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Abstract. This paper will, given some physical assumptions and experimen-
tally verified facts, derive the equations of motion of a charged particle in

an electromagnetic field and Maxwell’s equations for the electromagnetic field

through the use of the calculus of variations.
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1. Introduction

In introductory physics classes students obtain the equations of motion of free
particles through the judicious application of Newton’s Laws, which agree with em-
pirical evidence; that is, the derivation of such equations relies upon trusting that
Newton’s Laws hold. Similarly, one obtains Maxwell’s equations from the applica-
tion of Coulomb’s Law, special relativity, and other ancillary laws that agree with
empirical evidence. Arriving at such equations through an exploration of various
laws and relationships is usually the main goal of introductory electromagnetism
classes. However, with the calculus of variations, one can derive all of these equa-
tions neatly with a few physical assumptions and a single variational principle: the
principle of stationary action.

With regard to modeling physical phenomena, the functionals used to describe
systems in nature usually consist of an integral over time of a function called the
Lagrangian. In the words of John Baez, a noted mathematical physicist, “The
Lagrangian measures something we could vaguely refer to as the ’activity’ or ’live-
liness’ of the system.”[4] The arguments of the Lagrangian are those functions we
are interested in for use in modeling the behavior of the system; for instance, in
the modeling of the behavior of a free particle, the Lagrangian’s arguments con-
sist of the particle’s position and velocity functions. When we attempt to find
extrema of these functionals with respect to the arguments, in the case of the free
particle, we are locating from the set of all possible position and velocity functions
those particular position and velocity functions which lead to zero variation in the
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functional(this will be explained later; for now, think of these particular functions
as akin to critical points in differential calculus). The principle of stationary ac-
tion expresses the experimental fact that systems in nature tend to favor behavior,
expressed in terms of the argument functions, that are critical points of the func-
tional describing them. In terms of John Baez’s words, we can intuitively express
this fact with the phrase“Nature is lazy”; in essence, nature acts to minimize its
’activity’ or liveliness’ as expressed in terms of the functional and the Lagrangian.
Through the calculus of variations we will define these notions rigorously and apply
them to electromagnetism with the aim of deriving the equations of motion in an
electromagnetic field as well as Maxwell’s equations.

2. Preliminaries

Definition 2.1. A functional is a function which maps functions to R. Let C be
a vector space of functions with norm ‖‖. We say ϕ[h], where h ∈ C, is a linear
functional if ∀h ∈ C

αϕ[h] = ϕ[αh](2.2)

ϕ[h1 + h2] = ϕ[h1] + ϕ[h2](2.3)

ϕ[h] is continuous with respect to the norm on C(2.4)

Now, let J [y] be a functional defined on C. We call

(2.5) ∆J = J [y + h]− J [y]

the increment of J, where h is an increment function ∈ C.

Example 2.6. Let y ∈ C1[a, b]. The arc length of the graph of y between the
points a and b is

(2.7)

b∫
a

√
1 + (y′)2dx

This is a functional on C1[a, b] since it takes functions as arguments and returns
an associated real number, in this case the arc length.

Notation 2.8. For the sake of brevity, we will denote partial derivatives of the
form ∂f

∂xi
as ∂xif .

Remark 2.9. While there are many types of functionals, this paper will be solely
concerned with functionals of the type

(2.10)

J =

∫
X

L(x0, . . . , xn, u1, . . . , um, ∂x0u1, . . . , ∂xnu1, . . . , ∂x0um, . . . , ∂xnum)dx0 . . . dxn

Where u1, . . . , um are functions of the variables x0, . . . , xn and X is an n + 1
dimensional region.
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The crux of the calculus of variations lies in analyzing functionals and those
functions which minimize or maximize the value of the functionals through the
variation of the functional. For example, equipped with the concept of variation, it
is possible to find the function which gives the shortest distance in the functional
above(a line as one might imagine), or finding the function for the tunnel through
two given points on the Earth which minimizes transit time.

To that end, we shall now explore the concept of the variation of a functional.

