‖v1‖

q2 =
v2∗
‖v2∗‖

; where v2∗ = v2 − 〈v2, q1〉q1

. .

qn =
vn∗
‖vn∗‖

; where vn∗ = vn − 〈vn, qn−1〉qn−1 − · · · − 〈vn, q1〉q1

produce an orthonormal set of vectors q1, . . . , qn which span the same space as v1, . . . , vn.

We will now prove that the set of vectors {q1, . . . , qn} is orthonormal.
10

Proof. The proof is inductive. For the case of n = 1, it is clear that q1 is orthogonal to all previous vectors
and it is trivial to check that q1 has length 1. To see this, note that

〈q1, q1〉 =
1

‖v1‖22
‖v1‖22 = 1.

Now assume that vectors q1, . . . , qn−1 are orthogonal. We will now show that qn is orthogonal to q1, . . . , qn−1.
Let i ∈ {1, . . . , n− 1}. Note that by the bilinearity of the inner product, we have:

〈qi, qn〉 =
1

‖vn∗‖
〈qi, vn〉 − 〈vn, qn−1〉〈qi, qn−1〉 − · · · − 〈vn, q1〉〈qi, q1〉.

Since 〈qi, qn−1〉 = 0 by the inductive step, then we have

1

‖vn∗‖
〈qi, qn〉 =

1

‖vn∗‖
(〈qi, qn〉 − 〈qi, qn〉〈qi, qi〉) = 0.

Thus, vector qn is orthogonal to vectors q1, . . . , qn. The approach as in the base case can be used to show
that it has length 1. Thus, vectors q1, . . . , qn are orthogonal. �

In order to motivate the procedure of Gram-Schmidt Algorithm, we provide a geometric interpretation
for each step. By taking the dot product of v2 with the previous vector, we are essentially removing the pro-
jection of v2 in the direction of q1. Thus, we are leaving only the component of vector v2 which is orthogonal
to q1. In general, at step i, we produce a vector that is orthogonal to vectors v1 to vi−1 by taking away all
components which are parallel to v1, . . . , vi.

If A =
[
v1 v2 . . . vn

]
, we can treat the columns of the matrix as separate vectors and convert the

columns to an orthonormal basis, however, notice that we are left with the following:

v1 = r11q1

v2 = r12q1 + r22q2

...

vn = r1nq1 + r2nq2 + · · ·+ rnnqn

In light of this observation, we see that the columns of the original matrix A are linear combinations of the

columns of the matrix Q. Therefore, we have that

A = QR =
[
q1 q2 . . . qn

] 
r11 r12 . . . r1n
0 r22 . . . r2n
.
0 0 . . . rnn

 .
Example 6. Consider the matrix

A =

1 2 4
0 0 5
0 3 6

 .
According to the algorithm: q1 = 1√

1
v1 =

 1
0
0

 ,
By definition,

v2∗ = v2 − (v2 · q1)q1

=

2
0
3

− 2

1
0
0


=

0
0
3

 .
11

Since ‖v2∗‖2 =
√

02 + 02 + 32 = 3, then q2 = v2∗
‖v2∗‖ =

0
0
1


For q3, we define the vector v3∗ as:

v3∗ = v3 − (v3 · q2)(q2)− (v3 · q1)(q1)

=

4
5
6

− 6

0
0
1

− 4

1
0
0


=

0
5
0

 .
Since ‖v3∗‖2 = 5, then q3 = 1

5

0
5
0

 =

0
1
0

. Thus, for our orthonormalized matrix we have that

Q =

1 0 0
0 0 1
0 1 0

 .
Moreover, notice that:

v1 = 1q1

v2 = 2q1 + 3q2

v3 = 4q1 + 6q2 + 5q3.

It follows that our upper triangular matrix R is of the form:

R =

1 2 4
0 3 6
0 0 5

 .
Thus, we have factored A as

A =

1 0 0
0 0 1
0 1 0

1 2 4
0 3 6
0 0 5

 .
Once we compute A = QR, then we can set:

QRx = b.

