
THE GENERALIZED STOKES’ THEOREM

RICK PRESMAN

Abstract. This paper will prove the generalized Stokes Theorem over k-
dimensional manifolds. We will begin from the definition of a k-dimensional

manifold as well as introduce the notion of boundaries of manifolds. Using

these, we will construct the necessary machinery, namely tensors, wedge prod-
ucts, differential forms, exterior derivatives, and integrals over manifolds, in

order to prove the main result of this paper. Please note that, unless otherwise
noted, all material is provided by [1].
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1. Manifolds and Other Preliminaries

Manifolds are the fundamental setting in which the Generalized Stokes’ Theorem
will be constructed. We begin by defining the idea of a smooth map.

Definition 1.1. A map f of an open set U ⊂ Rn into Rm is called smooth if it has
continuous partial derivatives of all orders. Let X be an arbitrary open subset of
Rn. Then we say that a map f : X → Rm is smooth if it may be locally extended
to a smooth map on open sets; that is, if around each point x ∈ X there is an open
set U ⊂ Rn and a smooth map F : U → Rm such that F equals f on U ∩X.

Using this idea of smoothness, we now define the most important type of function
that we will need to understand manifolds: a diffeomorphism.

Definition 1.2. Let X and Y be open sets in Rn. We say f : X → Y is a
diffeomorphism if it is bijective and smooth, and if the inverse map f−1 : Y → X
is also smooth.

Intuitively, manifolds are sets that may be locally described using Euclidean
space. In other words, we are able to construct a bijective continuously smooth
map, whose inverse is smooth as well, between the local region of the manifold and
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a representative region of Euclidean space. More formally, we have the following
definition from [1] and [3].

Definition 1.3. Let {Vi}i∈I be an open cover for X, where X is a subset of some
big, ambient Euclidean space RN such that for all p ∈ X, there is a set Vi containing
p that is open in X, a set Ui that is open in Rk, and a continuous map αi : Ui → Vi
carrying Ui onto Vi in a one-to-one fashion, such that αi is a local diffeomorphism.
Then X is a k-dimensional manifold, and (Vi, αi) is called a coordinate chart .

In addition to a smooth manifold, we have the notion of a manifold with bound-
ary. Just as the name suggests, a manifold with boundary is exactly like the smooth
manifolds we have already discussed but with additional structure known as the
boundary. In order to rigorously define such an object, we introduce an analog to
Rk.

Definition 1.4. The upper half space, denoted Hk, is the set of all points with
nonnegative final coordinate. Its boundary is Rk−1.

Definition 1.5. The boundary of a k-dimensional manifold X under one or more
local diffeomorphisms between an open set of X and an open set Hk used to param-
etrize the manifold is defined as follows with the following notation used henceforth:
∂X = {x : x ∈ Im(∂Hk)}, where Im(A) denotes the image of the set A.

Definition 1.6. Let {Vi}i∈I be an open cover for X, where X is a subset of
some big, ambient Euclidean space RN such that for all p ∈ X, there is a set Vi
containing p that is open in X, a set Ui that is open in Hk, and a continuous map
α : Ui → Vi carrying Ui onto Vi in a one-to-one fashion, such that αi is a local
diffeomorphism. Then X is a k-dimensional manifold with boundary, and (Vi, αi)
is called a coordinate chart .

With the idea of a manifold with boundary defined rigorously, we take a closer
look at what exactly this new structure, the boundary, is. Not very surprisingly,
the boundary is itself a manifold; however, it is a manifold without boundary.

Fact 1.7. Let X be a k-dimensional manifold with boundary. Then ∂X is a (k−1)
dimensional manifold without boundary.

A few important definitions and theorems will be introduced for later use.

Definition 1.8. Let x be a point on a manifold X in RN . Moreover, let U ⊂ Rk
with φ : U → X being a local diffeomorphism around x, and let dφ : Rk → RN
be the derivative map, so it should map from k-space to the tangent space of the
manifold. Then we say that the image of dφ : Rk → RN is the tangent space of
X at x. We denote the tangent space of X at x as Tx(X). In RN , the map dφ
resembles the Jacobian matrix.