Remark 2.11. We can think of the increment function h as an analogue to the h in

the definition of the derivative, limh→0
f(x+h)−f(x)

h .

If the increment of J can be expressed as

(2.12) ∆J = ϕ[h] + ε(‖h‖)

where ϕ[h] is a linear functional and as ‖h‖ → 0, ε(‖h‖)‖h‖ → 0, then ϕ[h] is defined

to be the variation of J at y, δJ .

Remark 2.13. Analogously with functions of real variables, a functional J [y] has
an extremum at y if J [y] ≥ J [y∗] or J [y] ≤ J [y∗] for all y∗ in some open ball(with
respect to the norm of the function space) centered at y.

It is easy to show that a necessary condition for y to be an extremal of J [y] is
that

(2.14) δJ = 0

for all admissible increments h about y. This is because for small h, the variation
determines the sign of the increment. Therefore, the variation must be identically
zero since if there were an h such that the variation was not zero, the linear prop-
erties of the variation would allow for the sign of the increment to be arbitrary.

Thus, intuitively, we are simply perturbing the functional about a certain point
in its domain(a function), obtaining an expression for the change in the value of the
functional due to the perturbation, then throwing away negligible terms to retain
only the most significant change, the variation of the functional. Negligible means
the term is of order 2 or greater with respect to ‖h‖ or ε.

Construction 2.15. We will now derive the variation of functionals of the form

(2.16) J [u] =

∫
X

L(x0, . . . , xn, u, ∂x0
u, . . . , ∂xn

u)dx0 . . . dxn

The case of u1 . . . un is clear from the case of just one u.

Notations 2.17. For the sake of brevity, we will denote

∇u ≡ (∂x0
u, . . . , ∂xn

u)(2.18)
−→x = (x0, . . . , xn)(2.19)

So that we can write (2.16) as
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(2.20) J [u] =

∫
R

L(−→x , u,∇u)d−→x

where R is the variable region over which the functional is defined.

We now consider a set of transformations

x∗i = Φi(
−→x , u,∇u; ε)(2.21)

u∗ = Ψ(−→x , u,∇u; ε)(2.22)

which depend on the parameter ε, are differentiable with respect to ε infinitely
many times, and are equal to the identity transformation when ε = 0. Let ∼ signify
equality except for terms of order higher than 1 relative to ε; the reason for this
will become clear momentarily.

We want to calculate the variation of the functional by finding the principal
linear part, relative to ε of

(2.23) ∆J = J [u∗(
−→
x∗)]− J [u(−→x )]

In essence, we are perturbing the functional with the transformations of u and
adding the condition of the variability of the region through tranformations of −→x .

Calculation of δJ 2.24. By definition,

∆J =

∫
R∗
L(
−→
x∗, u∗,∇∗u∗)d

−→
x∗ −

∫
R

L(−→x , u,∇u)d−→x

=

∫
R

[L(
−→
x∗, u∗,∇∗u∗)∂(x∗0, . . . , x

∗
n)

∂(x0, . . . , xn)
− L(−→x , u,∇u)]d−→x(2.25)

where
∂(x∗0, . . . , x

∗
n)

∂(x0, . . . , xn)

is the determinant of the Jacobian of the set of transformations Φi(
−→x , u,∇u; ε).

Note that we are using change of variables for multiple variables.
Let us now examine the transformations of xi and u. Assuming ε is small, we

can use Taylor’s Theorem to expand each transformation about ε = 0 so that

x∗i = Φi(
−→x , u,∇u; 0) + ∂εΦi(

−→x , u,∇u; ε)|ε=0ε+O(ε2)

= xi + εφi +O(ε)(2.26)

u∗ = Ψ(−→x , u,∇u; 0) + ∂εΨ(−→x , u,∇u; ε)|ε=0ε+O(ε2)

= u+ εψ +O(ε)(2.27)

where O(ε2) represents higher order terms and

φi = ∂εΦi(
−→x , u,∇u; ε)|ε=0

ψ = ∂εΨi(
−→x , u,∇u; ε)|ε=0

Thus, if we eliminate the higher order terms with respect to ε of the transforma-
tions of xi, then we can write the Jacobian of that set of transformations as
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(2.28) B =


1 + ε∂φ0

∂x0
ε∂φ1

∂x0
· · · ε∂φn

∂x0

ε∂φ0

∂x1
1 + ε∂φ1

∂x1
· · · ε∂φn

∂x1

...
... · · ·

...

