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Abstract. In this paper, we will introduce some of the most basic concepts in

geometric stability theory, and attempt to state a dichotomy theorem proved

by Buechler. We will state and prove one of the requisite lemmas, though we
will not provide a proof of the theorem itself.
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0. Introduction

Stability theory is a field that grew out of an attempt to classify models of
theories: Shelah introduced the notion of a stable theory (roughly, a theory is
stable if it does not have too many types) in 1969, and this turned out to be
incredibly useful in helping to distinguish between theories whose models could be
classified, and those whose models couldn’t. Geometric stability theory started,
perhaps, when Zilber recognized in the 1970s that questions of classification were
linked to the ‘geometry’ of independence. While we hope this is enough to paint
some idea of the field for the reader, Pillay traces out the historical development of
the field in considerable detail for those interested.

We will begin largely with a sequence of definitions, and leave most of the proofs
for the final section. We start off with a few definitions from model theory — most
of them revolving around the notion of a type — and then define what it means
to be a (pre-)geometry. We will then construct a very natural pregeometry on a
minimal set in an arbitrary (universal) model of a (complete) theory T.

We will assume some basic model theory — namely, we will assume knowledge of
the definitions of a model, a formula and a complete theory. For the purposes of this
paper, however, the details are not important. A formula is simply a ‘grammatically
correct’ logical string which may or may not have free variables (for instance, x = x
where x is a variable is a formula); a sentence is just a formula with no unbound
variables (for example, ∀x(x = x) or c = c for a variable x and a constant c).
A theory T is a set of logical sentences with symbols from some language L . A
complete theory is a consistent set of sentences which is maximal with respect to
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inclusion. A model M of a theory T is a set equipped with some sort of structure
that allows it to ‘satisfy’ sentences, with this satisfaction relation being required to
behave as would be expected with the operators ¬, ∧, ∨, ∀ and ∃ (the satisfaction
relation is more accurately a part of the logic, but this distinction is irrelevant for
the purposes of this paper).

For a more detailed introduction, we refer the reader to the first few pages of
most basic model theory texts (for instance, Chang & Keisler).

Concerning notation, we will use x to mean an n-tuple for some fixed n (some-
times specified), and we will loosely use x ∈ X to mean x ∈ Xn. For some subset
A of the universe of the model, we will denote by L(A) the language formed by
adjoining constant symbols for each element in A to the language of the theory.
When we are working with a generic M, we will use M to mean the universe of
the model; with a universal model C, we will never mention the universe - it will
simply be assumed that all sets are subsets of the universal model of the theory. In
most cases, there is no point in declaring C to be the universal model, and we will
often neglect to do so - it is simply assumed that all sets under consideration are
subsets of some fixed universal model.

1. Types and Stability

One of the most basic definitions (and especially so in this section), is that of a
type.

Definition 1.1. Let M be a model for a language L, and let A ⊂ M . An n-
type over A in M is a consistent set p(v) of formulas in L(A) with at most n free
variables v = (v1, . . . , vn) so that, for any finite subset p0(v), there is c = (c1, . . . , cn)
for c1, . . . , cn ∈M so that M � ϕ(c) for all ϕ(v) ∈ p0(v).

A complete n-type is an n-type which is maximal with respect to inclusion.

For a given model M and a subset A ⊂ M , we will denote by Sn(A) the set of
complete n-types over A in M. We let S(A) =

⋃
n<ω Sn(A).

A type is simply a set of formulas whose finite subsets carve out subsets of the
model (we will soon see that this need not be true of the type itself). It is important
to note here that the definition of a type does depend on the model in more than
just a formal sense - the formulas are formed with symbols from the language L(A)
for some subset A of the model M.

Finally, observe that there isn’t necessarily an element ofM that satisfies every
formula in a type, though this will be true in some elementary extension ofM by a
compactness argument. To see this, and perhaps to better illustrate the definition,
we provide the following example.

Example 1.2. Let L = {≤, ·} and letM be the rationals equipped with the usual
ordering and multiplication. Let A ⊂ M be the set of decimal approximations to√

2, along with 2 (that is, A = {2, 1, 1.4, 1.41, . . .}). Our theory T will be the axioms
for a dense linear order, and we form a 1-type over A consisting of all formulas of
the form a < x ∧ x · x ≤ 2 for every constant a ∈ A except 2. Observe that any
finite subset of this type is satisfiable, though the entire collection is not satisfiable
in the rationals, but only in the reals. We could also have replaced ≤ with < above,
which would make the entire collection only satisfiable in the hyperreals!