Linear transformations from a tangent space of one manifold to another are well-
defined and mimic the desired properties of derivatives.

Besides tangent spaces that can be placed on manifolds, orientations can be
assigned. We first look at orientations for vector spaces and then for manifolds.

Definition 1.9. Given an ordered basis of a finite-dimensional real vector space
V , an orientation is the arbitrary assignment of either a positive or negative sign
to equivalence classes that result from the partitioning based on the sign of the
determinant of a linear transformation A : V → V . In other words, whether the
determinant is positive or negative will determine the orienation.
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From [3], we have the following definition that is necessary for oriented manifolds.

Definition 1.10. Let X be a topological n-manifold. If (U, φ), (V, ψ) are two
coordinate charts such that U ∩ V 6= ∅, the composite map ψ ◦ φ−1 : φ(U ∩ V ) →
ψ(U ∩ V ) is called the transition map from φ to ψ. Two charts (U, φ) and (V, ψ)
are said to be smoothly compatible if either U ∩V = ∅ or the transition map ψ ◦φ−1
is a diffeomorphism.

Definition 1.11. Given a manifold with boundary X, its orientation is a smoothly
compatible choice of orientations at each of its tangent spaces Tx(X).

Remarks 1.12. First, if the choice is of orientation for a manifold satisfies smooth
compatibility, we say that the coordinate charts are orientation-preserving. Second,
every orientation induces an orientation on its boundary, which is either directed
outward or inward on the boundary. Thus, we shall refer to these as the outward
and inward normals.

We state a useful fact about orientations without proof.

Fact 1.13. A connected, orientable manifold with boundary admits exactly two
orientations.

One concept remains to be constructed, namely a partition of unity. Loosely
speaking, a partition of unity is a set of locally finite functions that sum to unity.
Its power lies in that it allows us to extend local topological properties to global
settings. We state the following theorem without proof for later use.

Theorem 1.14. Let X be a smooth manifold in RN . For any covering of X by
(relatively) open subsets {Uα}, there exists a sequence of smooth functions {θi},
called a partition of unity subordinate to the open cover {Uα}, with the following
properties:
(a) 0 ≤ θi(x) ≤ 1 for all x ∈ X and all i.
(b) Each x ∈ X has a neighborhood on which all but finitely many functions θi are
identically zero.
(c) Each function θi is identically zero except on some closed set contained in one
of the Uα.
(d) For each x ∈ X,

∑
i θi(x) = 1. (Note that according to (b), this sum is always

finite.)
Note: (relatively) open subsets are to be interpreted in the following manner: if X
is a subset in Rn, then a subset Y of X is (relatively) open in X if it can be written
as the intersection of X with an open subset of Rn.

2. Exterior Algebra: Tensors and Wedge Products

We now take a detour away from manifolds in order to develop the tools necessary
to discuss differential forms. Our building blocks come in the form of tensors. For
our purposes, tensors will refer to multilinear functions.

Definition 2.1. A p-tensor on V is a real-valued function T on the cartesian
product

V p = V × · · · × V︸ ︷︷ ︸
p times

,

which is separately linear in each variable, or multilinear.
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Tensors tend to be generalized versions of various functionals we know. For
example, a real-valued functional is a 1-tensor, while the dot product in Euclidean
space is a 2-tensor.

One way of combining tensors is known as the tensor product.

Definition 2.2. Let T be a p-tensor and S a q-tensor. We define a (p+ q)-tensor
T ⊗ S by the formula

(T ⊗ S)(v1, . . . , vp, vp+1, . . . , vp+q) = T (v1, . . . , vp) · S(vp+1, . . . , vp+q)

We call T ⊗ S the tensor product of T with S.

Remark 2.3. The set Jp(V ∗) of all p-tensors forms a vector space.

Fact 2.4. Tensor product is associative; that is, (T ⊗ S)⊗R = T ⊗ (S ⊗R).