ε ∂φ0

∂xn
ε ∂φ1

∂xn
· · · 1 + ε∂φn

∂xn



det(B) ∼ (1 + ε
∂φ0
∂x0

) . . . (1 + ε
∂φn
∂xn

)

∼ 1 + ε

n∑
i=0

∂φi
∂xi

(2.29)

The above follows from the definition of the determinant as a sum of products
and discarding the higher order terms.

Thus, we can write

(2.30) ∆J ∼
∫
R

[(L(
−→
x∗, u∗,∇∗u∗)(1 + ε

n∑
i=0

∂φi
∂xi

)− L(−→x , u,∇u)]d−→x

We now use Taylor’s Theorem to expand L(
−→
x∗, u∗,∇∗u∗) about (−→x , u,∇u) and

write

(2.31) L∗ − L ∼
n∑
i=0

(∂xi
L)δxi + (∂uL)δu+

n∑
i=0

(
∂L

∂ ∂u
∂xi

)δ(∂xi
u)

where δxi, δu, δ(∂xi
u) represent the significant terms, with respect to ε, of x∗i −

x,u
∗ − u, (∂x∗

i
u∗) − (∂xi

u). From (2.26) and (2.27), it is clear that δxi = εφi and
δu = εψ.

Now consider the increment ∆u = u∗(x)− u(x) where we see the change in the
two functions at the same coordinates. It can be shown from the definition of δu
that

δu = δu+

n∑
i=0

(∂xi
u)δxi(2.32)

δu = εψ(2.33)

where ψ = ψ −
∑n
i=0(∂xi

u)φi.
Analogously, it can be shown that

(2.34) δ(∂xi
u) = δ(∂xi

u)−
n∑
k=0

(∂xi
∂xk

u)δxk

The equations above follow intuitively due to similarities with the chain rule,
but can be proved rigorously through some manipulation of the terms; for example,
∆u = u∗(x)− u(x) = (u∗(x)− u∗(x∗)) + (u∗(x∗)− u(x)). Expanding the first term
around x, using (2.27) for the second term, and getting rid of negligible resulting
terms, we arrive at (2.32).
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Using our expressions in (2.26), (2.27), (2.33), and (2.34), we can now write
(2.31) as

δJ =

∫
R

n∑
i=0

(∂xiL)δxi + (∂uL)δu+ (∂uL)

n∑
i=0

(∂xiu)δxi +

n∑
i=0

(
∂L

∂ ∂u
∂xi

)(∂xiδu)

(2.35)

+

n∑
i,k=0

(
∂L

∂ ∂u
∂xi

)(∂xk
∂xi

u)δxk + L

n∑
i=0

∂xi
(δxi)d

−→x

We can simplify (2.35) by observing that terms within it can be replaced by∑n
i=0 ∂xi

(Lδxi) and
∑n
i=0( ∂L

∂ ∂u
∂xi

)(∂xi
δu).

Thus, replacing the δ terms with their function counterparts, we finally arrive at

δJ = ε

∫
R

(∂uL−
n∑
i=0

∂xi(
∂L

∂ ∂u
∂xi

))ψd−→x

+ ε

∫
R

n∑
i=0

∂xi(
∂L

∂ ∂u
∂xi

)ψ + Lφi)d
−→x(2.36)

Remark 2.37. ∂uL−
∑n
i=0 ∂xi

( ∂L
∂ ∂u

∂xi

) = 0 are called the Euler-Lagrange Equations;

in functional problems with fixed endpoints, boundaries, etc. the variation of the
functional reduces to the first term of (2.38). We know that in order for a function
to be an extremal of a functional, the variation must be identically zero for all
admissible increment functions. In this case, that would be ψ. Since ψ is arbitrary,
it follows that ∂uL−

∑n
i=0 ∂xi

( ∂L
∂ ∂u

∂xi

) = 0 for all −→x if a function is to be an extremal.

