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Abstract. Probability theory has many deep and surprising connections with

the theory of partial differential equations. We explore one such connection,

namely the proof of Liouvilles theorem by means of stochastic integration.
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1. Introduction

In this paper, we prove Liouville’s theorem from complex analysis by using re-
sults about Brownian motion and stochastic integration. While it is certainly not
the easiest proof of Liouville’s theorem, it demonstrates the intricate connections
between probability and partial differential equations.

We assume the reader is familiar with basic abstract measure theory at the level
of Kolmogorov [2]. We also assume the reader is familiar with basic results from
measure-theoretic probability theory. A reader unfamiliar with measure-theoretic
probability theory can consult Williams [6] up to the section on conditional expecta-
tion. Finally, throughout this paper we shall use a common probabilists shorthand
“a.s” in place of “almost surely”.

The proof of Liouville’s theorem via Brownian motion will proceed by showing
the following facts:
(1) 2-dimensional Brownian motion is neighborhood recurrent, and therefore dense
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in the plane.
(2) If f is an analytic function, then f composed with Brownian motion is a time
change of Brownian motion.

Section 2 addresses the necessary background to show that 2-dimensional Brow-
nian motion is dense in the plane. This section begins with the definition and basic
properties of Brownian motion, then discusses the solution to Dirichlet’s problem
using Brownian motion, which then leads directly into the density of Brownian
motion.

Section 3 develops the machinery of Stochastic calculus, and in particular, Ito’s
formula, which is used in the proof of statement (2).

Section 4 addresses local martingales and Levy’s theorem. Statement (2) is a
corollary of Levy’s theorem. Finally, section 4 concludes by summarizing the results
from the preceding sections to prove Liouville’s theorem from complex analysis.

2. Brownian Motion

2.1. Definition and basic properties.

Definition 2.1. A d-dimensional Brownian motion is a stochastic process Bt : Ω→
Rd from the probability space (Ω,F , P ) to Rd such that the following properties
hold:
(1) [Independent Increments] For any finite sequence of times t0 < t1 < · · · < tn,
the distributions B(ti+1)−B(ti), i = 1, . . . , n are independent.
(2) [Stationary] For any pair s, t ≥ 0,

P (B(s+ t)−B(s) ∈ A) =

∫
A

1

(2πt)d/2
e−|x|

2/2tdx.

(3) The parameterization function t 7→ Bt is continuous a.s.
Standard Brownian motion is Brownian motion where B0(ω) = 0.

Property (1) is known as the property of independent increments. Note that it is
the increments rather than the values of Brownian motion itself that are indepen-
dent. Property (2) states that the increments are distributed normally with mean
0 and covariance tI, that is, the covariance matrix (E(Xi − µi)(Xj − µi))i,j equals

tI, which implies the increments in each dimension are normally distributed with
mean 0 and variance t. Property (3) is the desired continuity property. Intuitively,
we can think of Brownian motion as “random” motion of a particle in liquid, where
the future motion of the particle at any given time is not dependent on the past,
but its position is certainly dependent on its past and current information.

There are two ways of thinking about Brownian motion. The first is as a sto-
chastic process. Under this interpretation, one thinks of Brownian motion as a
sequence of random variables Bt(ω) indexed by time from the probability space
Ω to Rd. The second interpretation is of a path of Brownian motion. Under this
interpretation, one fixes an ω and considers the function Bω(t), more commonly
denoted B(t), from R+ to Rd. Probabilist use both Bt and B(t) to denote Brownian
motion often interchanging the two. We adopt this common practice depending on
which interpretation we wish to emphasize.

For completeness, we define bounded variation and quadratic variation, which
are properties that guarantee that a function does not vary too wildly.
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Definition 2.2. A right-continuous function f : [0, t]→ R is a function of bounded
variation if

V
(1)
f (t) := sup

k∈N

k∑
j=1

|f(tj)− f(tj−1)| <∞,

where we take the supremum over all k ∈ N and partitions 0 = t0 ≤ t1 ≤ · · · ≤
tk = t.

Definition 2.3. The quadratic variation of a stochastic process X(t) is given by

[X]t := lim
||P ||→0

n∑
k=1

(X(tk)−X(tk−1))2

where 0 = t0 ≤ t1 ≤ · · · ≤ tn = t is a partition of [0, t] and ||P || denotes the length
of the largest partition [tk−1, tk].

Theorem 2.4. Brownian motion exists.

A constructive proof of this non-trivial fact may be found in Peres and Morters
in [4] as well as in Durrett [1].

Proposition 2.5. The following are some of the basic properties of Brownian mo-
tion:
(1) Brownian motion is nowhere differentiable.
(2) Brownian motion is Holder continuous of order α < 1/2.
(3) Brownian motion has unbounded variation.
(4) Brownian motion has finite quadratic variation.

Brownian motion also possesses two important shift properties, which we list in
the following proposition.

Proposition 2.6. Shift Properties of standard Brownian motion.
(1) [Scale Invariance] Suppose {B(t) : t ≥ 0} is a standard Brownian motion and
let a > 0, then { 1aB(a2t) : t ≥ 0} is also a standard Brownian motion.
(2) [Time inversion] Suppose {B(t) : t ≥ 0} is a standard Brownian motion, then
the process {tB( 1

t ) : t ≥ 0} is also a standard Brownian motion.

Finally, we state without proof a two basic fact about Brownian motion that will
be used later.

Lemma 2.7. If f : [0, 1] → R is a continuous function such that f(0) = 0, then
for standard Brownian motion B(t) and any ε > 0,

P
{

sup
0≤t≤1

|B(t)− f(t)| < ε

}
> 0.

Lemma 2.8. Almost surely,

lim sup
n→∞

B(n)√
n

= +∞

and

lim inf
n→∞

B(n)√
n

= −∞.
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2.2. Markov property. Brownian motion possesses a particularly important prop-
erty of random processes called the Markov property. Intuitively, the Markov prop-
erty is simply the idea that the future state of a process depends only on the present
time t and not on any previous time s < t. The simplest example of the Markov
property is in the discrete case of a random walk. Brownian motion also satisfies
the Markov property:

Theorem 2.9 (Markov property). Suppose that {B(t) : t ≥ 0} is a Brownian
motion started at x ∈ Rd. Fix s > 0, then the process {B(t+ s)− B(s) : t ≥ 0} is
a Brownian motion starting at the origin and independent of {B(t) : 0 ≤ t ≤ s}.

Proof. This follows immediately from the the definition of Brownian motion. �

Brownian motion also satisfies the strong Markov property, which is the Markov
property relative to the underlying structure on a space. A probability space is
equipped with a time-sensitive structure called a filtration.

Definition 2.10. A filtration on a probability space (Ω,F ,P) is a collection of
sub σ-algebras {F (t) : t ≥ 0} such that F (s) ⊂ F (t) ⊂ F for s < t.

Definition 2.11. A stochastic process {X(t) : t ≥ 0} from a probability space
(Ω,F ,P) equipped with a filtration F (t) is adapted if each X(t) is measurable
with respect to F (t).

Definition 2.12. We now define notation for several filtrations that will be used
frequently:

• F 0(t) = σ(B(s) : 0 ≤ s ≤ t) is the sigma algebra such that all Brownian
motions less than t are measurable.

• F+(t) =
⋂
s>t

F 0(s).

The first filtration is the smallest filtration that makes Brownian motion adapted.
The second filtration is the first filtration plus an infinitesimal extension into the
future. Observe that Brownian motion is also adapted to the second filtration since
F 0(t) ⊂ F+(t) for all t and no significant sets were added. In general, we prefer
to work with the second filtration, since it is right-continuous.

The Markov property also holds for a particularly important class of random
times called stopping times. A stopping time T is a random time such that we can
decide whether T ≤ t simply by knowing the states of the stochastic process until
time t. The simplest example of a stopping time is the first occasion of a given
event.