Proof. Take T ∈ Jp(V ∗), S ∈ Jq(V ∗), and R ∈ Js(V ∗). By definition and associa-
tivity of the reals, we have

((T ⊗ S)⊗R)(v1, . . . , vp, vp+1, . . . , vp+q, vp+q+1, . . . , vp+q+s)

= [T (v1, . . . , vp) · S(vp+1, . . . , vp+q)] ·R(vp+q+1, . . . , vp+q+s)

= T (v1, . . . , vp) · [S(vp+1, . . . , vp+q) ·R(vp+q+1, . . . , vp+q+s)]

= (T ⊗ (S ⊗R))(v1, . . . , vp, vp+1, . . . , vp+q, vp+q+1, . . . , vp+q+s).

�

While we will not be using the tensor product directly, a special case, known as
the wedge product, will be necessary for our purposes. To that end, we introduce
a special type of tensor.

Definition 2.5. A tensor T is alternating if the sign of T is reversed whenever two
variables are transposed:

T (v1, . . . , vi, . . . , vj , . . . , vp) = −T (v1, . . . , vj , . . . , vi, . . . , vp).

It may appear that alternating tensors are rare, so it is important to produce a
method for constructing alternating tensors from an arbitrary tensor T . If we let
π ∈ Sp be a permutation, where Sp denotes the symmetric group of p elements,
we denote (−1)π = +1 or (−1)π = −1 if π is even or odd, respectively. Using this
notation, we have an immediate and obvious result: given that T is an alternating
tensor, Tπ = (−1)πT , where Tπ(v1, . . . , vp) = T (vπ(1), . . . , vπ(p)). Moreover, we
claim, without proof, that (Tπ)σ = Tπ◦σ.

Proposition 2.6. Let T be a p-tensor. Construct a p-tensor Alt(T ) = 1
p!

∑
π∈Sp(−1)πTπ.

Then Alt(T) is an alternating tensor.

Proof. Take a p-tensor as constructed above, and let σ ∈ Sp. Then we have the
following:

[Alt(T)]σ =

[
1

p!

∑
π∈Sp

(−1)πTπ

]σ
=

1

p!

∑
π∈Sp

(−1)π◦σ◦σ(Tπ)σ =
1

p!
(−1)σ

∑
π∈Sp

(−1)π◦σTπ◦σ.

Now let τ = π ◦ σ. This yields

[Alt(T)]σ = (−1)σ

[
1

p!

∑
τ∈Sp

(−1)τT τ

]
= (−1)σ[Alt(T)].

�
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Remark 2.7. The set Λp(V ∗) of alternating p-tensors forms a subspace of Jp(V ∗).

Now that we are able to construct an alternating tensor out of any tensor, we
put it to use by combining it with the tensor product. Using the tensor product,
we can apply it to two arbitrary tensors, say T and S, and we get a new tensor
T ⊗S. Applying the algorithm we developed above, we are now able to turn T ⊗S
into an alternating tensor, which we proceed to define below.

Definition 2.8. Let T ∈ Λp(V ∗) and S ∈ Λq(V ∗). We call T ∧ S ∈ Λp+q(V ∗) the
wedge product, and we define it by the formula T ∧ S = Alt(T ⊗ S).

One especially important property of the wedge product is associativity. In order
to prove that it possess this property, however, we need to prove the following
lemma.

Lemma 2.9. If Alt(T ) = 0, then T ∧ S = 0 = S ∧ T .

Proof. Sp+q carries a natural copy of Sp: the subgroup G consisting of all permu-
tations of (1, . . . , p + q) that fix p + 1, . . . , p + q. The correspondence between G
and Sp assigns to each π ∈ G the permutation π′ caused by limiting π to (1, . . . , p).

Note that (T ⊗ S)π = Tπ
′ ⊗ S, and (−1)π = (−1)π

′
. Thus

∑
π∈G

(−1)π(T ⊗ S)π =

 ∑
π′∈Sp

(−1)π
′
Tπ
′

⊗ S = Alt(T )⊗ S = 0.

Now a subgroup G decomposes Sp+q into a disjoint union of right cosets G ◦ σ =
{π ◦ σ : π ∈ G}. But for each coset∑

π∈G
(−1)π◦σ(T ⊗ S)π◦σ = (−1)σ

[∑
π∈G

(−1)π(T ⊗ S)π

]σ
= 0.