The above reasoning is formalized for functions of one variable in the following
lemma; note the boundary conditions on the increment functions:

Lemma 2.38. Let f : [a, b] ⊂ R → R be a k-times continuously differentiable
function. Suppose that for all h ∈ Ck0 [a, b]

(2.39)

∫ b

a

f(x)h(x)dx = 0

Then f(x) =0 for all x ∈ [a,b].

Proof. Suppose there is a c ∈ [a, b] such that f(c) 6= 0. Since f is continuous, there
is an ε > 0 such that f has the same sign as f(c) on the interval [c− ε, c+ ε] ⊂ [a, b]
Now let h(x) = [x− (c− ε)][(c+ ε)−x) on the interval [c− ε, c+ ε] and 0 everywhere
else. Then h(x) satisfies our conditions.

Then clearly

(2.40)

∫ c+ε

c−ε
f(x)[x− (c− ε)][(c+ ε)− x]dx 6= 0

This is a contradiction to our hypothesis that
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(2.41)

∫ b

a

f(x)h(x)dx = 0

for all h ∈ Ck0 [a, b] �

Due to the ubiquitous nature of the Euler-Lagrange equations in variational
problems, this lemma is called the Fundamental Lemma of the Calculus of Varia-
tions.

Remark 2.42. In order to deal with the Electromagnetic Field, we will need to work
with functionals depending on u1, . . . , um as in (2.10). To that end, it is easy to
see that (2.36) generalizes to

(2.43)

δJ = ε

∫
R

m∑
j=1

[(∂uj
L−

n∑
i=0

∂xi
(
∂L

∂
∂uj

∂xi

))ψj ]d
−→x + ε

∫
R

n∑
i=0

∂xi(

m∑
j=1

∂L

∂
∂uj

∂xi

ψj + Lφi)d
−→x

where

(2.44) ψj = ψj −
n∑
i=0

(∂xiuj)φi

We will end the preliminaries with a discussion of the principle of stationary
action and its meaning in physical and variational terms.

Definition 2.45. The action of a physical system is a functional whose arguments
are all the possible paths of the physical system.

The principle of stationary action states that a physically accurate trajectory of
the physical system will be an stationary function of the functional; that is, the
variation of the action at the trajectory will be 0. Note that the trajectory need
not induce a relative minimum or maximum; hence stationary instead of extremal.

Example 2.46. Let us examine a system of one free particle with mass m in three
dimensional space. Through some physical assumptions about space and time, we
can arrive at an action for this system. See [1]:

(2.47) J =

∫ t1

t0

T (x′(t), y′(t), z′(t))− U(x, y, z)dt

T corresponds to the kinetic energy of the system, and U corresponds to the
potential energy of the system. An extremal of this action must satisfy the Euler-
Lagrange Equations.

We can write the kinetic energy explicitly as

T =
1

2
m((x′(t)2 + y′(t)2 + z′(t)2)

Our space of paths is the set of (x(t), y(t), z(t) that have the same values at t0
as well as at t1. Note that we have three independent functions of one variable.

From (2.37) we can generate three equations that correspond to the Euler-
Lagrange equations for this functional.
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∂xL = ∂t
∂L

∂ ∂x∂t

∂yL = ∂t
∂L

∂ ∂y∂t

∂zL = ∂t
∂L

∂ ∂z∂t

These equations correspond to

mx′′(t) = −∂xU
my′′(t) = −∂yU
mz′′(t) = −∂zU

Since free particles are only under the influence of conservative forces, and con-
servative forces can be written as the negative of the spatial derivative of a scalar
potential energy function, the above equations reduce to

ma = F

Which is just Newton’s second law in vector form.
In the next section, we will derive the equations of motion for a particle in an

electromagnetic field in more detail as a stepping stone to deriving the field equa-
tions.