Definition 2.13. A random variable T : Ω → [0,∞] defined on a filtered proba-
bility space is called a stopping time with respect to the filtration F (t) if the set
{x ∈ Ω : T (x) ≤ t} ∈ F (t) for all t.

Proposition 2.14. The following are some basic facts about and examples of stop-
ping times.

(1) Every time t ≥ 0 is a stopping time with respect to every filtration F (t).
(2) Stopping times are closed under limits, i.e., if Tn is an increasing sequence

of stopping times with respect to a fixed filtration F (t), then
limn→∞ Tn =: T is also a stopping time.
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(3) Let T be a stopping time with respect to F (t), then the discrete times given
by

Tn =
m+ 1

2n

if m
2n ≤ T < m+1

2n are a stopping times.

(4) Every stopping time T with respect to F 0(t) is also a stopping time with
respect to F+(t).

(5) The first hitting time T = inf{t ≥ 0 : B(t) ∈ H} of a closed set H is a
stopping time with respect to F 0(t) and hence F+(t) too.

(6) The first hitting time in an open set H is a stopping time with respect to
the filtration F+(t) but not necessarily with respect to F 0(t).

(7) Suppose a random time T satisfies {x ∈ Ω : T (x) < t} ∈ F (t) and F (t)
is a right-continuous filtration, then T is a stopping time with respect to
F (t).

Proof. All of these facts follow immediately from the definitions by expanding out
the sets in terms of unions and intersections. We prove the last statement as
illustration. Let T be a random time with the appropriate properties and F (t) be
a right-continuous filtration. Then

{x ∈ Ω : T (x) ≤ T} =

∞⋂
k=1

{
x ∈ Ω : T (x) < t+

1

k

}
∈
∞⋂
n=1

F

(
t+

1

n

)
= F (t)

by properties of intersection and right continuity of the filtration. �

Definition 2.15. Let T be a stopping time. Then we define

F+(T ) := {A ∈ F : A ∩ {x ∈ Ω : T (x) ≤ t} ∈ F+(t) ∀t ≥ 0}.

Intuitively, this is the collection of events that happened before a stopping time
T .

We now state and prove the important strong Markov property of Brownian
motion.

Theorem 2.16. Let T be a stopping time with respect to the filtration F+(t). Let
f be a bounded measurable function, then

Ex[f ◦ θT | F+(T )] = EB(T )[f ].

Proof. The expectation on the right hand side is the composition of functions

ω 7→ BT (ω)(ω) 7→ EB(T )(f).

The first function is measurable with respect to F+(T ) and the second is Borel
measurable, so the composition is F+(T ) measurable. Therefore, it is sufficient to
show that Ex[h · (f ◦ θT )] = Ex[h · EB(T )[f ]] for every bounded F+(T )-measurable
function h. By the monotone class theorem from probability theory, it is sufficient
to prove the above for the special class of functions

f(ω) =

n∏
k=1

fk(Btk(ω))

where n ∈ N, 0 < t1 < t2 < · · · < tn and each fk is a bounded continuous function.
For the class of functions with this form the expected value function x 7→ Ex[f ] is
bounded and continuous.
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We proceed by approximating the stopping time T by a sequence of dyadic
stopping times Tn defined by:

Tn(ω) =

{
k+1
2n : k

2n < T (ω) < k+1
2n ∀k

∞ : T (ω) =∞

For each t > 0, since T is a stopping time, the set {ω : T (ω) < k+1
2n } ∈ F+(k+1

2n ),
so we can write

{Tn ≤ t} =
⋃

k: k+1
2n ≤t

{
k

2n
≤ T <

k + 1

2n

}
∈ F+(t).

By the definition of stopping time, each Tn is a stopping time and Tn decreases to
T . Since t 7→ Bt(ω) is a.s continuous, limn→∞BTn = BT , hence

lim
n→∞

EBTn [f ] = EBT [f ].

Having established the approximation, it remains to compute the expected value
EBTn [f ]. Observe that {T <∞} = {Tn <∞}, so

Ex[h·EBT [f ] | T <∞] = E[h◦ lim
n→∞

EBTn [f ] | Tn <∞] = lim
n→∞

Ex[h·EBTn [f ] | Tn <∞].

By summing over disjoint discrete sets, applying the regular Markov property,
and Fubini’s theorem,

Ex[h · EB(Tn)[f ] | Tn <∞] =

∞∑
k=0

Ex
[
h · EB( k+1

2n )[f ]; | k + 1

2n

]

=

∞∑
k=0

Ex
[
h · (f ◦ θ(k+1)2−n) | k + 1

2n

]
= Ex[h · (f ◦ θTn) | Tn <∞].

Finally, since f is specially chosen such that the map t 7→ f(θtω) is continuous
a.s., the limit limn→∞ f(θTnω) = f(θTω) holds. By the dominated convergence
theorem,

lim
n→∞

Ex[h · (f ◦ θTn) | Tn <∞] = Ex[h · (f ◦ θT ) | T <∞].

�

The following equivalent formulation of the strong Markov property is often
convenient and illustrates the intuition better.

Theorem 2.17 (Strong Markov Property). For every almost surely finite stopping
time T , the process {B(T + t) − B(T ) : t ≥ 0} is a standard Brownian motion
independent of F+(T ).

Proof. Define τx : Ω → Ω by (τxω)(t) := ω(t) − x. Then for each x = BT (ω), set
θT (ω) = τx[θT (ω)ω]. If h is a bounded F+ measurable function and f a bounded
F measurable function, then

E[h · f(BT )] = E[h · f(τB(T )θT )] = E[h · E[f(τB(T )θT ) | F+(T )] = E[h ◦ f(BT )].

Letting f(x) = Ex[f(τx)], and by the shift invariance of Brownian motion,

f(x) = Ex[f(τx)] = E0[f ].

Hence,
E[h · f(Bt)] = E[h · E0[f ]] = E[h]E[f ].
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�

2.3. Harmonic functions and Dirichlet Problem. The recurrence of Brownian
motion is linked with harmonic functions and the solution to the Dirichlet problem.

Definition 2.18. Let U be a connected open set U ⊂ Rd and ∂U be its boundary.
A function u : U → R is harmonic if u ∈ C2 and for any x ∈ U ,

∆u(x) :=

d∑
i=1

∂2u

dx2j
(x) = 0.

The following are useful equivalent formulation of harmonic functions. These
formulations are well known so we state them without proof.

Theorem 2.19 (Harmonic function). Let U ⊂ Rd be a connected open set and
u : U → R be measurable and locally bounded. Then the following are equivalent:
(i) u is harmonic
(ii) for any ball Br(x) ⊂ U ,

u(x) =
1

λ(Br(x))

∫
Br(x)

u(y)dλ(y)

where λ is Lebesgue measure on Rd.
(iii) for any ball Br(x) ⊂ U ,

u(x) =
1

σx,r(∂Br(x))

∫
∂Br(x)

u(y)dσx,r(y)

where σx,r is the surface measure on the d− 1-dimensional boundary ∂Br(x).

We now list two of the most important properties of harmonic functions.

Theorem 2.20 (Maximum Principle). Suppose u : U → R is a harmonic function
on a connected open set U ⊂ Rd.
(i) If u attains its maximum on U , then it is identically the constant function.
(ii) If u is continuous on U and U is a bounded set, then supx∈U u(x) = supx∈∂U u(x).

Theorem 2.21 (Continuation). Let u1, u2 : U → R be harmonic functions on a
bounded connected open set U ⊂ Rd and continuous on the closure U , then suppose
that u1 = u2 on ∂U , then u1 = u2 over U .

These two theorems are familiar to anyone who has taken a class on complex
analysis and hence we do not prove them here.

There are, however, surprising links between harmonic functions and hitting time
of Brownian motion.