The next definition associates a complete n-type to every n-tuple of elements
from M .
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Definition 1.3. Let a be an n-tuple from M and observe that there is a unique
p(v) ∈ S(A) so that M � p(a) (here, we say that a realizes the complete n-type
p(v) in M). We call this p(v) the type of a over A in M, denoted by tpM(a/A).

To see uniqueness, note that this type is, written explicitly,

tpM(a/A) = {ϕ(v) | ϕ(v) is a formula over A and M � ϕ(a)}

which, with completeness, gives uniqueness.
We are now in a position to introduce the concepts of saturation and stability.

We begin with saturated models.

Definition 1.4. Let M be a model, and κ an infinite cardinal. We say that M is
κ-saturated if M realizes every type in S(A) for all A ⊂ M with |A| < κ. We say
that M is saturated if it is |M |-saturated.

For this to make sense, recall that models need not necessarily realize their types
(we say they omit them if not): we only require this to be true for finite subsets.

On the other hand, we say a theory is stable when it does not have ‘too many’
types.

Definition 1.5. A complete theory T is said to be κ-stable for some cardinal κ if,
for any set A with |A| < κ, we have |S(A)| < κ. A theory is stable if it is κ-stable
for some infinite κ, and superstable if it is κ-stable for all sufficiently large κ.

It is a basic property of a saturated model M that any model N which is
elementarily equivalent to M with |N | ≤ |M | is isomorphic to an elementary sub-
model of of M.

For a given complete theory T , we will - for the sake of convenience - fix a
universal domain which we will often denote by C. The universal domain will be
an arbitrarily large model (of some fixed cardinality larger than all cardinalities
we are interested in) which contains all models of T that we are considering as
elementary sub-models — assuming that there are saturated models of arbitrarily
large cardinality, this makes sense given the above property. For a more detailed
discussion on the existence of universal domains, we refer the reader to Buechler.

We now move on to notions of definability and rank.

2. Definability, Minimality and Rank

We begin with a relatively crude and natural notion of ‘smallness’ of formulas.

Definition 2.1. Let T be a theory. A formula ϕ(v) is said to be algebraic in T if
ϕ is consistent with T and for all M � T , the set {a ∈M | M � ϕ(a)} is finite.

A type is algebraic if it implies an algebraic formula.

We will not be terribly interested in formulas which only carve out finite subsets
of models. However, there is a more interesting notion: that of a strongly minimal
formula.

Definition 2.2. Let M be a model and ϕ(v) be a nonalgebraic formula. We say
that ϕ(v) over M is strongly minimal if for every elementary extension N � M
and every formula ψ(w) over N , exactly one of {a ∈ N | N � ϕ(a) ∧ ψ(a)} and
{a ∈ N | N � ϕ(a) ∧ ¬ψ(a)} is finite.

A complete theory T is strongly minimal if the formula x = x is strongly minimal.
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In the above definition, note that if one of the sets is finite, the other is necessarily
infinite since we require ϕ(v) to be nonalgebraic.

An extension of this concept leads to a notion of rank.

Definition 2.3. Let T be a complete theory. We define the Morley rank of a of a
formula ϕ in n variables, MR(ϕ), corresponding to a definable subset S of a model
M inductively as follows:

• MR(ϕ) = −1 if ϕ is inconsistent.
• MR(ϕ) = α if {p ∈ Sn(C) : ϕ ∈ p and ¬ψ ∈ p for all ψ with MR(ψ) < α}

is nonempty and finite.

We define MR(p) of an n-type p to be the infimum inf{MR(ϕ) : p implies ϕ}.
MR(S) and MR(ϕ) will be used interchangeably and are equivalent.

Observe that being strongly minimal is equivalent to having Morley rank 1.
If p and q are complete n-types over A and B respectively, with p ⊂ q and A ⊂ B,

it is easy to see that MR(q) ≤MR(p). Occasionally, we have equality, which leads
to the following definition.

Definition 2.4. Let p be a complete type over A, and let q be a complete type
over B such that A ⊂ B and p ⊂ q. We say that q is a non-forking extension of
p over B if MR(p) = MR(q). If this is not the case, we say that q is a forking
extension.