Using that Q is orthogonal, we have that Rx = QTb. The system could then be solved backwards. As an
example, consider the system of linear equations:

x+ 2y + 4z = 31

5z = 25

3y + 6z = 42,

which is equivalent to solving: 1 2 4
0 0 5
0 3 6

xy
z

 =

31
25
42

 .
Using the QR factorization of A computed above, we have that1 0 0

0 0 1
0 1 0

1 2 4
0 3 6
0 0 5

x =

31
25
42

 .
12

Thus, 1 2 4
0 3 6
0 0 5

x =

1 0 0
0 0 1
0 1 0

31
25
42

 =

31
42
25

 .
By solving backwards, we have z = 5, y = 4, x = 3, or x =

3
4
5

.

6. Norms and Conditions Numbers

6.1. Norms. Norms provide a rigorous way to quantify size and distance in vector spaces. Because of this,
they provide a measure of how “close” an approximate solution is to the actual solution, such as in root-
finding. Additionally, they are a suitable measure of the effects of rounding errors on solutions of systems of
linear equations and fundamental to the study of numerical analysis. Moreover, they are the basis for the
study of functional analysis.

Definition 6.1 (Norm). Let V be a vector space over the field R of real numbers. We call a nonnegative
function ‖·‖ : V→ R a norm on V if it satisfies the following:

(1) ‖v‖ = 0 if and only if v = 0, for all v ∈ V.
(2) ‖λv‖ = |λ|‖v‖, for all λ ∈ R and v ∈ V.
(3) ‖v + u‖ ≤ ‖v‖+ ‖u‖ for all v,u ∈ V.

We now define a series of norms for vectors v ∈ Rn.

Definition 6.2 (1-norm). The vector 1-norm of a vector v ∈ Rn, denoted by ‖v‖ is defined as

‖v‖ =

n∑
i=1

|vi|.

Definition 6.3 (2-norm). The vector 2-norm of a vector v ∈ Rn, denoted by ‖v‖2, is defined as:

‖v‖2 =

[
n∑

i=1

|vi|2
] 1

2

.

Remark 6.4 (Relationship to Dot-Product). The vector 2-norm is closely related to the dot product of a
vector. More specifically:

‖v‖22 =

n∑
i=1

|vi|2 = 〈vi,vi〉.

Thus, the dot-product of a vector with it itself is its length squared. This property of the 2-norm will be
useful in later parts of the paper.

Definition 6.5 (∞-norm). The ∞-norm (infinity norm) of a vector v ∈ Rn, denoted by ‖v‖∞ is defined as

‖v‖∞ = max
1≤i≤n

|vi|.

We can generalize the concept of the 1-norm and 2-norm, for all p ∈ [1,∞):

Definition 6.6 (p-norm). Let p ∈ R such that p ≥ 1. We define the p-norm of the vector v ∈ Rn, denoted
as ‖v‖p by

‖v‖p =

[
n∑

i=1

|vi|p
] 1

p

.

Calling these objects “norms” may seem a bit premature, since we have yet to prove they satisfy the
norm properties. For p = 1 or p = ∞, the proofs follow directly from the properties of absolute value and
maximums. Moreover, proving axioms 1 and 2 is trivial for any p ∈ (1,∞). The main difficulty lies in
proving property 3. Our discussion begins with Young’s inequality, which is a statement regarding convex
functions.

13

Definition 6.7 (Convexity). We call a twice differentiable function f convex on [a, b] if d2

dx2 f > 0 for all
x ∈ [a, b]. Equivalently, this implies that for all θ ∈ (0, 1) and for all x, y ∈ [a, b], f(θx + (1 − θ)y) ≤
θf(x) + (1 − θ)f(y) for all x, y ∈ [a, b]. As an example, note that the function f(x) = ex is convex on R
because d2

dx2 e
x = ex > 0 for all x ∈ R.