Since T ∧ S = Alt(T ⊗ S) is the sum of these partial summations over the right
cosets of G, then T ∧ S = 0. Similarly, S ∧ T = 0. �

Theorem 2.10. Wedge product is associative,

(T ∧ S) ∧R = T ∧ (S ∧R),

justifying the notation T ∧ S ∧R.

Proof. We claim that (T ∧ S) ∧R equals Alt(T ⊗ S ⊗R). By definition,

(T ∧ S) ∧R = Alt((T ∧ S)⊗R),

so the linearity of Alt implies

(T ∧ S) ∧R−Alt(T ⊗ S ⊗R) = Alt([T ∧ S − T ⊗ S]⊗R).

Since T ∧ S is alternating,

Alt(T ∧ S − T ⊗ S) = Alt(T ∧ S)−Alt(T ⊗ S) = T ∧ S − T ∧ S = 0.

So the lemma implies

Alt([T ∧ S − T ⊗ S]⊗R) = 0,

as needed. Using the linearity of Alt as well as the alternating properties of the
wedge product, we can follow a similar set of steps to show that

T ∧ (S ∧R) = Alt(T ⊗ S ⊗R).
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Since (T ∧S)∧R and T ∧ (S ∧R) equal the same thing, we conclude that they are
equal to each other. �

We state, without proof, the following fact about the wedge product.

Fact 2.11. The wedge product is anticommutative in the following sense:

T ∧ S = (−1)pqS ∧ T,
where T and S are alternating p- and q-tensors, respectively.

Given a linear transformation A : V → W , we define the transpose map A∗ :
Λp(W ∗)→ Λp(V ∗) as follows. If T ∈ Λp(W ∗), thenA∗T (v1, . . . , vp) = T (Av1, . . . , Avp)
and A∗T ∈ Λp(V ∗). Since it will require us to use some definitions and ideas beyond
the scope of this paper, we will simply state the following theorem.

Theorem 2.12. (Determinant Theorem) If A : V → V is a linear map, then
A∗T = (detA)T for every T ∈ Λk(V ), where k = dim V . In particular, if
φ1, . . . , φk ∈ Λ1(V ∗), then A∗φ1 ∧ · · · ∧A∗φk = (detA)φ1 ∧ · · · ∧ φk..

3. Differential Forms and Exterior Derivatives

In this section, we use the tools we developed from exterior algebra and begin to
apply them to our setting of manifolds. The result is known as the differential form,
or a p-form, and we construct our first operator that can be use on a differential
form: the exterior derivative.

Definition 3.1. Let X be a smooth manifold. A p-form on X is a function ω that
assigns to each point x ∈ X an alternating p-tensor ω(x) on the tangent space of
X at x; more tersely, ω(x) ∈ Λp[Tx(X)∗].

Examples 3.2. Real-valued functions on a manifold X are known as 0-forms.
If you have an arbitrary smooth function φ : X → R, then you can construct a
1-form dφx : Tx(X)→ R, known as the differential, which is linear.

Definition 3.3. Let X and Y be smooth manifolds with or without boundary,
and let dfx : Tx(X) → Ty(Y ) be the derivative map from one tangent space of
a manifold to another tangent space of another manifold. Then we define the
transpose map which maps forms on Y to X by f∗ω(x) = (dfx)∗ω[f(x)]. If ω is a
0-form, f∗ω = ω ◦ f .

Proposition 3.4. Suppose that f : V → U is a diffeomorphism of two open sets
in Rk. Then f∗(dx1 ∧ · · · ∧ dxk) = det(df)dy1 ∧ · · · ∧ dyk.

Proof. If f(y) = x, let the standard basis of linear functions on Rk be written as
dy1(y), . . . , dyk(y) for Ty(V ) and dx1(x), . . . , dxk(x) for Tx(U). By the Determinant
Theorem,

f∗ω (y) = (dfy)∗ dx1(x) ∧ · · · ∧ (dfy)∗dxk(x) = det(dfy) dy1(y) ∧ · · · ∧ dyk(y).