The integrand of the action is called the Lagrangian of the system, L if the
integration is with respect to t. If the action is an integral over all of space
time(t, x, y, z), then the integrand is called the Lagrangian density, L. In the above
example, J would be the action of the system and T −U would be the Lagrangian.
We note that finding Lagrangians that accurately model physical situations is not
a simple process but rather one of guessing and checking using some reasonable
physical assumptions.

3. Derivation of the Electromagnetic Field Equations

Remark 3.1. Due to the principle in physics that physical laws should have the same
form in any inertial reference frame, physicists developed the covariant formulation
of the laws of electromagnetism with tensors and 4-vectors in order to easily show
how the form of the laws remained intact under Lorentz transformations(the frames
of special relativity). From here on, we shall be working in R1+3, dealing with three
dimensional space with the addition of time.

Notations 3.2. In the parlance of special relativity, spacetime coordinates are
written in terms of (ct, x, y, z), where c is the speed of light; we will refer to these
variables as (x0, x1, x2, x3) = (x0,

−→x ) = x.
In addition note that both the electric Field and the magnetic Field are functions

f, g : R1+3 → R3

The Electric field E = (E1, E2, E3) and the Magnetic field B = (B1, B2, B3) are

expressed in terms of a 4-vector called the 4-Potential A = (φc ,−
−→
A ) = (A0, A1, A2, A3)
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by the following relations:

E = −∇φ− c(∂x0

−→
A )(3.3)

B = ∇×
−→
A(3.4)

φ is called the scalar potential, and
−→
A is called the vector potential. This formu-

lation for some 4-potential A compacts several empirically derived observations.

Derivation of the Electromagnetic Field Tensor 3.5. Let us now examine
the Lagrangian for a single particle with mass m and charge e in an electromagnetic
field. See [3] to see how this is equivalent to T-U as in the case of a free particle.:

(3.6) L = [
1

2
m(∂x0

x) · (∂x0
x) + e

3∑
i=0

Ai(∂x0
xi)]

In this case, the trajectory of the system consists of x since we are deriving the
equations of motion for a charged particle in a given electromagentic field. Thus,
we know that x0, x1, x2, x3 are functions of time, or x0

c ;
Let us now fit our general expression for the variation of a functional in (2.43)

to our current situation:

In this case, we only have one independent variable, x0, and 4 functions of one
variable, which correspond to the uj . Thus (2.43) reduces to

δJ = ε

∫ t1

t0

3∑
i=0

((∂xi
L− ∂x0

(
∂L

∂ ∂xi

∂x0

))ψi)dx0

+ ε

∫ t1

t0

∂x0
(

3∑
i=0

∂L

∂ ∂xi

∂x0

ψi + Lφ)dx0(3.7)

where we are integrating with respect to time as in (2.47). By the principle
of stationary action, we know that the physically accurate trajectories of the sys-
tem/equations of motion of the particle must satisfy δJ = 0 for all admissible ψi
and φ which are the increment functions. It follows that if a trajectory satisfies
δJ = 0 for all admissible increment functions, it must satisfy δJ = 0 for a subset
of the admissible increment functions, namely those ψi and φ such that

(3.8) ψi(t1) = ψi(t0) = φ(t1) = φ(t0) = 0

The second term of (3.7) then simplifies to 0 since

(3.9) ε

∫ t1

t0

∂x0
(

3∑
i=0

∂L

∂
∂uj

∂x0

)ψi + Lφ)dx0 = ε(

3∑
i=0

∂L

∂ ∂ui

∂x0

)ψi + Lφ)
∣∣t1
t0

= 0

by (3.8).
Therefore, we know that all physically accurate trajectories must satisfy

(3.10) ε

∫ t1

t0

3∑
i=0

((∂xi
L− ∂x0

(
∂L

∂ ∂xi

∂x0

))ψi)dx0 = 0
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for all admissible ψi. By the Fundamental Lemma of the Calculus of Variations,
it follows that our desired equations satisfy the Euler-Lagrange Equations:

(3.11)

3∑
i=0

((∂xi
L− ∂x0

(
∂L

∂ ∂xi

∂x0

)) = 0

We now substitute our Lagrangian

L = [
1

2
m(∂x0

x) · (∂x0
x) + e

3∑
i=0

Ai(∂x0
xi)]

for a particle in an electromagnetic field into (3.11):
Since the first term of (3.6) only contains the terms 1

2m(∂x0xi)
2 and we know

Ai = Ai(x) we can see that

∂xi
L = e

3∑
j=0

(∂xi
Aj)(∂x0

xj)(3.12)

∂x0
(
∂L

∂
∂xi

∂x0

) = [m(∂2x0
xi) + e(∂x0

Ai)](3.13)

Thus from the Euler-Lagrange Equations, we can conclude that

m(∂2x0
xi) = e(

3∑
j=0

[(∂xi
Aj)(∂x0

xj)]− ∂x0
Ai)

= e

3∑
j=0

(∂xiAj − ∂xjAi)(∂x0xj)(3.14)

where we used that ∂x0
Ai =

∑3
j=0(∂xj

Ai)(∂x0
xj), which follows from the chain

rule.
Note that the left hand side of (3.14) is a rough analogue of the net Newtonian

force (F = ma), where a = ∂2x0
xi. We say roughly since we are in the realm of

special relativity, and thus must deal with 4 vectors for force and momentum. In any
case, (3.14) represents the equations of motion for a particle in an electromagnetic
field in the ith coordinate; for all four equations, we merely need to sum fromi = 0
toi = 3 as expressed in (3.11). These equations express the Lorentz Force Law,
which consists of a contribution from the electric Field and the magnetic Field,
encoded through A. Thus, we have demonstrated how variational principles can
be used to derive fundamental equations of motions.

However, the particularly important aspect of this derivation was to derive

(3.15) Fij = (∂xi
Aj − ∂xj

Ai)

Since we sum over i, j = 0 toi, j = 3, it is clear that Fij represents a 4x4
matrix. More importantly, Fij is called the covariant electromagnetic field tensor;
its importance lies in the fact that it allows for a compact, covariant forumlation
of Maxwell’s equations. We will use Fij in order to calculate a Lagrangian density
that will allow us to obtain Maxwell’s equations.



LAGRANGIAN FORMULATION OF THE ELECTROMAGNETIC FIELD 11

We can represent Fij in matrix form using the relations between A,E, and B
expressed in (3.3) and (3.4) as follows:

(3.16) Fij =


0 E1

c
E2

c
E3

c

−E1

c 0 −B3 B2

−E2

c B3 0 −B1

−E3

c −B2 B1 0


Derivation of Maxwell’s Equations 3.17. Maxwell’s equations given in differ-
ential form with respect to our variables in x are as follows:

∇ ·E =
ρ

ε0
(3.18a)

∇ ·B = 0(3.18b)

∇×E = c(∂x0
B)(3.18c)

∇×B = µ0
−→
J +

∂x0E

c
(3.18d)

where µ0 and ε0 are physical constants,
−→
J = (J1, J2, J3) is called the current

density, and ρ is the volume charge density.
It is easy to see that (3.18b) and (3.18c) are direct consequences of our formu-

lation of E and B in terms of A; indeed, it is precisely these laws that motivated
such a construction.

Using the vector calculus identities that the divergence of a curl and the curl
of a gradient are both identically zero, it is easy to see that (3.3) and (3.4) imply
(3.18b) and (3.18c).

Thus, we need only derive (3.18a) and (3.18d) using variational principles in
order to complete a comphrehensive formulation of electromagnetism through the
calculus of variations.