In particular, we will be interested in cases where a type not only has a nonforking
extension over any B ⊃ A, but where this extension is also unique.

Definition 2.5. A complete type p ∈ S(A) is said to be stationary if it has a
unique nonforking extension over any B ⊃ A.

Finally, we will have need of a notion of definability.

Definition 2.6. Given a complete theory with with universal domain C, we say a
subset X ⊂ C is definable if X = {c ∈ C | C � ϕ(c)} for some formula ϕ(v). X is
moreover said to be strongly minimal if ϕ(v) is strongly minimal.

An analogous notion, with types rather than formulas, is that of
∧

-definability.

Definition 2.7. Let C be the universal domain of a theory. A subset X ⊂ C is
called

∧
-definable over A if X = {c ∈ C | C � p(c)} for some type p(v) over A. X

is
∧

-definable if it is
∧

-definable over A for some A.

3. Pregeometries

In this section, we will attempt to impose a natural geometrical structure on
‘minimal’ sets in the universal domain of an arbitrary complete theory. We begin
with the definition of a pregeometry.

Definition 3.1. A pregeometry is a pair (S, cl) consisting of a set S and a (finitary)
closure map cl : P(S)→ P(S) satisfying:

(i) X ⊂ cl(X) for any X ∈ P(S);
(ii) cl(cl(X)) = cl(X) for any X ∈ P(S);
(iii) if a ∈ cl(X ∪ {b}) \ cl(X), then b ∈ cl(X ∪ {a}), for any a, b ∈ S and

X ∈ P(S);
(iv) if a ∈ cl(X), then a ∈ cl(Y ) for some finite Y ⊂ X, for any X ∈ P(S).
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A pregeometry is said to be a geometry if, in addition, it has the property that the
empty set Ø and singleton sets {a} for any a ∈ S are closed (that is, they are equal
to their own closure).

A set X is said to trivial if cl(X) =
⋃

x∈X cl({x}).

We note that ‘geometry’ here is used in the sense of combinatorial geometries
(or matroids), rather than the traditional sense. A pregeometry can be defined as a
finitary matroid.1 It is often helpful to think of the closure operation as analogous
to closure (or linear span) in a finite-dimensional vector space.

The third axiom allows us to give definitions for ‘independence’ and ‘dimension’.

Definition 3.2. Let (S, cl) be a pregeometry, and let A,B,C ⊂ S. We say that A
is independent over B if, for any a ∈ A, a 6∈ cl((A \ {a}) ∪B).

A subset A0 ⊂ A is said to be a basis for A over B if A ⊂ cl(A0 ∪ B) and A0

is independent over B. The dimension dim(A/B) of A over B is defined to be the
(unique) cardinality of a basis for A over B. We say that A is independent from B
over C if for all finite subsets A′ ⊂ A, we have dim(A′/(B ∪ C)) = dim(A′/C)

Proving that the dimension of a set is well-defined is analogous to proving that
the dimension of a vector space is well-defined.

With independence, we can give a definition of modularity (which, as will be
clear from the definition, is a notion of geometric simplicity in some sense).

Definition 3.3. Let (S, cl) be a pregeometry. We say that (S, cl) is modular if, for
any closed subsets X,Y ⊂ S, X is independent from Y over X ∩ Y .

Given a subset A ⊂ S, we define the localization (S, clA) of (S, cl) at A by
defining clA(X) = cl(A ∪X). We say that a pregeometry (S, cl) is locally modular
if, for some a ∈ S, the localization (S, cl{a}) at {a} is modular.

At this point, we will observe that with the notion of an ‘algebraic’ type, we can
provide an analogous definition for n-tuples over a set by considering the associated
n-type. Considering algebraic 1-types over a set gives us a relatively natural closure
operation on subsets of models.

Definition 3.4. Let M be a model with A ⊂ M and a ∈ M . We say that a is
algebraic over A if tpM(a/A) is algebraic. The algebraic closure of A in M is the
set {a ∈M | a is algebraic over A}.

It is a relatively easy exercise to verify that this does, in fact, form a closure
operator on the universe of a model.

4. A Dichotomy Theorem

We are now in a position to state the dichotomy theorem; while we cannot prove
this, we will provide a proof for a preliminary lemma.

Theorem 4.1. Let T be a complete superstable theory and D a minimal set in a
universal model for T which is not locally modular. Then D is strongly minimal.