Theorem 2.22. Suppose U is a connected open set and {B(t) : t ≥ 0} is Brownian
motion that starts inside U . Define τ := τ(∂U) = min{t ≥ 0 : B(t) ∈ ∂U} be the
first time the Brownian motion hits the boundary. Let ϕ : ∂U → R be a measurable
function. Suppose that a function u : U → R satisfies the property that for every
x ∈ U ,

u(x) = Ex[ϕ(B(τ))1{τ <∞}]
is locally bounded, then u is a harmonic function.
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Proof. Fix any ball Bδ(x) ⊂ U . Define τ̃ = inf{t > 0 : B(t) /∈ Bδ(x)} to be the
first exit time. Since ϕ is a measurable function, by the strong Markov property
(2.16),

Ex[Ex[ϕ(B(τ))1{τ <∞} | F+]] = Ex[u(B(τ̃))].

The first expression is simply u(x) by the tower property of conditional expectation.
The second expression is the expected value taken over the boundary of the ball
(since the first exit time must occur at the boundary of the sphere). Hence

u(x) =

∫
∂Bδ(x)

u(y)σx,δ

where σx,δ is uniform distribution on the boundary ∂Bδ(x). Thus, since u is also
locally bounded, u is harmonic. �

We wish to find solutions to the Dirichlet problem given a specific boundary
condition. We are given a continuous function ϕ on a boundary ∂U of a connected
open set U , we wish to find another function u : U → R such that u(x) = ϕ(x)
on ∂U . Such a function u is called a solution to the Dirichlet problem given the
boundary condition ϕ. Solutions to DirichLet us problem exist for a class of open
sets U that are suitably nice.

Definition 2.23. Let U ⊂ Rd be a connected open set. We say U satisfies the
Poincare cone condition at x ∈ ∂U if there exists a cone V with base at x and
opening angle α > 0 and h > 0 such that V ∩Bh(x) ⊂ U c.

Finally, we arrive at the theorem which states the existence of solutions to Dirich-
Let us problem. Before, we prove the existence theorem, we shall prove a Lemma.

Theorem 2.24 (DirichLet us Theorem). Let U ⊂ Rd be a bounded connected open
set such that every boundary point satisfies the Poincare cone condition, and suppose
that ϕ is a continuous function on ∂U . Define τ(∂U) = inf{t > 0 : B(t) ∈ ∂U}
be the first hitting time, which is a surely finite stopping time. Then the function
u : U → R given by

u(x) = Ex[ϕ(B(τ(∂U)))]

is the unique continuous function that is harmonic extension of ϕ, that is, u(x) =
ϕ(x) for all x ∈ ∂U .

Lemma 2.25. Let 0 < α < 2π and C0(α) ⊂ Rd be a cone based at the origin with
opening angle α. Let a = sup

x∈B1/2(0)
Px{τ(∂B1(0)) < τ(C0(α))}. Then a < 1 and

for any pair of positive integers k, h,

Px{τ(∂Bh(z)) < τ(Cz(α))} ≤ ak

for all x, z such that |x− z| < s−kh.

Proof. Suppose that x ∈ B2−k(0). Then clearly, there is a nontrivial probability
for Brownian motion to reach the boundary of the ball before hitting the cone, so
a < 1. Then by the strong Markov property,

Px{τ(∂B0(1)) < τ(C0(α))} ≤
k−1∏
i=0

sup
x∈B

2−k+i (0)

Px{τ(∂B2−k+i+1(0)) < τ(C0(α))} = ak.

For any positive integer k and h, by scaling, we get

Px{τ(∂Bh(z)) < τ(Cz(α))} ≤ ak
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for all x such that |x− z| < 2−kh. �

Proof of DirichLet us Theorem. Uniqueness follows trivially from harmonic contin-
uation. Moreover, since the stopping time is almost surely finite, the function u is
locally bounded and hence harmonic on U by Theorem 2.22.

It remains to show that the Poincare cone condition guarantees that u is contin-
uous on the boundary. To do so, fix z ∈ ∂U . Then there is a cone Cz(α) based at z
with angle α such that Cz(α) ∩Bh(z) ⊂ U c. By Lemma 2.25, for positive integers
k, h, we have

Px{τ(Bh(z)) < τ(Cz(α))} ≤ ak

for all |x − z| < 2−kh. In particular, given ε > 0, by fixing δ < h, we find that if
|y − z| < δ, then |ϕ(y)− ϕ(z)| < ε. Thus, for all x ∈ U such that |z − x| < 2−kδ <
2−kh,

|u(x)− u(z)| = |Exϕ(B(τ(∂U)))− ϕ(z)| ≤ Ex|ϕ(B(τ(∂U)))− ϕ(z)|.

Therefore, if the Brownian motion hits the cone Cz(α), which is in U c, before the
sphere ∂Bδ(z), then |z − B(τ(∂U))| < δ and ϕ(B(τ(∂U))) is close to ϕ(z). This
implies

2||ϕ||∞Px{τ(∂Bδ(z)) < τ(Cz(α))}+ εPx{τ(∂U) < τ(∂Bδ(z))} ≤ 2||ϕ||∞ak + ε.

Since the bound can be made arbitrarily small, we have continuity on the boundary.
�

2.4. Recurrence.

Definition 2.26. Brownian motion {B(t) : t ≥ 0} is:
(1) transient if limt→∞|B(t)| =∞ a.s.
(2) point recurrent if a.s for every x ∈ Rd, there is an increasing sequence tn such
that B(tn) = x for all n ∈ N.
(3) neighborhood recurrent if a.s for every x ∈ Rd and ε > 0, there exists an
increasing sequence tn such that B(tn) ∈ Bε(x) for all n ∈ N.

The recurrence or transience of Brownian motion is characterized up to the
dimension, as evident by the next theorem. It is not hard to believe that Brownian
motion is neighborhood recurrent, because if we think of Brownian motion as a
random path in R2 with time going to infinity, then it is plausible that the set of
all paths will fill R2. Moreover, this intuition should apply to higher dimensions;
however, this is incorrect, as evidenced by the following classification theorem.

Theorem 2.27. (1) Planar Brownian motion B(t) : Ω → R2 is neighborhood
recurrent but not point recurrent.
(2) For d ≥ 3, Brownian motion B(t) : Ω→ Rd is transient.

Remark 2.28. Linear Brownian motion is point recurrent, which follows by an
argument similar to the one for the neighborhood recurrence of planar Brownian
motion.

Before we prove this result, we give some useful definitions and lemmas. In our
proof of the recurrence of Brownian motion, we will consider the exit probability
of Brownian motion from the annulus A = {x ∈ Rd | r < |x| < r}. This will be
closely related to the Dirichlet problem.
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For simplicity of notation, we will let r := (r, 0, 0, . . . , 0). We define stopping
times

Tr := τ(∂Br(0)) = inf{t > 0 | |B(t)| = r}
for r > 0, which are the first time the Brownian motion hits the d− 1 dimensional
shell of radius r. Then the first exit time from the annulus A is simply T :=
min{Tr, TR}.

Lemma 2.29.

Px{Tr < TR} =
u(R)− u(x)

u(R)− u(r)

Proof. Since the annulus satisfies the Dirichlet condition, applying Theorem 2.24
to the boundary conditions defined by u : A→ R restricted to ∂A, we get that

u(x) = Ex[u(B(τ(∂A)))] = Ex[u(B(T ))] = u(r)Px{Tr < TR}+u(R)(1−Px(Tr < TR)).

By elementary algebraic operations, we get that

Px{Tr < TR} =
u(R)− u(x)

u(R)− u(r)
.

�

Now it remains to find explicit solutions to the boundary condition.