Theorem 6.8 (Young’s Inequality). Let a, b ∈ R. Let p, q ∈ R such that p, q > 1 and 1
q + 1

p = 1. Then

ab ≤ ap

p
+
bq

q
.

Proof. Let θ = 1
p . Thus, 1− θ = 1

q . Since f(x) : ex is a convex function on R,

ab = eln a+ln b = e
1
p ln ap+ 1

q ln bq ≤ 1

p
eln a

p

+
1

q
eln b

q

=
ap

p
+
bq

q
.

�

Young’s Inequality is the crucial ingredient needed to prove Holder’s Inequality, which is a generalization of
the Cauchy-Schwarz Inequality. The Cauchy-Schwarz Inequality states that for any vectors v,u, |

∑n
i viui| ≤

‖v‖2‖u‖2. Notice that Cauchy-Schwarz is the special sales where p = q = 1
2 in the statement below:

Theorem 6.9 (Holder’s Inequality). Let p, q ∈ R with 1
p + 1

q = 1. For any v and u ∈ Rn, we have∣∣∣∣∣
n∑
i

viui

∣∣∣∣∣ ≤ ‖v‖p‖u‖q
Proof. Without loss of generality, suppose that v,u 6= 0; otherwise, the inequality trivially holds. Now define
the vectors v̂ where

v̂i =
vi
‖v‖p

for all i ∈ [n] and similarly for û. By the triangle inequality for real numbers we have that∣∣∣∣∣
n∑
i=1

v̂iûi

∣∣∣∣∣ ≤
n∑
i=1

|v̂iûi|.

By applying Young’s Inequality to the right hand side, it follows that
n∑
i=1

|v̂iûi| ≤
1

p

n∑
i=1

|v̂i|p +
1

q

n∑
i=1

|ûi|q =
1

p‖v̂‖p

n∑
i=1

|vi|p +
1

p‖v̂‖p

n∑
i=1

|ui|p =
1

p
+

1

q
= 1.

Thus, we have that ∣∣∣∣∣
n∑
i=1

v̂iûi

∣∣∣∣∣ =
1

‖v‖p‖u‖p

∣∣∣∣∣
n∑
i=1

viui

∣∣∣∣∣ ≤ 1,

implying that |
∑n
i viui| ≤ ‖v‖p‖u‖q. �

Using Holder’s Inequality, we next state and prove Minkowski’s Inequality, which is equivalent to proving
property 3.

Theorem 6.10 (Minkowski’s Inequality). Let 1 ≤ p ≤ ∞ and u,v ∈ Rn. Then,

‖v + u‖p ≤ ‖v‖p + ‖u‖p.

Proof. Consider ‖v + u‖pp. By the triangle inequality for real numbers; we have that

‖v + u‖pp =

n∑
i=1

|vi + ui|p ≤
n∑
i=1

|vi + ui|p−1(|vi|+ |ui|).

By distributivity,
n∑
i=1

|vi + ui|p−1(|vi|+ |ui|) =

n∑
i=1

|vi + ui|p−1|vi|+
n∑
i=1

|vi + ui|p−1|ui|.

14

By Holder’s Inequality

n∑
i=1

|vi + ui|p−1|vi|+
n∑
i=1

|vi + ui|p−1|ui| ≤

(
n∑

1=i

|vi + ui|p
) p−1

p
(

n∑
i=1

(|vi|+ |ui|)p
) 1

p

.

By the triangle inequality,(
n∑

1=i

|vi + ui|p
) p−1

p
(

n∑
i=1

(|vi|+ |ui|)p
) 1

p

≤

(
n∑

1=i

|vi + ui|p
) p−1

p

(n∑
i=1

|vi|p
) 1

p

+

(
n∑
i=1

|ui|p
) 1

p


= ‖u + v‖p−1p (‖v‖p + ‖u‖p).