Definition 3.19. We define the 4 current J

(3.20) J = (J0, J1, J2, J3) = (cρ,
−→
J )

Now, we need a suitable Lagrangian density. Since we have our covariant elec-
tromagnetic tensor Fij , let us raise indices to create the contravariant tensor F ij .
Readers not familiar with tensors must accept that this new tensor is given by

(3.21) F ij =


0 −E1

c −E2

c −E3

c
E1

c 0 −B3 B2
E2

c B3 0 −B1
E3

c −B2 B1 0


We now examine F ijFij .

(3.22) F ijFij = 2(
E ·E
c2
−B ·B)

This equality, easily verified from our constructions of the tensors as well as the
definition of inner products for tensors, is a Lorenz invariant; that is, it is a quantity
that is invariant under the Lorenz transformations of special relativity. This quality
is one of the reasons this inner product will be used in the Lagrangian density for
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the electromagnetic field.

We now write the Lagrangian density for the electromagnetic field given a certain
charge density and current density.

(3.23) L = − 1

4µ0
F ijFij −

3∑
i=0

AiJi

The second term of the Lagrangian density is analogous to the potential energy
term of the Lagrangian of the charged particle.

In this case, our trajectory for the system are the possible values or configurations
of A which in turn correspond to the possible configurations of E and B through
their relations. Since charge and current densities are given, we are examining
the four functions A0, A1, A2, A3, which are functions of x. In addition, we are
integrating over all of spacetime.

Thus, we need to generalize (2.43) to our system of four functions each relying
on 4 variables, where the Ai correspond to the ui. Changing the j index of (2.43) to
match our current relativistic notation, we have that the variation of our functional
is

(3.24)

δJ = ε

∫
R

3∑
j=0

((∂AjL−
3∑
i=0

∂xi(
∂L

∂
∂Aj

∂xi

))ψj)dx + ε

∫
R

3∑
i=0

∂xi(

3∑
j=0

∂L

∂
∂Aj

∂xi

ψj + LLφi)dx

where R is all of spacetime.
Notice that the second term of (3.24) is an integral of a gradient; by the gener-

alized Stoke’s theorem,

(3.25) ε

∫
R

3∑
i=0

∂xi
(

3∑
j=0

∂L

∂
∂Aj

∂xi

ψj + Lφi)dx = ε

∫
∂R

3∑
j=0

∂L

∂
∂Aj

∂xi

ψj + Lφidx
∗

The second term is now an integral over ∂R, which is the boundary of all of
spacetime. We now invoke a physical principle that the magnitude of the electro-
magnetic field goes to zero sufficiently ”fast” as one moves towards the boundary
of spacetime(infinity) so that the second term of (3.24) is essentially zero

With respect to the first term, we invoke the same arguments as in the derivation
of the electromagnetic tensor so that we may conclude that any physically meaning-
ful configuration of the electromagnetic field must be such that the Euler-Lagrange
equations for this system hold.

Thus, we conclude that

(3.26)

3∑
j=0

(∂Aj
L−

3∑
i=0

∂xi
(
∂L

∂
∂Aj

∂xi

)) = 0

Calculating F ijFij explicity in terms of A using our relations for E, B, and A,
we get that:

F ijFij = 2[(∂x1
A0 − ∂x0

A1)2 + (∂x2
A0 − ∂x0

A2)2 + (∂x3
A0 − ∂x0

A3)2

− (∂x2
A3 − ∂x3

A2)2 − (∂x3
A1 − ∂x1

A3)2 − (∂x1
A2 − ∂x2

A1)2](3.27)

Calculating the j = 0 term yields
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(3.28) ∂A0L = −J0

and

3∑
i=0

∂xi
(
∂L

∂ ∂A0

∂xi

) = − 1

µ0
[0 + ∂x1

(∂x1
A0 − ∂x0

A1) + ∂x2
(∂x2

A0 − ∂x0
A2) + ∂x3

(∂x3
A0 − ∂x0

A3)]

= − 1

µ0
(∂x0

(0) + ∂x1
(
Ex1

c
) + ∂x2

(
Ex2

c
) + ∂x3

(
Ex3

c
)

= − 1

µ0
(∂x0(F 00) + ∂x1(F 10) + ∂x2(F 20) + ∂x3(F 30)