Lemma 2.30. Let u(r), u(R) be fixed and constant on the boundary of the annulus.
Then the Dirichlet solution to this boundary condition is given by:

u(x) =

 |x| : d = 1
2 log|x| : d = 2
|x|2−d : d ≥ 3

Proof. By the definition of u, which is spherically symmetrical, there is a func-
tion v : [r,R] → R such that u(x) = v(|x|2). Expressing the first and second

partial derivatives of v, we get ∂
∂xu(x) = ∂

∂xv(|x|2) = v′(|x|2)2xi and ∂2

∂x2u(x) =
∂2

∂x2 v(|x|2) = v′′(|x|2)4x2i + 2v(|x|2). Then, the condition that ∆u(x) = 0 is equiva-
lently to the statement that

0 =

d∑
i=1

∂2

∂x2
u(x) =

d∑
i=1

v′′(|x|2)4x2i + 2v(|x|2) = 4|x|2v′′(|x|2) + 2dv(|x|2).

Simplifying and letting y = |x|2, we get

v′′(y) =
−d
2y
v′(y).

This differential equation is solved by v of the form v′(y) = cy−d/2 for some constant
c. Thus, ∆u = 0 holds for |x| 6= 0 if and only if

u(x) =

 |x| : d = 1
2 log|x| : d = 2
|x|2−d : d ≥ 3

�
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Corollary 2.31. Suppose that {B(t) : t ≥ 0} is Brownian motion started at some
x ∈ A in the open annulus A, then

Px{Tr < TR} =


R−|x|
R−r : d = 1
logR−log|x|
logR−log r : d = 2
R2−d−|x|2−d
R2−d−r2−d : d ≥ 3

Proof. Plug u(x) into the expression of Px. �

Corollary 2.32. For any x /∈ Br(0), we have

Px{Tr <∞} =

{
1 : d = 1, 2
rd−2

|x|d−2 : d ≥ 3

Proof. Take the limit as R→∞. �

We are now in a position to prove the recurrence theorem.

Proof of 2.27. Lets prove the case for d = 2. Fix ε > 0 and x ∈ R2. Then by
the shift invariance property of Brownian motion, we get the first stopping time
t1 := inf{t > 0 | B(t) ∈ Bε(x)}. By the previous corollary, since d = 2, this is
almost surely finite. Now consider the time t1 + 1. By the strong Markov property,
we can obtain another stopping time t2 := {t > t1 + 1 | B(t) ∈ Bε(x)}, which
is again almost surely finite. Repeating in this manner, we produce an increasing
sequence of stopping times t1 ≤ t2 ≤ . . . ≤ tn ≤ . . . such that B(tn) ∈ Bε(x).

Now consider dimension d ≥ 3. Consider eventsAn := {|B(t)| > n for all t ≥ Tn3}.
By 2.8, Tn3 is almost surely finite. However, by the strong Markov property, for n
sufficiently large, i.e., n ≥ |x|1/3,

Px(Acn) = Ex
[
PB(Tn3 ){Tn <∞}

]
=

(
1

n2

)d−2
.

Then by Borel Cantelli, only finitely many events Acn can occur, thus |B(t)| diverges
to infinity almost surely. �

Corollary 2.33. Neighborhood recurrence implies the path of planar Brownian
motion is dense in the plane.

2.5. Martingales. We now discuss another important property of Brownian mo-
tion: the martingale property.

Definition 2.34. A stochastic process Xt : Ω→ R is a martingale with respect to
a fixed filtration F (t) if the following hold:
(1) X(t) is adapted to F (t).
(2) E|X(t)| <∞.
(3) for any pair of times 0 ≤ s ≤ t, E[X(t) | F (s)] = X(s) a.s.

Definition 2.35. A stochastic process Xt is a submartingale if conditions (1) and
(2) hold from the definition of a martingale, and for any pair of times 0 ≤ s ≤ t,
E[X(t) | F (s)] ≤ X(s) a.s.

Intuitively, a martingale is a process where the current state X(s) is the best
predictor of the future states. The classic example of a martingale is a fair game.
We now give two useful facts about martingales: the optional stopping theorem
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and the Doob’s maximal inequality. We are primarily concerned with continuous
martingales.

First, we tackle the optional stopping theorem, which addresses the extension of
the equation E[X(t) | F (s)] = X(s) to the case when s := S, t := T are stopping
times.

Theorem 2.36 ( Optional Stopping Theorem). Suppose X(t) is a continuous mar-
tingale and 0 ≤ S ≤ T are stopping times. If the process X(min{t, T}) is dominated
by an integrable random variable Y , then E[X(T ) | F (S)] = X(S) a.s.

We prove the continuous case of the Optional Stopping Theorem by approximat-
ing from the discrete case.

Lemma 2.37 ((Discrete) Optional Stopping Theorem). Let Xn be a discrete mar-
tingale which is uniformly integrable. Then for all stopping times 0 ≤ S ≤ T , we
have E[Xn(T ) | F (S)] = Xn(S) almost surely.

Proof. Since martingales are closed under limits, Xn(T ) converges to X(T ) in L1

with

E[X(T ) | Fn] = X(min{T, n}) = Xn(T ).

We may assume X(T ) is a strictly positive function; if not, apply the standard trick
from integration theory of splitting it into a sum of positive components. There-
fore, each Xn(T ) is also positive almost surely. Then considering the conditional
expectation with respect to F (min{S, n}), we get

E[X(T ) | F (min{S, n})] = X(min{S, n}).

Now consider a set A ∈ FS . It remains to show that E[X(T )1A] = E[X(S)1A],
where 1A is the indicator function. First, notice that A∩{S ≤ n} ∈ F (min{S, n}).
Therefore, we get

E[X(T )1A∩{S≤n}] = E[1min{S,n}] = E[X(S)1A∩{S≤n}].

Then letting n→∞, we get the desired result by the monotone convergence theo-
rem.

�

Proof of the Optional Stopping Theorem. We will prove this by approximation from
the discrete case. Fix N ∈ N and define a discrete time martingale by Xn =
X(min{T, n2−N}) and stopping times S′ = b2NSc + 1, T ′ = bSNT c + 1 and the
corresponding discrete filtration G (n) = F (n2−N ). By assumption Xn is dom-
inated by an integrable random variable, and hence the discrete time Optional
Stopping theorem gives E[XT ′ | G (S′)] = XS′ . Substituting for T ′, S′, we get
E[X(T ) | F (Sn)] = X(min{T, SN}) where SN = 2−N (b2NSc + 1). Hence for
A ∈ F (S), by the dominated convergence theorem,∫

A

X(T )dP = lim
N→∞

∫
A

E[X(T ) | F (SN )]dP

=

∫
A

lim
N→∞

X(min{T, SN})dP =

∫
A

X(S)dP.

�

The next result is a useful martingale inequality.
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Theorem 2.38 (Doob’s maximal inequality). Suppose X(t) is a continuous mar-
tingale and p > 1. Then for any t ≥ 0,

E
[
( sup
0≤s≤t

|X(s)|)p
]
≤
(

p

p− 1

)p
E[|X(t)|p].

As with the Optional Stopping Theorem, we state and prove the discrete case
first, then extend to the continuous case by approximation. We begin with a Lemma
that compares the Lp norms of two random variables.

Lemma 2.39. Let X,Y be two nonnegative random variables such that for all
λ > 0,

λP{Y ≥ λ} ≤ E[X1Y≥λ].

Then for all p > 1,

E[Y p] ≤
(

p

p− 1

)p
E[Xp].

Proof. First, notice that xp =
∫ x
0
pλp−1dλ, so applying Fubini’s theorem, we get

E[Xp] = E
∫ ∞
0

pλp−1dλ1λ≤X

=

∫ ∞
0

∫ ∞
0

(1λ≤XdP ) pλp−1dλ =

∫ ∞
0

pλp−1P{λ ≤ X}dλ.

By assumption, we write E[Y p],

E[Y p] =

∫ ∞
0

pλp−1P{λ ≤ Y }dλ ≤
∫ ∞
0

pλp−2E[X1λ≤Y ]dλ.