We start a few definitions which will give us a notion of definability of types,
which will become useful in the lemma.

1A matroid is simply a structure which abstracts the notion of independence in a vector space.
We will not give a formal definition, but only mention it here in an attempt to make the fourth

axiom in the definition seem a little less bizarre.
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Definition 4.2. A formula ϕ(x, y) is said to be stable if there do not exist ai, bi
for i ∈ N such that � ϕ(ai, bj) if and only if i ≤ j.

Definition 4.3. Let M be a model and p(x) a complete type over M . A δ-definition
of p(x) is a formula ψ(y) of LM such that, for all b ∈M , δ(x, b) ∈ p(x) if and only
if � ψ(b).

It is a basic result that if δ(x, y) is stable and p(x) is a complete type, then there
is a δ-definition of p(x). For a proof, we refer the reader to Pillay’s book.

Finally, we will need to introduce two more notions of rank, after which we will
be able to proceed.

Definition 4.4. Let T be a complete theory. We define the U -rank on complete
types by the following recursion: U(p) ≥ α if for all β < α there is a forking
extension q of p such that U(q) ≥ β. We say U(p) = α if U(p) ≥ α but U(p) 6≥ α+1.
We say that U(p) =∞ if U(p) ≥ α for all α.

For consistent formulas ϕ(x), we define the ∞-rank of ϕ, R∞(ϕ), to be −1 if ϕ
is inconsistent and R∞(ϕ) = α if

{p ∈ Sn(C) | ϕ ∈ p and ¬ψ ∈ p for all formulas ψ with R∞(ψ) < α}
is nonempty and has cardinality less than |C|.

The lemma reduces the scope of formulas we need to consider to only weakly
minimal, nontrivial sets. It should be clear from the definition in the previous
section that weak minimality implies local modularity.

At this point, we will blur the distinction between the properties of types and
formulas and the properties of the sets they define for convenience.

Lemma 4.5. Let T be a superstable theory and p(x) ∈ S(A) a complete minimal
stationary type (defining a set D). If p(x) is non-trivial, then p is weakly minimal.

Proof. Since p is nontrivial, there are realizations a1, . . . , an, b of p such that b ∈
acl(a1, . . . , an, A) but b 6∈ acl(ai, A) for all i. We minimize n so that {a1, . . . , an}
is independent over A (and observe that there are at least two elements in this set
by the non-triviality of p).

Now, let B = A ∪ {a1, . . . , an−2}. Since p is stationary, there is a unique non-
forking extension p1 of p over B. We will show that R∞(p1) = 1, which will show
that R∞(p) = 1. Observe that an−1, an, b all realize p1 and are pairwise indepen-
dent over B, but not independent together. Let ϕ(x, y, z) be a formula over B such
that � ϕ(an−1, an, b) and for all a′, b′, c′, if � ϕ(a′, b′, c′), then a′ ∈ acl(b′, c′, B) and
b′ ∈ acl(a′, c′, B).

Let α = R∞(p1) and let θ(x) ∈ p1(x) be a formula with ∞-rank α (we can find
such a formula since p1 is complete). Let χ(x, y) be the formula ∃z(ϕ(x, y, z)∧θ(z)),
and let ψ(y) be the χ(x, y)-definition of the stationary type p1. Since p1 is over B,
so is ψ(y). Moreover, observe that � ψ(b) and � χ(a, b). Hence, ψ(y) ∈ p1(y), since
p1 is complete.

We now claim that R∞(ψ(y)) = 1, which will immediately imply R∞(p1) = 1.
To see this, we will show that for any a′ ∈ ψ(C), U(a′) ≤ 1. Pick any such a′ -
by the definition of ψ, there are b′ and c′ such that b′ ∈ D, � ϕ(a′, b′, c′) ∧ θ(c′),
and b′ is independent from a′. Since b′ ∈ acl(a′, c′), we see that α = R∞(b′/a′) ≤
R∞(c′/a′) ≤ R∞(c′) ≤ α. Thus, c′ is independent from a′ over B. Since a′ ∈
acl(b′, c′), U(a′/c′) ≤ U(b′/c′) ≤ 1, which completes the proof. �
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Proving Theorem 4.1 requires a little more work, and a few more definitions to
capture the necessary concepts, though it is hoped that the proof above gives some
idea of how the geometry of a model (in the sense of an independence structure)
could be connected with the model-theoretic structure.
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