Since ‖v + u‖pp ≤ ‖v + u‖p−1p (‖v‖p + ‖u‖p), Minkowski’s Inequality follows by dividing both sides of the

inequality by ‖u + v‖p−1p �

Thus, Minkowski’s Inequality reveals that property 3 of a norm is satisfied for any p between 1 and ∞.
We next compare the sizes of different norms:

Proposition 6.11. (1) ‖x‖∞ ≤ ‖x‖2
Proof. Consider ‖x‖2∞. By definition, that ‖x‖2∞ = maxn1≤i≤n|xi|2. Let max1≤i≤n|xi|2 = vk. Thus,

since for all i ∈ {1, 2, . . . , n}, |vi|2 ≥ 0,

‖x‖2∞ = |xk|2 ≤ |xk|2 +
∑
j 6=k,

|xi| =
n∑

i=1

|xi|2 = ‖x‖22.

Thus, it follows that ‖x‖∞ ≤ ‖x‖2. �

(2) ‖x‖2 ≤
√

n‖x‖∞
Proof. If we let ‖x‖∞ = |xk| where k ∈ {1, 2, . . . , n}, then by definition it follows

‖x‖22 =

n∑
i=1

|xi|2 ≤
n∑

i=1

|xk|2 = n|xk|2 = n‖x‖2∞.

Thus, ‖x‖2 ≤
√

n‖x‖∞. �

Given these observations, a interesting mathematical question to ask is whether all norms are comparable.
We make this notion precise by defining norm equivalence.

Definition 6.12 (Norm Equivalence). We say that two norms ‖·‖a, ‖·‖b, are equivalent if there exist a
c, C ∈ R such that for all x ∈ Rn

C‖x‖b ≤ ‖x‖a ≤ c‖x‖b.

From the previous exercise we have the following relationship between the 2−norm and the ∞− norm:

‖x‖∞ ≤ ‖x‖2 ≤
√

n‖x‖∞,
which implies that the 2−norm and∞-norm are equivalent for any finite dimensional space Rn. It turns out
we can generalize this for any norm.

Theorem 6.13 (Norms in Finite-Dimensional Vector Spaces are equivalent). Let V be a finite dimensional
vector space. If ‖·‖a and ‖·‖b are norms on V , then there exists c, C ∈ R such that for all, v ∈ V c‖v‖b ≤
‖v‖a ≤ C‖v‖b
Proof. Without loss of generality, we may prove the theorem for vectors v ∈ V such that ‖v‖ = 1. For an
arbitrary v ∈ V , let v = ‖v‖e1 where e1 is the canonical basis vector and ‖e1‖ = 1. If there exists c, C such
that c‖e1‖b ≤ ‖e1‖a ≤ C‖e1‖b then this implies that

c‖v‖‖e1‖b ≤ ‖v‖‖e1‖a ≤ C‖v‖‖e1‖b
which proves the claim for the arbitrary vector v. Thus, in essence we are showing that norms are equivalent
on the compact unit ball in the 2-norm or Euclidean Distance.

15

Now we will show that the function ‖v‖i is continuous with respect to ‖·‖2. First, recall that we showed
above that the infinity norm is less than or equal to the 2-norm of a vector. Thus, maxi∈[n]|xi−yi| < ‖x−y‖2.
Now, let ε > 0 and let δ = ε∑n

i=1‖ei‖2
. If ‖x − y‖2 < δ, then maxi∈{1,2,...,n}|xi − yi| < δ. This implies that,

maxi∈[n]|xi − yi|
∑n
i=1‖ei‖2 < ε. Therefore:

|‖x‖ − ‖y‖| ≤ ‖x− y‖

=

∥∥∥∥∥
n∑
i=1

(xi − yi)ei

∥∥∥∥∥
≤

n∑
i=1

|xi − yi|‖ei‖

≤ max
i∈[n]
|xi − yi|

n∑
i=1

‖ei‖

≤ ε.
It follows that |‖x‖ − ‖y‖| < ε if ‖x− y‖2 < δ.