Applying Fubini’s theorem to the right hand side and integrating dλ, we get∫ ∞
0

pλp−2

(∫ Y

0

XdP

)
dλ =

∫ ∞
0

(∫ Y

0

pλp−2dλ

)
dP

= E

[
X

∫ Y

0

pλp−2dλ

]
= E

[
X

(
p

p− 1

)
Y p−1

]
.

By Holder’s inequality with q = p/p− 1, we get that

E
[
X

(
p

p− 1

)
Y p−1

]
= qE[XY p−1] ≤ q||X||p||Y p−1||q.

In summary, we get E[Y p] ≤ q(E[Xp])1/p(E[Y p])1/q.
For the first case, suppose that EY p <∞, then the above inequality implies

(E[Y p])1/p ≤ q(E[Xp])1/p

giving the desired result.
For the second case, suppose that E[Y p] = ∞, then consider the sequence of

random variables Yn := min{Y, n}. The first case holds for each Yn and the desired
result follows by letting n→∞ and applying the monotone convergence theorem.

�
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Lemma 2.40 (Discrete Doob’s Lp maximal inequality). Suppose Xn is a discrete
martingale or a nonnegative submartingale. Define Mn := max1≤k≤nXk and fix
p > 1. Then

E[Mp
n] ≤

(
p

p− 1

)p
E[|Xn|p].

Proof. Suppose that Xn is a martingale, then |Xn| is a nonnegative submartingale.
Therefore, it is sufficient to prove the result for nonnegative submartingales. For
all λ > 0,

λP{λ ≤Mn} ≤ E[Xn1{λ≤Mn}]

where Mn := max1≤j≤nXj .
To prove this, define stopping times

τ :=

{
min{k : Xk ≥ λ} : Mn ≥ λ
0n : Mn < λ

Observe that {Mn ≥ λ} = {Xτ ≥ λ}. Therefore,

λP{Mn ≥ λ} = λP{Xτ ≥ λ} = E[λ1{τ≥λ}] ≤ E[Xτ1Xτ≥λ] = E[Xτ1{Mn≥λ}].

It remains to show that E[Xτ1{Mn≥λ}] ≤ E[Xn1{Mn≥λ}]. This follows since τ is
bounded by n and Xτ is a submartingale, so E[Xτ ] ≤ E[Xn] implies that

E[Xτ1{Mn<τ}] + E[Xτ1{Mn≥λ}] ≤ E[Xn1{Mn<λ}] + E[Xn1{Mn≥λ}].

By the definition of τ , Xτ1{Mn<λ} = Xn1{Mn<λ}, so the above equality is equiva-
lent to

E[Xτ1{Mn≥λ}] ≤ E[Xn1{Mn≥λ}]

as desired.
Finally, letting X = Xn and Y = Mn in the previous lemma, we proof follows.

�

Proof of Doob’s maximal inequality. Again, we approximate from the discrete case
using the monotone convergence theorem. Fix N ∈ N and define the discrete mar-
tingale Xn = X(tn2−N ) with respect to the discrete filtration G (n) = F (tn2−N ).
By the discrete version of Doob’s maximal inequality,

E

[(
sup

1≤k≤2N
|Xk|

)p]
≤
(

p

p− 1

)p
E[|X2N |p] =

(
p

p− 1

)p
E[|X(t)|p].

Letting N →∞, by monotone convergence, we get the desired result.
�

3. stochastic Calculus

3.1. Definition and basic properties. We will now define the stochastic integral
and an important property of the integral called Ito formula. In standard Riemann
or Lebesgue integration, we are often given a function v that represents velocity
and we wish to determine the integral of v, which models the position of a particle.
In Riemann and Lebesgue integration, the function v needs to be sufficiently nice,
which is not always achievable in real life. In reality, the differential equation that
we wish to integrate will be of the form:

dX

dt
= v(t,Xt) + w(t,Xt) ·Wt,
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where Wt is the term that adds “randomness” to the equation. To achieve “ran-
domness”, we formally desire the random process Wt to have the properties that:
(1) If t1 6= t2, then Wt1 ,Wt2 are independent.
(2) The set Wt, t ≥ 0 is stationary.
(3) E[Wt] = 0 for all t.

We now formally integrate the stochastic differential equation given above. To
do so, we develop a new integral known as the stochastic integral. As with any
other form of integration, we first develop the stochastic integral by approximating
from the discrete case, which is defined in the obvious manner.

Let us consider the discrete case and take the limit as the discrete time intervals
go to 0. Fix discrete times 0 = t0 < t1 < · · · < tn = t. Then the discrete version of
the differential equation is:

Xk+1 −Xk = X(tk+1)−X(tk) = v(tk, Xk)∆tk + w(tk, Xk)Wk∆tk.

We have expressed the first differential equation as a sum of two other differential
equations. The first is in terms of a difference in time. The second is Wk∆tk =
Wktk+1 −Wktk =: Vk+1 − Vk, which can be thought of as a increment of another
stochastic process Vk. The desired properties (1), (2), (3) of Wk above translate to
the desire for Vk to be a stochastic process with stationary independent increment
with 0 mean. In other words, Vk = Bk = B(tk) is Brownian motion. Thus,
summing over finite discrete k, we get:

Xk = X0 +

k−1∑
j=0

v(tj , Xj)∆tj +

k−1∑
j=0

w(tj , Xj)∆Bj .

To revert to the continuous case by taking the limit as ∆tk → 0, we see that,

Xt = X0 +

∫ t

0

u(s,Xs)ds+

∫ t

0

w(s,Xs)dBs.

Thus, it remains to define the integral over Brownian motion Bs.
The class of functions that we ultimately wish to integrate are progressively

measurable processes, which we now define.

Definition 3.1. A process is called progressively measurable if for each t ≥ 0, the
map X : [0, t]×Ω→ R is measurable with respect to the sigma algebra B[0, t]⊗F ,
where B[0, t] is the borel sigma algebra on [0, t] and F is any filtration on Ω such
that Brownian motion has the strong Markov property (e.g., F+(t)).

As suggested earlier, we will want to integrate processes that respect the filtra-
tion F+(t). The following theorem shows that these processes are progressively
measurable.

Lemma 3.2. Any process {X(t) : t ≥ 0} that is adapted and either left or right-
continuous is progressively measurable.

Proof. Without loss of generality, let X(t) be an adapted right-continuous process.
Fix t > 0. Then for n ∈ N and 0 ≤ s ≤ t, define

Xn(t, ω) =

{
X(0, ω) : t = 0

X( (k+1)t
2n , ω) : kt

2n < s ≤ (k+1)t
2n
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For each n, the function Xn(s, ω) is B([0, t]) ⊗F (t) measurable. By right conti-
nuity, X(s, ω) = limn→∞Xn(s, ω), which is measurable since limits carry through
measurable functions. �

The construction of the Ito integral proceeds analogous to the construction of the
Riemann and Lebesgue integrals. We begin by integrating progressively measurable
step functions, which will approximate all progressively measurable functions.

Definition 3.3. A progressively measurable step function is a function [0,∞]×Ω→
R such that

H(t, ω) :=

k∑
i=1

ei(ω)1(ti,ti+1](t),

where 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk + 1 and ei is each F (ti) measurable. Then we define
the integral of the step function to be∫ ∞

0

H(s, ω)dBs(ω) :=

k∑
i=1

ei(Bti+1 −Bti)(ω).

For step functions such that ||H||22 = E
∫∞
0
H(s)2ds <∞, we will show that∫ ∞

0

H(s)dBs = lim
n→∞

∫ ∞
0

Hn(s)dBs.

Thus, it remains to check that every progressively measurable process with finite
L2 norm can be approximated in the L2 norm by progressively measurable step
functions.

Lemma 3.4. For every progressively measurable process H(s, ω) such that E
∫∞
0
H(s)2ds <

∞, there exists a sequence Hn of progressively measurable step functions such that
limn→∞ ||Hn −H||2 = 0.