�

Now that we understand the idea of a differential form, our next objective is to
generate differential forms from ones that we already have. While this is possible
to do in multiple ways, we make this idea precise via the exterior derivative. Given
a p-form, the exterior derivative is an operator that transforms this form into a
(p+ 1)-form. More precisely, we have the following definition.
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Definition 3.5. If we ω is a 0-form, we know that that the differential is a 1-form
that can be expressed as df =

∑ ∂f
∂xi

dxi. Now, let ω =
∑
aIdxI is a smooth p-

form on an open subset of Rk. Call the exterior derivative of ω the (p + 1)-form
dω =

∑
daI ∧ dxI .

Theorem 3.6. The exterior differentiation operator defined for forms on arbitrary
manifolds with boundary has the following properties:

1. d(ω1 + ω2) = dω1 + dω2.
2. d(ω ∧ θ) = (dω) ∧ θ + (−1)kω ∧ dθ, where ω is a k-form.
3. d(dω) = 0.

Proof. 1. Let ω1 =
∑
I aIdxI , ω2 =

∑
I bIdxI , where aI and bI are functions. Then

d(ω1 + ω2) = d

(∑
I

aI dxI +
∑
I

bI dxI

)
= d

(∑
I

(aI dxI + bI dxI)

)

= d

(∑
I

(aI + bI) dxI

)
=

(∑
I

d(aI + bI) ∧ dxI

)
=

(∑
I

(daI + dbI) ∧ dxI

)

=

(∑
I

daI ∧ dxI + dbI ∧ dxI

)
=

(∑
I

daI ∧ dxI

)
+

(∑
I

dbI ∧ dxI

)
= dω1 + dω2.

2. From [2], we have the following inductive proof. Take ω1 = f and ω2 = g
to be 0-forms. Then

d(ω1 ∧ ω2) =
∑
I

d(f · g) dxI =
∑
I

(df · g + f · dg) dxI =
∑
I

df · g dxI

+
∑
I

f · dg dxI = df ∧ g + f ∧ dg = dω1 ∧ ω2 + ω1 ∧ dω2.

Now let ω and θ be k- and `-forms, respectively. Using the base case above as well
as the anticommutativity of the wedge product, we have the following:

d(ω ∧ θ) = d(f · g dxI ∧ dxJ) = (d(f · g) ∧ dxI ∧ dxJ)

= (df ∧ g + f ∧ dg) ∧ dxI ∧ dxJ
= (df ∧ g ∧ dxI ∧ dxJ) + (f ∧ dg ∧ dxI ∧ dxJ)

= (d ∧ dxI) ∧ (g ∧ dxJ) + (−1)k (f ∧ dxI) ∧ (dg ∧ dxJ)

= dω ∧ θ + (−1)k ω ∧ dθ.

3. Let ω =
∑
I aI dxI be a k-form. By definition, dω =

∑
I daI ∧ dxI . We

then apply the operator in question a second time:

d(dω) = d

(∑
I

aI ∧ dxI

)
= d

(∑
I

(∑
i

∂aI
∂xi

)
∧ dxI

)

=
∑
I

∑
i

(∑
j

∂2aI
∂xi∂xj

dxJ

)
∧ dxi ∧ dxI .

(3.7)

Using a basic property of iterated differentiation, with the anticommutativity of
the wedge product (i.e., dxj ∧ dxi = −dxi ∧ dxj), all of the terms in (3.6) cancel,
yielding the desired conclusion. �
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4. Integration on Manifolds

One tool remains to the construct: the integral over manifolds. We open this
section by recalling a familiar theorem from analysis—the change of variables in
Rk—and restating it using the tools we have learned thus far. From there, we
construct the integral of an arbitrary compactly supported smooth k-form ω on a
k-dimensional manifold.

Recall 4.1. In analysis, we have the following theorem for the change of variables
in Rk: assume that f : U → V is a diffeomorphism of open sets in Rk and that a
is an integrable function on U . Then∫

U

a dx1 · · · dxk =

∫
V

(a ◦ f)|det(df)|dy1 · · · dyk.