Since ‖v‖a and ‖v‖b are continuous functions with respect to the 2−norm, then f(v) = ‖v‖a
‖v‖b is continuous

as well provided that ‖·‖b is nonzero, which holds since ‖v‖ 6= 0. Since f(v) is continuous on the compact
unit ball, there exist c, C such that

c ≤ ‖v‖a
‖v‖b

≤ C.

Thus, by multiplying by ‖v‖b we see that the norms are equivalent. �

Since all norms are equivalent on any finite dimensional space, all forms of error analysis are equivalent.
This implies that we are free to choose which norm we deem suitable. Moreover, we can extend the concept
of norms to finite-dimensional matrix spaces.

Definition 6.14 (Induced Matrix Norm). The induced Matrix Norm for a matrix is defined as

‖A‖ = max
v∈C\{0}

‖Ax‖
‖x‖

.

It is important to notice that we are in essence defining the norm of a matrix as the ratio of the norms of
two vectors. By multiplying matrix A on the left, we are forming a linear combination of its columns, i.e.
a vector with n entries. We’ll continue our discussion of matrix norms with condition numbers, a precise
method of measuring error with norms.

6.2. Condition Numbers. Condition numbers quantify the “sensitivity” of the output of a function to
changes of its input. We will then, apply this notion to analyze the error in our numerical algorithms. We
first consider the general concept of condition numbers of functions, which as we will see, closely resemble
the notion of the derivative of a function.

Definition 6.15 (Absolute Condition Number). If f is a function between finite-dimensional spaces V and
W with norms ‖·‖V , ‖·‖W , then we define the absolute condition number of f , denoted by cond f , as

cond (f) = sup
x,y∈V,x6=y

‖f(y)− f(x)‖W
‖y − x‖V

.

If cond (f) = +∞ or 1� cond (f) < +∞, then we say that f is ill-conditioned.

We can also create a local version of the above by considering a neighborhood of an arbitrary x ∈ V .

Definition 6.16 (Relative Local Condition Number). Let x ∈ V and let ‖δ(x)‖α > 0, where α ∈ [1,∞)
such that δ(x) ∈ V . We define the relative local condition number of f as

condx (f) = sup
x+δ(x)∈V

‖f(x+ δ(x))− f(x)‖W /‖f(x)‖W
‖δ(x)‖V /‖x‖V

.

16

Example 7. We consider the function f : (0,+∞) → R where f(x) =
√
x for all x ∈ (0,+∞). Since all

norms are equivalent, we will work with |·| for convenience. Since f is differentiable,

condx (f) = sup
x+δ(x)∈V

|f(x+ δ(x))− f(x)|/|f(x)|
|δ(x)|/|x|

= sup
x+δ(x)∈V

|f(x+ δ(x))− f(x)|
|δ(x)|

|x|√
x

= f ′(x)
√
x

=
1

2
√
x

√
x

=
1

2
.

Thus, by analyzing the absolute local condition number on the space R we can see that the notion of a
condition number is somewhat connected to the first derivative of the function in question. Thinking of our
past days in Calculus, this result verifies our intuition as first derivatives express how changes in function
input affect output.

We will now use the the relative local condition number to derive the notion of the condition number for a
nonsingular matrix. Let A ∈ Rn×n suppose that Rn is equipped with a vector norm. Consider the function
A−1 : b→ A−1b. The relative local condition number of A−1 is defined as

condb(A−1) = sup
δb

‖A−1(b + δb)−A−1b‖/‖A−1b‖
‖δb‖/‖b‖

≤ ‖A−1‖ ‖b‖
‖A−1b‖

= ‖A−1‖‖A(A−1b)‖
‖A−1b‖

≤ ‖A−1‖‖A‖‖(A
−1b)‖

‖A−1b‖
= ‖A−1‖‖A‖.