Proof. Let H(s, ω) be a progressively measurable process.
Step 1: Approximate H(s, ω) by bounded progressively measurable processes

Jn(s, ω).
Define

In(s, ω) =

{
H(s, ω) : s ≤ n
0 : n < s

Then consider Jn = min{In, n}. Then clearly limn→∞ ||Jn −H||2 = 0.
Step 2: Approximate uniformly bounded F (s, ω) by bounded a.s continuous

progressively measurable processes Gn(s, ω).
Let f = 1/n and define

Gn(s, ω) :=
1

f

∫ s

s−f
F (t, ω)dt,

where F (s, ω) = F (0, ω) for s < 0. Since we are averaging over the past values, Gn
is progressively measurable and it is a.s continuous. Finally, for every ω ∈ Ω and
almost every s ∈ [0, t],

lim
n→∞

Gn(s, ω) = lim
f→0

1

f

∫ s

s−f
f(t, ω)dt = F (s, ω).

Thus, by the bounded convergence theorem for L2 bounded martingales, limn→∞ ||Gn−
F ||2 = 0.
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Step 3: Approximate bounded a.s continuous progressive measurable functions
C(s, ω) by progressively measurable step processes Dn(s, ω).

Define Dn(s, ω) := C( jn , ω) for j
n ≤ s < j+1

n . Each Dn is clearly a step function
and limn→∞ ||Dn − C||2 = 0.

By taking limits three times, we have the desired approximation. �

We have shown the desired approximation holds for functions when integrating
dt instead of dBt. The following lemma and corollary shows that is sufficient.

Lemma 3.5. Let H be a progressively measurable step process and E
∫∞
0
H(s)2ds <

∞, then

E

[(∫ ∞
0

H(s)dB(s)

)2
]

= E
∫ ∞
0

H(s)2ds.

Proof. By the Markov property,

E

[(∫ ∞
0

H(s)dB(s)

)2
]

= E

[(∫ ∞
0

H(s)dB(s)

)2
]

= E

 k∑
i,j=1

eiiej(B(ti+1)−B(ti))(B(tj+1)−B(tj))


= 2

k∑
i=1

k∑
j=i+1

E [eiej(B(ti+1)−B(ti))E[B(tj+1)−B(tj) | F (tj)]]

+

k∑
i=1

E[e2i (B(ti+1)−B(ti))
2]

=

k∑
i=1

E[t2i ](ti+1 − ti) = E
∫ ∞
0

H(s)2ds.

�

Corollary 3.6. Suppose that Hn is a sequence of progressively measurable step
processes such that E

∫∞
0

(Hn(s)−Hm(s))2ds→ 0 as n,m→ 0, then

E

[(∫ ∞
0

Hn(s)−Hm(s)dBs

)2
]
→ 0

as n,m→ 0.

Proof. Apply the Lemma to Hn −Hm, which is also a step process. �

We can now finally prove the desired approximation theorem for progressively
measurable functions by integrating dBt.

Theorem 3.7. Suppose that Hn is a sequence of progressively measurable functions
and H is a progressively measurable function such that

lim
n→∞

E
∫ ∞
0

(Hn(s)−H(s))2ds = 0,

then ∫ ∞
0

H(s, ω)dBs := lim
n→∞

∫ ∞
0

Hn(s)dBs
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exists as an L2 limit and is independent of the choice of Hn and

E

[(∫ ∞
0

H(s, ω)dBs

)2
]

= E
∫ ∞
0

H(s)2ds.

Proof. Recall that ||H||22 := E
∫∞
0
H(s, ω)2ds. So by the triangle inequality, ||Hn−

Hm||2 ≤ ||Hn−H||2+||Hm−H||2 → 0 as n,m→∞. Thus, Hn is a Cauchy sequence
in L2, which is complete, so Hn converges to H in L2. The limit is independent of
the choice of approximating sequence by the previous corollary, which shows that
the limit of the difference of the expected values goes to 0 for two sequence Hn, Hm.
Finally, the last statement follows by carrying limits through expected values:

E

[(∫ ∞
0

lim
n→∞

Hn(s, ω)dBs

)2
]

= lim
n→∞

E

[(∫ ∞
0

Hn(s, ω)dBs

)2
]

= lim
n→∞

E
∫ ∞
0

Hn(s)2ds = E
∫ ∞
0

lim
n→∞

Hn(s)2ds.

�

The stochastic integral defines its own stochastic process, namely the process

I(t, ω) :=

∫ t

0

H(s, ω)dBs =

∫ ∞
0

H(s, ω)1[0,t]dBs.

Definition 3.8. Let Bt be Brownian motion. An Ito process is a stochastic process
It of the form:

It = I0 +

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dBs

where v satisfies the following properties:
(1) The function (t, ω) 7→ v(t, ω) is B[0,∞]×F+ measurable where B[0,∞] is the
Borel σ-algebra on [0,∞] and F+ is the right-continuous filtration defined above.
(2) There exists an increasing family of σ-algebras Ht, t ≥ 0 such that Bt is a
martingale with respect to Ht and vt is Ht adapted.
(3)

P

[∫ T

S

v(s, ω)2ds

]
=∞.

And, the function u must satisfy the following properties:
(a) u is Ht adapted.
(b)

P
[∫ t

0

|u(s, ω)|ds <∞
]

= 1.

Since the form of the Ito process above is cumbersome to work with, we introduce
a common shorthand. Moving I0 to the left hand side, we get

It − I0 =

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dBs

Since we’re considering each integral as a process in terms of t, we write the process
above as

dIt = udt+ vdBt.
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We can modify the process I (i.e., find another process J that differs by a set of
measure zero) such that the modification is an almost surely continuous martingale.

Theorem 3.9. Suppose H(s, ω) is a progressively measurable process such that

E
∫ t
0
H(s, ω)2ds <∞ for all t. Then there exists an almost surely continuous mod-

ification of the stochastic process I(t) =
∫ t
0
H(s, ω)dBs such that the process is a

martingale.

Proof. For notational simplicity, define Ht0(s) = H(s) · 1{s<t0}, where 1 is the
indicator function. Fix a large integer t0 and let Hn be a sequence of step processes
such that ||Hn −Ht0 ||2 → 0 for t < t0. Then

E

[(∫ ∞
0

(Hn(s)−Ht0(s))dB(s)

)2
]
→ 0

For any s < t, the random variable
∫ s
0
Hn(u)dB(u) is clearly F (s) measurable and∫ t

s
Hn(u)dB(u) is independent of F (s). Therefore, the process∫ t

0

Hn(u)dB(u); 0 ≤ t ≤ t0

is a martingale for each n ∈ N. Now for any 0 ≤ t ≤ t0, define

X(t) = E
[∫ t0

0

H(s)dB(s) | F (t)

]
so that {X(t) : 0 ≤ t ≤ t0} is a martingale and X(t0) =

∫ t0
0
H(s)dB(s). Then by

Doob’s maximal inequality, fixing p = 2, we get

E

[
sup

0≤t≤t0

(∫ t

0

Hn(s)dB(s)−X(t)

)2
]
≤ 4E

[(∫ t0

0

(Hn(s)−H(s))dB(s)

)2
]

converges to 0 as n → ∞. Therefore, a.s, the process {X(t) : 0 ≤ t ≤ t0} is
the uniform limit of continuous processes and hence is continuous itself. For fixed
0 ≤ t ≤ t0, by taking limits, we extend the result to show that the random variables∫ t
0
H(s)dB(s) are F (t) measurable and independent with zero expectation. Hence,∫ t

0
H(s)dB(s) = E[X(t0) | F (t)] = X(t) a.s. �

3.2. Ito formula. Like the chain rule in standard integration theorem, there exists
a “chain rule” for stochastic calculus called Ito formula. We first deal with the 1-
dimensional Ito formula, then extended this to functions from Rd by using vector
notation.