Theorem 4.2. (Change of Variables in Rk) Assume that f : U → V is an
orientation-preserving diffeomorphism of open sets in Rk or Hk, and let ω be an
integrable k-form on U . Then ∫

U

ω =

∫
V

f∗ω.

Proof. Let ω = a dx1 · · · dxk be a k-form. Using Proposition 3.3, we know that
f∗(ω) = (a ◦ f) det(df) dy1 ∧ · · · ∧ dyk. Since we assumed that f is orientation-
preserving, det(df) > 0, which implies |det(df)| = det(df). Substituting this into
the above change of variables formula, we get the desired result. �

We formally define the support of a differential to be the set of all points x on a
manifold X such that the form evaluated at x is nonzero.

Definition 4.3. Let ω be a smooth k-form on X, a k-dimensional manifold with
boundary. The support of ω is defined as the closure of the set of points where
ω(x) 6= 0; we say that ω is compactly supported if the support is compact.

Definition 4.4. Let ω be an arbitrary, compactly supported, smooth k-form on a
manifold X. Take a subordinate partition of unity {ρi} for a given open cover Uα.
Then we define the integral of ω on X to be the following:∫

X

ω =
∑
i

∫
ρiω.

Proposition 4.5.
∫
X
ω is well-defined.

Proof. Suppose that {ρ′j} is another partition of unity. Then for each i,∫
X

ρiω =
∑
j

∫
X

ρ′jρiω;

similarly, for each j, ∫
X

ρ′jω =
∑
i

∫
x

ρiρ
′
jω.

Combining these results gives us the following:∑
i

∫
X

ρiω =
∑
i

∑
j

∫
X

ρ′jρiω =
∑
j

∑
i

∫
X

ρiρ
′
jω =

∑
j

∫
X

ρ′jω,

which implies that
∫
X
ω is well-defined. �
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Using our definition of the integral over manifolds, we extend our earlier change
of variables theorem to manifolds in RN .

Theorem 4.6. If f : X → Y is an orientation-preserving diffeomorphism, then∫
X

ω =

∫
Y

f∗ω

for every compactly supported, smooth k-form on X(k = dimX = dimY ).

Proof. Let {ρi} be a partition of unity of a compactly supported, smooth k-form
on X subordinate to a relatively open cover {Uα}. Furthermore, for all α, let
f−1(Vα) = Uα, where {Vα} is an open cover of Y . Applying our modified change
of variables theorem, we have the following consequence:∫

X

ω =
∑
i

∫
Uα

ρiω =
∑
i

∫
Vα

f∗(ρiω) =
∑
i

∫
Vα

(ρi ◦ f)f∗ω =

∫
Y

f∗ω.

�

5. The Generalized Stokes’ Theorem

Utilizing all of the machinery we have developed, we now prove the main result
of this paper.

Theorem 5.1. Suppose that X is any compact oriented k-dimensional manifold
with boundary, so ∂X is a k−1 dimensional manifold with the boundary orientation.
If ω is any smooth (k − 1)-form on X, then∫

∂X

ω =

∫
X

dω

Proof. Both sides of the equation are linear in ω, so we may assume ω to have
compact support contained in the image of a local diffeomorphism h: U → X,
where U is an open subset of Rk or Hk.

The rest of the proof proceeds by considering the theorem by cases. Our first
case will consist of a neighborhood of X locally diffeomorphic to an open subset of
Rk, where we expect both sides of the theorem to evaluate to 0 since there is no
boundary over which to evaluate the differential form. Our second case will consist
of a neighborhood of X locally diffeomorphic to an open subset of Hk.

First, assume U is open in Rk. Then∫
∂X

ω = 0 and

∫
X

dω =

∫
U

h∗(dω) =

∫
U

dν,

where ν = h∗ω. Since ν is a (k − 1)-form in k-space, it can be expressed as

ν =

k∑
i=1

(−1)i−1fi dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk

Here the d̂xi means the term dxi is ommitted. Then

dν =

(∑
i

∂fi
∂xi

)
dx1 ∧ . . . ∧ dxk

and

(5.2)

∫
Rk
dν =

∑
i

∫
Rk

∂fi
∂xi

dx1 . . . dxk.
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The integral over Rk is computed via iterated integrals over R1, which may be taken
in any order due to Fubini’s Theorem. Integrate the ith term first with respect to
xi: ∫

Rk−1

(∫ ∞
−∞

∂fi
∂xi

)
dx1 · · · d̂xi · · · dxk.