= − 1

µ0

3∑
k=0

∂xk
F k0

(3.29)

which follows from our constructions of F ij and Fij .
Thus, substituting (3.28) and (3.29) into (3.26), we can see that the first of the

four Euler Lagrange Equations of the system corresponds to

(3.30)

3∑
k=0

∂xk
F k0 = µ0J0

For the j = 1 term of (2.26) we have

(3.31) ∂A1
L = −J1

3∑
i=0

∂xi
(
∂L

∂ ∂A1

∂xi

) = − 1

µ0
[−∂x0

(∂x1
A0 − ∂x0

A1) + ∂x1
0 + ∂x2

(∂x1
A2 − ∂x2

A1)− ∂x3
(∂x3

A1 − ∂x1
A3)]

= − 1

µ0
[∂x0

(∂x0
A1 − ∂x1

A0) + ∂x1
0 + ∂x2

(∂x1
A2 − ∂x2

A1) + ∂x3
(∂x1

A3 − ∂x3
A1)]

= − 1

µ0
[∂x0

(
−Ex1

c
) + ∂x1

0 + ∂x2
(Bx3

) + ∂x3
(−Bx2

)]

= − 1

µ0
[∂x0

(F 01) + ∂x1
(F 11 + ∂x2

(F 21) + ∂x3
(F 31)]

= − 1

µ0

3∑
k=0

∂xk
F k1

(3.32)

Thus, our second Euler-Lagrange Equation reduces to

(3.33)

3∑
k=0

∂xk
F k1 = µ0J1
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It is now easy to see that we can generalize the entire set of Euler-Lagrange
equations to

(3.34)

3∑
k=0

∂xk
F ki = µ0Ji

for i = 0, 1, 2, 3.

We only need one more physical fact before we derive (3.18a) and (3.18d), com-
pleting our derivation of Maxwell’s Equations from variational principles. The
physical constants ε0, µ0, and c are related in the following way:

(3.35) c =
1

√
ε0µ0

Let us now derive (3.18a). From the definition of the 4 current J, J0 = cρ.

3∑
k=0

∂xk
F k0 = ∂x0

(0) + ∂x1
(
Ex1

c
)) + ∂x2

(
Ex2

c
) + ∂x3

(
Ex1

c
)

=
∇ ·E
c

(3.36)

Thus, it follows from (3.35) and (3.36) that

∇ ·E = c2µ0ρ

=
µ0

ε0µ0
ρ

=
ρ

ε0
(3.37)

just as in (3.18a).
(3.18d) comes from examining the i = 1, 2, 3 terms of (3.34):

∂x0
(−Ex1

c
)) + ∂x1

(0) + ∂x2
(Bx3

) + ∂x3
(−Bx2

) = µ0J1

∂x0
(−Ex2

c
)) + ∂x1

(−Bx3
) + ∂x2

(0) + ∂x3
(Bx1

) = µ0J2

∂x0(−Ex3

c
)) + ∂x1(Bx2) + ∂x2(−Bx1) + ∂x3(Bx1) = µ0J3

Shifting the E terms to the right side, we obtain

[∂x2
(Bx3

)− ∂x3
(Bx2

)] = ∂x0
(
Ex1

c
)) + µ0J1

[∂x3
(Bx1

)− ∂x1
(Bx3

)] = ∂x0
(
Ex2

c
)) + µ0J2

[∂x1(Bx2)− ∂x2(Bx1)] = ∂x0(
Ex3

c
)) + µ0J3

this set of three equations is equivalent to the vector equation

(3.38) ∇×B = µ0
−→
J +

∂x0
E

c

which is exactly (3.18d).
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4. Concluding Remarks

Using the calculus of variations, we developed the necessary mathematical tools
such as the general variation of a relevant functional as well as the Euler Lagrange
equations for a variational construction of modeling physical phenomena. We then
applied these tools specifically to electromagnetism in the context of special relativ-
ity, deriving the equations of motion in an electromagnetic field as well as Maxwell’s
Equations.
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