An identical argument will show that condx(A) ≤ ‖A‖‖A−1‖, when we consider the function A : x ∈
Rn → Ax ∈ Rn. The fact that condb(A−1) ≤ ‖A−1‖‖A‖ and condx(A) ≤ ‖A‖‖A−1‖ motivates the following
definition:

Definition 6.17 (Condition number of a nonsingular Matrix). We define the condition number of a non-
singular matrix A as κ(A) = ‖A‖‖A−1‖

7. Least Squares: where solutions to Ax = b might not exist

In sections 4 and 5 we have worked with invertible square matrices A ∈ Rn×n. However, it may be the case
where we have to solve a rectangular system of linear equations of the form Ax = b where A ∈ Rm×n, m ≥ n
and, rank(A)= n. Typically, such a system will not have a solution. A common example of this problem
is polynomial data fitting. Given x1, . . . xm data points and y1, . . . , ym observations, we are interested in
finding an n− 1(where n < m) degree polynomial p such that p(xi) = yi for all i. We may still approximate
a solution to such a system by finding a vector x ∈ Rm which minimizes Ax− b. Given that all norms are
equivalent, we will minimize this quantity in the 2-norm. Thus, the least squares problems for a rectangular
system with no solution is as follows:

min
x∈Rn

‖Ax− b‖2.

The desired polynomial in the above situation is called the Least Squares Polynomial, due to its connection
with the Least Squares problem. We will now provide a brief geometric interpretation of the Least Squares
problem followed by an overview of the QR algorithm used to solve tackle such problems.

17

7.1. Geometric Interpretation. Note that by trying to minx∈Rn‖Ax − b‖2, we are essentially finding
the point Ax ∈ range(A) that is closest to b. Basic geometric intuition tells us that we must find the
perpendicular distance of b to Ax. Thus, to find x, we project b into the space Ax using an orthogonal
projection P . Therefore, the Least Squares problem reduces to finding the point x where Ax = Pb.

7.2. Least Squares through QR Factorization. We can approach the Least Squares problem through
QR factorization. The Gram-Schmidt Algorithm will produce a matrix Q ∈ Rm×n with orthonormal columns
and an upper triangular matrix R ∈ Rn×n. It is important to note that Gram-Schmidt will always produce a
QR factorization, however some of the rows of the R matrix may be empty. We can project b into range A,
by P = QQT . By using the A = QR factorization of A; we can insert both expressions into the expression
Ax = b and obtain the expression QR = QQTb, or equivalently, Rx = QTb. Thus, once the vector QTb is
computed, all that is left is to set the vector equal to Rx and solve the system backwards for x. Expressed
Algorithmically:

(1) Compute A = QR.

(2) Compute QTb.

(3) Solve for x backwards, Rx = QTb.

To conclude, one can compute the stability of a least squares solution by computing the condition number
of the matrix A, as defined in Section 6.

8. Acknowledgements

Working on this paper has definitely reinforced my love for mathematics while simultaneously widening
my knowledge and making me a more mathematically mature person. I would like to thank the Department
of Mathematics at the University of Chicago for providing me with this opportunity and to Peter May for
providing the template for this paper. I hope that by now, the reader is as excited about Numerical Analysis
as I am.

References

[1] Strang, Gilbert. Linear Algebra and Its Applications; pgs. 136-137. New York: Academic Press, INC, 1976. Print.
[2] Suli, Endre, and David F. Mayers. An Introduction to Numerical Analysis. N.p.: Cambridge University Press, 2003. Print.

[3] Trefethen, Llyod N., and David Bau, III. Numerical Linear Algebra. N.p.: SIAM, 1997. Print.

[4] Tulsiani, Madhur REU 2013: Apprentice Class, Lecture 1 Notes. N.p., n.d. Web. 31 Aug. 2013.
¡http://ttic.uchicago.edu/ madhurt/courses/reu2013/lecture1.pdf¿.

18