Of course, ∫ ∞
−∞

∂fi
∂xi

dxi

is the function of x1, . . . , x̂i, . . . , xk that maps to any (k−1)-tuple (b1, . . . , b̂i, . . . , bk)
the number

∫∞
−∞ g′(t)dt, where g(t) = fi(b1, . . . , t, . . . , bk). Since ν has compact

support, g vanishes outside any sufficiently large interval (−a, a) in R1. Therefore
the Fundamental Theorem of Calculus implies∫ ∞

−∞
g′(t) dt =

∫ a

−a
g′(t) dt = g(a)− g(−a) = 0− 0 = 0.

Thus
∫
X
dω = 0, as desired because this implies that the theorem holds since both

sides of the equation are evaluated to 0.
We now take a look at our second case of the theorem. When U ⊂ Hk, we repeat

the above process for every term of (5.2) except the last term. Since the boundary
of Hk is the set where xk = 0, the last integral is∫

Rk−1

(∫ ∞
0

∂fk
∂xk

dxk

)
dx1 · · · dxk.

Now compact support implies that fk vanishes if xk is outside some large interval
(0, a), but although fk(x1, . . . , xk−1, a) = 0, fk(x1, . . . , xk−1, 0) 6= 0. Thus applying
the Fundamental Theorem of Calculus as we did above, we obtain∫

X

dω =

∫
Rk−1

−fk(x1, . . . , xk−1, 0)dx1 · · · dxk−1.

On the other hand, ∫
∂X

ω =

∫
∂Hk

ν.

Since xk = 0 on ∂Hk, dxk = 0 on ∂Hk as well. Consequently, if i < k, the form

(−1)i−1fidx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk restricts to 0 on ∂Hk. So the restriction of
ν to ∂Hk is (−1)k−1f(x1, . . . , xk, 0)dx1 ∧ · · · ∧ dxk−1, whose integral over ∂Hk is
therefore

∫
∂X

ω.

Now ∂Hk is diffeomorphic to Rk−1 under the map (x1, . . . , xk−1)→ (x1, . . . , xk−1, 0),
but this diffeomorphism does not always carry the usual orientation of Rk−1 to the
boundary orientation of ∂Hk. Let e1, . . . , ek be the standard ordered basis for
Rk, so e1, . . . , ek−1 is the standard ordered basis for Rk−1. Since Hk is the upper
half-space, the outward unit normal to ∂Hk is −ek = (0, . . . , 0,−1). Thus in the
boundary orientation of ∂Hk, the sign of the ordered basis {−ek, e1, . . . , ek−1} is
the standard orentation of Hk. The latter sign is easily seen to be (−1)k, so the
usual diffeomorphism Rk → ∂Hk changes orientation by the factor (−1)k.
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The result is the following formula.∫
∂X

ω =

∫
∂Hk

(−1)k−1fk(x1, . . . , xk−1, 0)dx1, · · · , dxk−1

= (−1)k
∫
Rk−1

(−1)k−1fk(x1, . . . , xk−1, 0)dx1 · · · dxk−1.

Since (−1)k(−1)k−1 = −1, it is exactly the formula we derived for
∫
X
dω. Since

both sides of the theorem are evaluated to the same value, they are equivalent,
which means the theorem holds for subset of Hk. �

With the Generalized Stokes’ Theorem proved, we touch on a few important
results. Most notably, the four higher-dimensional analogs of the Fundamental
Theorem of Calculus (specifically, the Fundamental Theorem for Line Integrals,
Green’s Theorem, the Clasical Stokes’ Theorem, and the Divergence Theorem) are
immediate results of the Generalized Stokes’ Theorem; however, it is important to
point out that even though we could say the Fundamental Theorem of Calculus is
also a result, it would be circular since we used it in our proof. Moreover, our result
is applicable in the study of complex analysis and the study of the cohomology of
forms.
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