Theorem 3.10 (Ito formula). Let It be an Ito process. Let g(t, x) ∈ C2([0,∞),R).
Then the process Jt = g(t, It) is also an Ito process and

dJt =
∂g

dt
(t, It)dt+

∂g

dx
(t, It)dIt +

1

2

∂2g

dx2
(t, It)(dIt)

2

where (dIt)
2 = dIt ·dIt is computed by the rules dtdt = dtBt = dBtdt = 0, dBtdBt =

dt.

Proof of Ito formula. We first show that Jt is an Ito process.
Expanding (dIt)

2 and making the appropriate substitutions, we see that

(dIt)
2 = (udt+ vdBt)

2 = u2(dt)2 + 2uvdtdBt + v2(dBt)
2 = 0 + 0 + v2dt.
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Then substituting, we get

dJt =
∂g

dt
(t, It)dt+

∂g

dx
(t, It)dIt +

1

2

∂2g

dx2
(t, It)(dIt)

2

=
∂g

dt
(t, It)dt+

∂g

dx
(t, It)(udt+ vdBt) +

1

2

∂2g

dx2
(t, It)v

2dt

=

(
∂g

dt
(t, It) +

∂g

dx
(t, It)u+

1

2

∂2g

dx2
(t, It)v

2

)
dt+

∂g

dx
(t, It)vdBt.

Now writing out the shorthand, we get

g(t, It) = g(0, I0) +

∫ t

0

(
∂g

ds
(s, Is) +

∂g

dx
(s, Is)u+

1

2

∂2g

dx2
(s, Is)v

2

)
ds+

∫ t

0

∂g

∂x
vdBs.

This expression is of the form required by Ito formula. It remains to show that the
initial expression is correct. We do so by approximating by step functions.

We may assume that g, ∂g∂t ,
∂g
∂x ,

∂2g
∂x2 are bounded, because if not, we may ap-

proximate the unbounded functions by bounded ones over compact sets. Similarly,
we may assume that u, v are progressively measurable step functions for the same
reason. Then by Taylor’s theorem approximating to order 2,

g(t, It) = g(0, I0) +
∑
j

∆g(tj , Ij) = g(0, I0) +
∑
j

∂g

∂t
∆tj +

∑
j

∂g

∂x
∆Ij

+
1

2

∑
j

∂2g

∂t2
(∆tj)

2 +
1

2

∑
j

∂2g

∂t∂x
(∆tj)(∆Ij) +

1

2

∑
j

∂2g

∂x2
(∆Ij)

2 +
∑
j

Rj ,

where the remainder term Rj = o(|∆tj |2 + |∆Ij |2). Taking the limit as ∆tj → 0,
we check what each sum converges to.
The first sum: ∑

j

∂g

∂t
(tj , Ij)∆tj →

∫ t

0

∂g

∂t
(s, Is)ds =

∂g

∂t
dt.

The second sum: ∑
j

∂g

∂x
(tj , Ij)∆Ij →

∫ t

0

∂g

∂x
(x, Is)dIs =

∂g

∂x
dIt.

The third sum: ∑
j

∂2g

∂t2
(tj , Ij)(∆tj)

2 → ∆tj

∫ t

0

∂2g

∂t2
(s, Is)ds→ 0.

The fourth sum:∑
j

∂2g

∂t∂x
(tj , Ij)(∆tj)(∆Ij)→ ∆tj

∫ t

0

∂2g

∂t∂x
(s, Is)dIs → 0.

It remains to show that the fifth sum converges as desired:

1

2

∑
j

∂2g

∂x2
(∆Ij)

2 → 1

2

∫ t

0

∂2g

∂x2
(s, Is)(dIs)

2.

We have, however, already showed that

1

2

∫ t

0

∂2g

∂x2
(s, Is)(dIs)

2 =
1

2

∂2g

dx2
(s, Is)v

2ds,
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therefore it is sufficient to show that the sum converges to the expression on the
right hand side. Expanding the sum, we see that

1

2

∑
j

∂2g

∂x2
(∆Ij)

2 =
1

2

∑
j

∂2g

∂x2
u2j (∆tj)

2 +
∑
j

∂2g

∂x2
ujvj(∆tj)(∆Bj) +

∑
j

∂2g

∂x2
v2j (∆Bj)

2

 .
By the same argument as above, the first two sums converge to 0, so the desired
convergence is equivalent to showing that the following convergence holds:∑

j

∂2g

∂x2
v2j (∆Bj)

2 →
∫ t

0

∂2g

∂x2
v2dBs.

To prove this, let a(t) = ∂2g
∂x2 (t, It)v

2(t, ω). For notational simplicity, let aj = a(tj).
Then

E


∑

j

aj(∆Bj)
2 −

∑
j

aj∆tj

2
 =

∑
i,j

E[aiaj((∆Bi)
2 −∆ti)((∆Bj)

2 −∆tj)].

If i < j or i > j, then the random variables aiaj((∆Bi)
2 −∆ti) and (∆Bj)

2 −∆tj
are independent and hence the term in the sum vanishes. Therefore, the sum can
be reduced to summing over i = j. In other words,∑

j

E[a2j ((∆Bj)
2 −∆tj)

2] =
∑
j

E[a2j ]E[(∆Bj)
4 − 2(∆Bj)∆tj + (∆tj)

2]

=
∑
j

E[a2j ](3(∆tj)
2 − 2(∆tj)

2 + (∆tj)
2) = 2

∑
j

E[a2j ](∆tj)
2.

This equivalent version of the sum converges like

2
∑
j

E[a2j ](∆tj)
2 → ∆tj

∫ t

0

E[aj ]
2dt→ 0.

This implies ∑
j

aj(∆Bj)
2 L2

→
∫ t

0

a(s)ds.

Plugging in for a, we get∑
j

∂2g

∂x2
(tj , It)v

2(tj , ω)(∆Bj)
2 L2

→
∫ t

0

∂2g

∂x2
(s, It)v

2(s, ω)ds.

By the definition of asymptotic, the final sum converges:∑
j

Rj → 0

completing the proof. �

We extend this to the multidimensional Ito formula in the obvious manner: by
writing it in vector notation. For completeness, we define the d-dimensional Ito
process and give the d-dimensional Ito formula.
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Definition 3.11. A d-dimensional Ito process It is a d-dimensional stochastic pro-
cess given by dIt(ω) = u(t, ω)dt + v(t, ω)dBt, where we use the analogous short
hand from the 1-dimensional case. In this case, u is a d dimensional vector, Bt is a
d-dimensional Brownian motion, and v is a d× d matrix where each ui, vj satisfies
the requirements of a 1-dimensional Ito process.

A d-dimensional Ito process takes the form:

d


I1
I2
...
Id

 =


u1
u2
...
ud

 dt+


v11 · · · · · · v1,d
...

...
...

...
vd,1 · · · · · · vd,d

 d


B1(t)
B2(t)

...
Bd(t)


Theorem 3.12 (Multidimensional Ito formula). Let dIt = udt + vdBt be a d-
dimensional Ito process. Let f(t, ω) : [0,∞] × Rd → Rp be C2 such that f(t, x) =
(f1(t, x), . . . , fp(t, x)). Then J(t, ω) = f(t, I(t, ω)) is a p-dimensional Ito process
where for 1 ≤ k ≤ p, the k-th component of J(t, ω) is given by

dJk =
∂fk
∂t

dt+

d∑
i=1

∂fk
∂xi

dXi +
1

2

d∑
i,j=1

∂2fk
∂xi∂xj

dXidXj

following the rule that dtdBi = dBjdt = 0 and dBidBj = δi,jdt.

The proof proceeds similar to the 1-dimensional case presented above, by repeat-
ing the argument component wise.

4. Levy’s Theorem and Liouville’s Theorem

4.1. Levy’s Theorem. We now turn to Levy’s characterization, which identifies
certain continuous local martingales as Brownian motion and a useful corollary
due to Dubins and Schwartz that classifies all continuous local martingales as time
changes of Brownian motion. To properly develop these ideas, we need the idea of
a local martingale.

Definition 4.1. An adapted stochastic process {X(t) : 0 ≤ t ≤ T} is a local
martingale if there exists a sequence of stopping times Tn that increase a.s to T
such that {X(min{t, Tn}) : t ≥ 0} is a martingale for every n.

The following is an important lemma that will be used to prove Liouville’s the-
orem.

Theorem 4.2. Let D ⊂ Rd be a connected and open set and let f : D → R be
harmonic on D. Suppose that {B(t) : 0 ≤ t ≤ T} is Brownian motion that starts
inside D and stops at time T . Then the process {f(B(t)) : 0 ≤ t ≤ T} is a local
martingale.

Proof. This follows immediately from Ito formula.
First note that Ito formula holds for all times s ∈ [0, t] including stopping times

bounded by t. Then, in particular, let f be C2 function on an open set U and fix
any K ⊂ U that is compact. Then let g : Rm → [0, 1] be smooth with compact
support inside U such that g = 1 on K. Then defining f∗ = fg, we can apply
Ito’s formula a.s to min{s, T} for all s < T where T is the first exit time from the
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compact set K. Then f(B(s), X(s)) where B(s) is Brownian motion and X(s) is a
stochastic process can be expanded as follows:

f(B(min{t, Tn}), X(min{t, Tn}))−f(B(0), X(0)) =

∫ min{t,Tn}

0

∇xf(B(s), X(s))dB(s)

+

∫ min{t,Tn}

0

∇yf(B(s), X(s))dX(s) +
1

2

∫ min{t,Tn}

0

∆xf(B(s), X(s))ds.

Now suppose that Kn is an increasing sequence of compact sets such that⋃
n∈NKn = D. Let Tn be the exit time from each Kn. Letting X(s) = 0,
∇yf(B(s)) = 0, so the middle integral is zero. Also since f is harmonic, ∆xf = 0,
so the right most integral is zero. Therefore, we are left with

f(B(min{t, Tn})) = f(B(0)) +

∫ min{t,Tn}

0

∇f(B(s))dB(s).

We have, therefore, identified an increasing sequence to stopping time Tn which
converges to the final stopping time T such that f(B(min{t, Tn})) is a martingale
and hence a local martingale. �

We now arrive at Levy’s characterization of local martingales. We give the proof
originally due to Watanabe and Kunita from Williams in [5]. For the general form
of this theorem, we will need the notion of quadratic covariation. Intuitively, it is
simply the extension of quadratic variation to two random variables.

Definition 4.3. Let X,Y be random variables. The quadratic covariation of X
and Y is given by

[X,Y ]t = lim
||P ||→0

n∑
k=1

(X(tk)−X(tk−1))(Y (tk)− Y (tk−1)).

Quadratic covariation can be written in terms of the quadratic variation of X,Y
individually by using the polarization identity from Hilbert space theory:

[X,Y ]t =
1

2
([X + Y ]t − [X]t − [Y ]t).

Theorem 4.4 (Levy’s Theorem). Suppose that X(t) is a continuous local mar-
tingale such that X(0) = 0 and component wise Xi(t), Xj(t) has finite quadratic
covariation (i.e., [Xi(t), Xj(t)]t = δi,jt). Then X(t) is Brownian motion.

Proof. Let X(t) be d-dimensional local martingale with the properties detailed
above. Fix a vector θ ∈ Rd, and define a smooth function

f := ei〈θ,x〉+
1
2 |θ|

2t

where 〈θ, x〉 is the inner product. Then by Ito formula,

d(f(X(t), t)) =
∂f

∂xj
(X(t), t)dXj(t) +

∂f

∂t
(X(t), t)dt+

1

2

∂2f

∂xj∂xk
(X(t), t)d[Xj , Xk].

Writing out the partial derivatives,

= iθjf(X(t), t)dXj(t) +
1

2
|θ|2f(X(t), t)dt+

1

2
(iθj)(iθk)f(X(t), t)δj,kdt

= iθjf(X(t), t)dXj(t).

This implies that f(X(t), t) is the sum of stochastic integrals with respect to contin-
uous local martingales X(t) and hence is a local martingale itself. Moreover, since



24 CHEN HUI GEORGE TEO

|f(X(t), t)| = e
1
2 |θ|

2t <∞ for each t, f(B(t), t) is actually a martingale. Hence for
s < t,

E
[
ei(θ,X(t)−X(s)) | F (s)

]
= e−

1
2 (t−s)|θ|

2

.

Thus the stochastic process X(t) is indeed normally distributed with mean 0 and
covariance (t− s)I and independent of F (s) and hence is Brownian motion. �

Finally, we get to Dubins and Schwartz’s corollary of Levy’s theorem.

Corollary 4.5 (Dubins and Schwarz). Let M be a continuous local martingale null
at 0 such that [M ]t is increasing as t → ∞. For t ≥ 0, we define stopping times
τt := inf{u : [M ]u > t} and a shifted filtration G (t) = F (τt). Then X(t) := M(τt)
is standard Brownian motion.

Proof. The desired result will follow from Levy’s theorem if we can show that M(τt)
is a continuous, local martingale with the appropriate quadratic variation.

It is clear that since M is F (t) adapted, X(t) = M(τt) is G (t) adapted. We now
need to show that X is continuous. It suffices to show that for almost every ω, M
is constant on each step of [M ]. Since we’re checking continuity, which is a local
property, it suffices to check continuity when M is a bounded L2 martingale.

For any rational q, we define

Sq := inf{t > q | [M ]t > [M ]q}.

Then observe that

E[M(Sq)
2 − [M ](Sq) | F (q)] = M(q)2 − [M ]q.

However, by the definition of infimum, [M ](Sq) = [M ]q, therefore the expectation
is equal to 0 and hence M is constant on [q, Sq). Since this holds for each step of
X(t) = M(τt), X is indeed a.s continuous.

Next, we show that X and X2 − t are local martingales and hence (as we will
show), the desired quadratic variation to apply Levy’s theorem holds. First, we
define

T (n) := inf{t | |Mt| > n}, U(n) := [M ](T (n))

Then for each t, τmin{t,U(n)} = min{T (n), τt}. In other words,

X(min{t, U(n)}) = M)(τ(t))1{τ(t)≤T (n)},

where 1 is the indicator function.
Since U(u) is a stopping time, by the optional stopping theorem applied to

M1t≤T (n), for s < t,

E[X(min{t, U(n)}) | G (s)] = E[M(τ(t))1τ(t)≤T (n) | G (s)]

= M(τ(t))1τ(t)<T (n) = X(min{s, U(n)}).
Therefore, by the definition of local martingale, X(t) is a local martingale. Sim-
ilarly, by the optional stopping theorem applied to X(t) − t, the same argument
shows that X(t)− t is a local martingale too.

By Ito formula,

d(X2 − t) = 2XdX +
1

2
· 2dXdX − dt.
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Since we know that X and X(t)2 − t are local martingales, dXdX − dt = 0. Inte-
grating, we see that ∫ t

0

(dX(s))2 =

∫ t

0

ds.

However,

[X]t =

∫ t

0

(dX(s))2 and

∫ t

0

ds = t.

In other words, [X]t = t. By Levy’s theorem, X is a Brownian motion. Taking the
inverse stopping time, we see that M(t) = X(τ−1(t))), which is also a Brownian
motion, hence M is a Brownian motion with time-change τ−1. �

4.2. Liouville’s Theorem. In this section, we summarize the results we have
gathered to prove Liouville’s theorem.

Theorem 4.6 (Liouville’s Theorem). Suppose f is a complex valued function that
is entire and bounded, then it is constant.

Proof. Suppose that f is entire and non-constant. By theorem 4.2, f(B(t)) is a
continuous local martingale. By Dubin and Schwartz, f(B(t)) is a time change of
Brownian motion. By the recurrence of 2-dimensional Brownian motion, f(B(t))
is dense in the complex plane and hence unbounded. �
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